用户名: 密码: 验证码:
金铂催化共轭烯炔羰基化合物与烯烃环加成构建环戊烷并呋喃环结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金、铂是位于第六周期的过渡金属元素,它们除了具有过渡金属的通性以外,还含有特殊的Lewis酸性,我们又将其称为π酸性。它们的这种性质使得其对不饱和键尤其是炔键具有独特的活化能力。近年来,金铂作为催化剂的催化反应被越来越多的化学家们所重视。
     多取代呋喃是天然产物和药物分子中的一种重要的结构单元,同时它也是合成化学中合成复杂的天然以及非天然产物的重要中间体,因此,合成呋喃环骨架一直是有机化学方法学中的研究热点。
     我们课题组在金、铂催化炔基活化方面做了大量研究,本论文在此基础上,针对金、铂催化的共轭烯炔羰基化合物与烯烃环加成合成环戊烷并呋喃环结构进行了初步的探索,主要通过以下两个方面开展了研究工作。
     1.我们以2-苯乙烯基-4苯基-3-丁炔醛为底物,通过简单的铂催化剂活化炔键,诱发分子内的羰基亲核进攻形成呋喃环结构,同时通过富电子的烯烃亲核进攻碳正离子,彼此发生[3+2]环加成高选择性的生成了环戊烷并[b]呋喃,通过改变官能团进一步研究发现该反应具有优秀的选择性和产率以及较好的适用性。
     2.在铂催化共轭烯炔醛与烯烃环化过程中,我们发现共轭烯炔酮与烯烃之间并没有发生类似反应生成环戊烷并[b]呋喃的结构,而是生成了一种三取代的呋喃结构,在进一步的研究探索过程中,我们发现金催化剂能够在温和的条件下迅速将2-苯乙烯基-4苯基-3-丁炔苯酮与烯烃催化串联环化形成环戊烷并[c]呋喃结构,并且得到了优秀的产率以及较好的适用性。
Gold and platinum are the6th period later transition elements, they not only act as transition metals, but also as lewis acids, which are also called π-acid. The individual lewis acids show high activity to the alkyne group. In recent years, the reactions via gold, platinum-catalyzed have drawn much attention of chemists.
     The synthesis of highly substituted furans has attracted tremendous interest for several decades, resulting from both the importance of the five-memembered heterocycles in natural products and pharmaceuticals and the uniqueness as a useful intermediates in total syntheses. Therefore, the atom-economical and region-defined approaches to synthesis of highly substituted furans have particularly held our attention.
     Our groups have many studies on gold and platinum catalysis, this thesis is concemed with studies on the reaction of conjugated enyne carbonyl compouds and alkenes catalyzed by gold and platinum. It is divided into two parts as follows:
     1. We choose2-(1-alkynyl)-3-aryl-2-propenals as subtrates, the oxygen of the carbonyl group, used as a nucleophile, attacks alkynes which activated by platinum to form an oxonium ion intermediate, which subsequently isomerizes to a furan carbocation. Then, the nucleophilic attack of electron-rich olefins to the carbocation and [3+2] cyclization occurs subsequently to obtain polysubstituted4H-cyclopenta[b]furans. The reaction shows a good to excellent yield. and high chemo-and regioselectivity.
     2. The substrate2-benzylidene-1,4-diphenylbut-3-yn-l-one and ethene-1,1-diyldibenzene can not react to the4H-cyclopenta[b]furans catalyzed by platinum. To our surprise, they can be cyclizated to obtain a4H-cyclopenta[c]furans in the presence of gold. The reaction shows good yield and regioselectivity.
引文
[1](a) Furstner, A. Gold and Platinum Catalysis-A Convenient Tool for Generating Molecular Complexity. Chem. Soc. Rev.2009,38,3208-3221. (b) Abu S.S.M.; Liu, R.-S. Carbocyclisation of Alkynes with External Nucleophiles Catalysed by gold, Platinum and Other Electrophilic Metals. Chem. Soc. Rev.2009,38,2269-2281.
    [2]Norman, R.O.C.; Parr, W.J.E.; Thomas, C.B. The reactions of alkynes, cyclopropanes, and benzene derivatives with gold(Ⅲ). J. Chem. Soc. Perkin Trans.11976,1983.
    [3]Mizushima, E.; Hayashi, T.; Tanaka, M. Au(Ⅰ)-Catalyzed Highly Efficient Intermolecular Hydroamination of Alkynes. Org. Lett.2003,5,3349.
    [4]Hashmi, A.S.K.; Schwarz, L.; Choi, J.-H.; Frost, T.M. A New Gold-Catalyzed C-C Bond Formation. Angew. Angew. Chem., Int. Ed.2000,39,2285.
    [5]Barluenga, J.; Die'guez, A.; Ferna'ndez, A.; Rodn'guez, F.; Fanana's, F. J. Gold-or Platinum-Catalyzed Tandem Cycloisomerization/Prins-Type Cyclization Reactions. Angew. Chem.2006,118,1; Angew. Chem., Int. Ed.2006,45,2091.
    [6](a) Dube', P.; Toste, F.D. Synthesis of Indenyl Ethers by Gold(I)-Catalyzed Intramolecular Carboalkoxylation of Alkynes. J. Am. Chem. Soc.2006,128,12062. (b) Genin, E.; Tullec, P.Y.; Antoniotti, S.; Brancour, C.; Gene^t, J.-P.; Michelet, V. Room Temperature Au(I)-Catalyzed exo-Selective Cycloisomerization of Acetylenic Acids:□ An Entry to Functionalized y-Lactones. J. Am. Chem. Soc.2006,128,3112.
    [7]Hashmi, A.S.K.; Schwarz, L.; Choi, J.-H.; Frost, T.M. A New Gold-Catalyzed C-C Bond Formation. Angew.Chem.2000,112,2382.
    [8]Seregin, I.V.; Gevorgyan, V. Gold-Catalyzed 1,2-Migration of Silicon, Tin, and Germanium en Route to C-2 Substituted Fused Pyrrole-Containing Heterocycles. J. Am. Chem. Soc.2006, 128,12050.
    [9](a) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. Highly Selective Skeletal Reorganization of 1,6-and 1,7-Enynes to 1-Vinylcycloalkenes Catalyzed by [RuCl2(CO)3]2. J. Am. Chem. Soc. 1994,116,6049; (b) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. PtCl2-Catalyzed Conversion of 1,6-and 1,7-Enynes to 1-Vinylcycloalkenes. Anomalous Bond Connection in Skeletal Reorganization of Enynes. Organometallics.1996,15,901.
    [10](a) Sargent, M.V.; Dean, F.M. Furans and their Benzo Derivatives:(Ⅱ)Reactivity. Comprehensive Heterocyclic Chemistry, Vol.4 Katrizky, A. R.; Rees C. W., Eds.; Pergamon Press:New York,1984; pp 599-656; Donnelly, D.M.X.; Meegan, M.J. Furans and their Benzo Derivatives:(Ⅲ)Synthesis and Applications. Comprehensive Heterocyclic Chemistry, Vol.4, Katrizky, A.R.; Rees, C.W., Eds., Pergamon Press:New York,1984; pp 657-712. (b) Shipman, M. Aromatic heterocycles as intermediates in natural product synthesis. Contemp. Org. Synth. 1995,2,1. (c) Vernin, G.; Vernin, G. Chemistry of Heterocyclic Compounds in Flavours and Aromas, Vernin, G. Ed., Ellis Horwood:Chichester,1982; pp 74. (d) Vernin, G.; Parkanyi, C. Chemistry of Heterocyclic Compounds in Flavours and Aromas G. Vernin, Ed., Ellis Horwood: Chichester,1982, pp 161. (e) Lipshutz, B.H. Five-membered Heteroaromatic Rings as Intermediates in Organic Synthesis. Chem. Rev.1986,86,795.
    [11](a) Gilchrist, T.L. Synthesis of Aromatic Heterocycles. J. Chem. Soc., Perkin Trans.11999, 2849. (b) Newton, C.G. Pyridodiazines and their Benzo Derivatives. Comprehensive Heterocyclic Chemistry, Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Pergamon:Oxford, 1996; Vol.3, pp 119. (c) Ferreira, V.F.; De Souza, M.C.B.V.; Cunha, A.C.; Pereira, L.O.R.; Ferreira, M.L.G. Recent Advances in the Synthesis of Pyrroles. Org. Prep. Proced. Int.2001, 33,411.
    [12](a) Nakamura, I.; Yamamoto, Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chem. Rev.2004,104,2127. (b) McReynolds, M.D.; Dougherty, J.M.; Hanson, P.R. Synthesis of Phosphorus and Sulfur Heterocycles via Ring-Closing Olefin Metathesis. Chem. Rev.2004,104,2239. (c) Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-Metal-Catalyzed Addition of Heteroatom-Hydrogen Bonds to Alkynes. Chem. Rev.2004,104,3079. (d) Deiters, A.; Martin, S.F. Synthesis of Oxygen-and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis. Chem. Rev.2004,104,2199. (e) Zeni, G.; Larock, R.C. Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem. Rev.2004,104,2285. (f) Yet, L. Metal-Mediated Synthesis of Medium-Sized Rings. Chem. Rev.2000,100,2963.
    [13]Kelin, A.V.; Gevorgyan, V. Efficient Synthesis of 2-Mono-and 2,5-Disubstituted Furans via the CuI-Catalyzed Cycloisomerization of Alkynyl Ketones. J. Org. Chem.2002,67,95.
    [14]Sromek, A.W.; Kelin, A.V.; Gevorgyan, V. A Novel 1,2-Migration of Acyloxy, Phosphatyloxy, and Sulfonyloxy Groups in Allenes:Efficient Synthesis of Tri-and Tetrasubstituted Furans. Angew. Chem. Int. Ed.2004,43,2280.
    [15]Hashmi, A.S.K.; Sinha, P. Gold Catalysis:Mild Conditions for the Transformation of Alkynyl Epoxides to Furans. Adv. Synth. Catal.2004,346,432.
    [16](a) Yao, T.-L.; Zhang, X.-X.; Larock, R.C. AuCl3-Catalyzed Synthesis of Highly Substituted Furans from 2-(1-Alkynyl)-2-alken-1-ones. J. Am. Chem. Soc.2004,126,11164; (b) Yao, T.-L.; Zhang, X.-X.; Larock, R.C. Synthesis of Highly Substituted Furans by the Electrophile-Induced Coupling of 2-(1-Alkynyl)-2-alken-l-ones and Nucleophiles. J. Org. Chem.,2005,70,7679.
    [17](a) Patil, N.T.; Wu, H.; Yamamoto, Y. Cu(I) Catalyst in DMF:□ An Efficient Catalytic System for the Synthesis of Furans from 2-(1-Alkynyl)>2-alken-l-ones. J. Org. Chem.2005,70,4531; (b) Patil, N.T.; Yamamoto, Y. Metal-mediated Synthesis of Furans and Pyrroles. ARKIVOC. 2007,10,121.
    [18]Xiao, Y.-J.; Zhang, J.-L. Tetrasubstituted Furans by a PdII-Catalyzed Three-Component Michael Addition/Cyclization/Cross-Coupling Reaction. Angew. Chem. Int. Ed.2008,47, 1903.
    [19]Xiao, Y.-J.; Zhang, J.-L. Palladium(Ⅱ)-Catalyzed Domino Reaction of 2-(1-Alkynyl)-2-alken-l-ones with Nucleophiles:Scope, Mechanism and Synthetic Application in the Synthesis of 3,4-Fused Bicyclic Tetrasubstituted Furans. Adv. Synth. Catal. 2009,351,617.
    [20](a) Liu, F.; Yu, Y.-H.; Zhang, J.-L. Highly Substituted Furo[3,4-d][1,2]oxazines: Gold-Catalyzed Regiospecific and Diastereoselective 1,3-Dipolar Cycloaddition of 2-(1-Alkynyl)-2-alken-l-ones with Nitrones. Angew. Chem. Int. Ed.2009,48,5505. (b)Liu, F.; Qian, D.-Y.; Li, L.; Zhao, X.-L.; Zhang, J.-L. Diastereo-and Enantioselective Gold(I)-Catalyzed Intermolecular Tandem Cyclization/[3+3]Cycloadditions of 2-(1-Alkynyl)-2-alken-1-ones with Nitrones. Angew. Chem. Int. Ed.2010,49,6669.
    [21]Gao, H.-Y.; Zhao, X.-L.; Zhang, J.-L. Highly Substituted Furo[3,4-c]azepines by Gold(I)-Catalyzed Diastereoselective Tandem Double Heterocyclizations and 1,2-Alkyl Migration. Chem. Eur. J.2010,16,456.
    [22]Gao, H.-Y.; Wua, X.-X.; Zhang, J.-L. Exo/Endo Selectivity-control in Lewis-acid Catalyzed Tandem Heterocyclization/formal [4+3] Cycloaddition:Synthesis of Polyheterocycles From 2-(1-alkynyl)-2-alken-1-ones and 1,3-diphenylisobenzofuran. Chem. Commun.2010,46,8764.
    [23]Gao, H.-Y.; Wua, X.-X.; Zhang, J.-L. Gold(I)-Catalyzed, Highly Diastereoselective, Tandem Heterocyclizations/[3+2] Cycloadditions:Synthesis of Highly Substituted Cyclopenta[c]furans. Chem. Eur. J.2011,17,2838.
    [24]Gao, H.-Y.; Zhang, J.-L. Cationic Rhodium(I)-Catalyzed Regioselective Tandem Heterocyclization/[3+2] Cycloaddition of 2-(1-Alkynyl)-2-alken-1-ones with Alkynes. Chem. Eur. J.2012,18,2777.
    [25]Xiao, Y.-J.; Zhang, J.-L. Furans Versus 4H-pyrans:Catalyst-controlled Regiodivergent Tandem Michael Addition-cyclization Reaction of 2-(1-alkynyl)-2-alken-l-ones with 1,3-dicarbonyl Compounds. Chem. Commun.2009,3594.
    [26](a) Zhao, W.-X. Zhang, J.-L. Rhodium-catalyzed Tandem Nucleophilic Cddition/Bicyclization of Diyne-enones with Alcohols:a Modular Entry to 2,3-fused Bicyclic Furans. Chem. Commun.2010,46,4384. (b) Zhao, W.-X. Zhang, J.-L. Rhodium-catalyzed Domino Heterocyclization and [(3+2)+2] Carbocyclization:Construction of Fused Tricycloheptadienes. Chem. Commun.2010,46,7816.
    [1](a) Chatani, N.; Directed Metallation. in Topics in Organometallic Chemistry; Springer:Berlin, Germany,2007; (b) Handbook of C-H Transformations, (Ed:G. Dyker), Wiley-VCH, Weinheim, Germany,2005; (c) Patil, N.T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev.2008,108,3395; (d) Nakamura, I.; Yamamoto, Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chem. Rev.2004,104,2127; (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates:□ Reactions and Mechanistic Aspects. Chem. Rev.2002,102,1731; (f) Rubin, M.; Sromek, A.W.; Gevorgyan, V. New Advances in Selected Transition Metal-Catalyzed Annulations. Synlett.2003,75,2265; (g) Kakiuchi, F.; Murai, S. Catalytic C-H/Olefin Coupling. Acc. Chem. Res.2002,35,826.
    [2](a) Metal-Catalyzed Cross-Coupling Reactions, (Eds:F. Diederich, P. J. Stang), Wiley-VCH, New York,1998; (b) Metal Catalyzed Cross-Coupling Reactions,2nd ed., Vols.1 and 2 (Eds: A. Meijere, F. Diederich), Wiley-VCH, Chichester, UK,2004. (c) Malacria, M. Selective Preparation of Complex Polycyclic Molecules from Acyclic Precursors via Radical Mediated-or Transition Metal-Catalyzed Cascade Reactions. Chem, Rev.1996,96,289; (d) Victor, M.; Peter, H.D.; Alosis, F. Synthesis of Phenanthrenes and Polycyclic Heteroarenes by Transition-Metal Catalyzed Cycloisomerization Reactions. Chem. Eur. J.2004,10,4556; (e) Inglesby, P.A.; Evans, P.A. Stereoselective Transition Metal-catalysed Higher-order Carbocyclisation Reactions. Chem. Soc. Rev.2010,39,2791; (f) Mark, T; Du, Y.-H.; Samuel, G. O.; Vishaka, S.; Kathryne, W.; Lin, T.; Michal, S.; Pu, L. From Highly Enantioselective Catalytic Reaction of 1,3-Diynes with Aldehydes to Facile Asymmetric Synthesis of Polycyclic Compounds. J. Am. Chem. Soc.2011,133,11780.
    [3](a) Yan, R.-L.; Yan, H. Ma, C.; Ren, Z.-Y.; Gao, X.-A.; Huang, G.-S.; Liang, Y.-M. Cu(I)-Catalyzed Synthesis of Imidazo[1,2-a]pyridines from Aminopyridines and Nitroolefins Using Air as the Oxidant. J. Org. Chem.2012,77,2024; (b) Wang, X.-C; Yan, R.-L.; Zhong, M.-J.; Liang, Y.-M. Bi(Ⅲ)-Catalyzed Intermolecular Reactions of (Z)-Pent-2-en-4-yl Acetates with Ethynylarenes for the Construction of Multisubstituted Fluorene Skeletons through a Cascade Electrophilic Addition/Cycloisomerization Sequence. J. Org. Chem.2012,77,2064; (c) Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. Palladium-Catalyzed Cyclization of Propargylic Compounds. Acc. Chem. Res.2011,44, 111; (d) Xia, X.-F.; Shu, X.-Z.; Ji, K.-G; Shaukat, A.; Liu, X.-Y.; Liang, Y.-M. Platinum/Scandium-Cocatalyzed Cascade Cyclization and Ring-Opening Reaction of Tertiary Amines with Substituted Salicylaldehydes to Synthesize 3-(Aminoalkyl)coumarins. J. Org. Chem.2011,76,342; (e) Xia, X.-F.; Shu, X.-Z.; Ji, K.-G; Yang, Y.-F.; Shaukat, A.; Liu, X.-Y; Liang, Y.-M. Platinum-Catalyzed Michael Addition and Cyclization of Tertiary Amines with Nitroolefins by Dehydrogenation of α,β-sp3 C-H Bonds. J. Org. Chem.2010,75,2893; (f) Guo, L.-N.; Duan, X.-H.; Liu, X.-Y; Hu, J.; Bi, H.-P.; Liang, Y.-M. Synthesis of Fused Polycycles from Propargylic Compounds with Terminal Alkynes via a Palladium-Catalyzed Tandem C-H Activation/Biscyclization Process. Org. Lett.2007,9, 5425.
    [4](a) Keay, B. A.; Dibble, P. W. in Comprehensive Heterocyclic Chemistry II, Vol.2 (Eds:A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon Press, Oxford,1996, pp.395-436; (b) Donnelly, D.M.X.M.; Meegan, J. in Comprehensive Heterocyclic Chemistry, Vol.4 (Eds:A. R. Katritzky, C. W. Rees), Pergamon, Oxford,1984, pp.657-712; (c) Sargent, M.V.; Dean, F.M. in Comprehensive Heterocyclic Chemistry, Vol.4 (Eds:A. R. Katrizky, C. W. Rees), Pergamon Press, New York,1984, pp.599-656. (d) Lee, H.-K.; Chan, K.-R; Hui, C.-W.; Yim, H. K.; Wu, X.-W.; Wong, H.N.C, Use of Furans in Synthesis of Bioactive Compounds. Pure Appl. Chem. 2005,77,139; (e) Lipshutz, B. H. Five-membered Heteroaromatic Rings as Intermediates in Organic Synthesis. Chem. Rev.1986,86,795; (f) Zeni, G; Larock, R.C. Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem. Rev.2004,104,2285; (g) Zeni, G; Larock, R.C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Chem. Rev.2007,707,303.
    [5](a) Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. in Heterocycles in Life and Society, Wiley, Chichester,1997. (b) Toshiaki, N.; Masako, N.; Atsushi, N. The First Total Synthesis of Nakadomarin A. J. Am. Chem. Soc.2003,125,7484; (c) Ian, S.Y.; Justin, L.W.; Michael, A.K. Diastereoselective Synthesis of Pyrrolidines Using a Nitrone/Cyclopropane Cycloaddition:D Synthesis of the Tetracyclic Core of Nakadomarin A. Org. Lett.2005,7,953; (d) Ian, S.Y.; Michael, A. K. Total Synthesis of (+)-Nakadomarin A. J. Am. Chem. Soc.2007,129,1465; (e) Deng, H.-B.; Yang, X.-B.; Tong, Z.-L.; Li, Z.; Zhai, H.-B. Expedient Synthesis of the Tetracyclic Core of ent-Nakadomarin A. Org. Lett.2008,10,1791; (f) Cheng, B.; Wu, F.-F.; Yang, X.-B.; Zhou, Y.-D.; Wan, X.-L.; Zhai, H.-B. Efficient Total Synthesis of Marine Alkaloid (-)-Nakadomarin A. Chem. Eur. J.2011,17,12569.
    [6](a) Skuballa, W. A New Route to 6a-Carbacyclins-Synthesis of a Stable, Biologically Potent Prostacyclin Analogue. Angew. Chem. Int. Ed.1981,20,1046; (b) Nickolson, R.C. Synthesis of Stable Furan Prostacyclin Analogs. Tetrahedron Lett.1983,24,47.
    [7]Zhang, J.; Schmalz, H. G. Gold(I)-Catalyzed Reaction of 1-(1-Alkynyl)-cyclopropyl Ketones with Nucleophiles:A Modular Entry to Highly Substituted Furans. Angew. Chem. Int. Ed. 2006,45,6704.
    [8](a) Yao, T.-L.; Zhang, X.-X.; Larock, R.C. AuCl3-Catalyzed Synthesis of Highly Substituted Furans from 2-(1-Alkynyl)-2-alken-l-ones. J. Am. Chem. Soc.2004,126,11164; (b) Yao, T.-L.; Zhang, X.-X.; Larock, R.C. Synthesis of Highly Substituted Furans by the Electrophile-Induced Coupling of 2-(1-Alkynyl)-2-alken-l-ones and Nucleophiles. J. Org. Chem.2005,70,7679.; (c) Patil, N.T.; Wu, H.; Yamamoto, Y. Cu(I) Catalyst in DMF:□ An Efficient Catalytic System for the Synthesis of Furans from 2-(1-Alkynyl)-2-alken-l-ones. J. Org. Chem.2005,70,4531; (d) Patil, N.T.; Yamamoto, Y. Metal-mediated Synthesis of Furans and Pyrroles. ARKIVOC.2007,10,121.
    [9]Huang, X.; Fu, W.-J. Miao, M.-Z. An Efficient Synthesis of Highly Substituted Furans via the Electrophilic Cyclization of 1-(1-alkynyl)-cyclopropyl Ketones. Tetrahedron Lett.2008,49, 2359.
    [10]McDonald, F. E.; Schultz, C. C. Mechanism of Molybdenum Pentacarbonyl-Catalyzed Cyclizations of Alkynols and Epoxyalkynes. J. Am. Chem. Soc.1994,116,9363.
    [11]Scharf, H.D.; Wolters, E. Ein neues Syntheseprinzip für Furanderivate, II:Fragmentierung und recyclisierende Kondensation von 1,3-Dioxolan-4-ylium-Ionen. Chem. Ber.1978,111, 639.
    [12](a) Zhang, G.-Z.; Huang, X.-G; Li, G.-T.; Zhang, L.-M. Au-Containing All-Carbon 1,4-Dipoles:D Generation and [4+2] Annulation in the Formation of Carbo-/Heterocycles. J. Am. Chem. Soc.2008,130,1814; (b) Li, G-T; Huang, X.-G; Zhang, L.-M. Au(I)-Catalyzed Efficient Synthesis of Functionalized Bicyclo[3.2.0]heptanes. J. Am. Chem. Soc.2008,130, 6944.
    [13](a) Gao, H.-Y.; Zhang, J.-L. Cationic Rhodium(I)-Catalyzed Regioselective Tandem Heterocyclization/[3+2] Cyeloaddition of 2-(1-AJkynyl)-2-aIken-l-ones with Alkynes. Chem. Eur. J.2012,18,2777.; (b) Wang, L.-F; Fan, R.-H. Divergent Construction of Nitrogen-Containing Polycyclic Compounds with a Dearomatization Strategy. Org. Lett.2012, 14,3596-3599.
    [14](a) Fiirstner, A.; Aissa, C. PtCl2-Catalyzed Rearrangement of Methylenecyclopropanes. J. Am. Chem. Soc.2006,128,6306; (b) Chang, H.-K.; Datta, S.; Das, A.; Liu, R.-S. PtCl2-Catalyzed Hydrative Cyclization of Trialkyne Functionalities to Form Bicyclic Spiro Ketones. Angew. Chem. Int. Ed 2007,46, 4744.
    [15]CCDC 887445 (3fa) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    [16]Bowman, W.R.; Bridge, C.F.; Brookes, P.; Cloonan, M.O.; Leach, D.C. Cascade Radical Synthesis of Heteroarenes via Iminyl Radicals. J. Chem. Soc, Perkin Trans.2002,1,58.
    [17]Hashmi, A.S.K.; Braun, I.; Rudolph, M.; Rominger, F. The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics.2012,31,644.
    [18]Chen, S.-F; Wang, J.-B. One-Pot Synthesis of a-Iodo-Substituted a,β-Unsaturated Aldehydes from Propargylic Alcohols. J. Org. Chem.2007,72,4993.
    [19]Fuchter, M.J.; Levy, J. N. One-Pot Formation of Ally lic Chlorides from Carbonyl Derivatives. Org. Lett.2008,10,4919.
    [20]Moorthy, J. N.; Samanta, S.; Koner, A.; Saha, S.; Nau, W.M. Intramolecular O-H-O Hydrogen-Bond-Mediated Reversal in the Partitioning of Conformationally Restricted Triplet 1,4-Biradicals and Amplification of Diastereodifferentiation in Their Lifetimes. J. Am. Chem. Soc.2008,130,13608.
    [1](a) Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. Palladium-Catalyzed Cyclization of Propargylic Compounds. Ace. Chem. Res.2011,44,111. (b) Tsuji, J.; Mandai, T. Palladium-Catalyzed Reactions of Propargylic Compounds in Organic Synthesis. Angew. Chem. Int. Ed. Engl.1995, 34,2589-2612. (c) Tsuji, J. Carbon-carbon Bond Formation via Palladium Complexes. Acc. Chem. Res.1969,2,144. (d) Tsuji, J.; Mandai. T. Palladium-Catalyzed Reactions of Propargylic Compounds in Organic Synthesis. Angew. Chem., Int. Ed. Engl.1995,34,2589. (e) Sebille, S.; Gall, D.; de Tullio, P.; Florence, X.; Lebrun, P.; Pirotte, B. Design, Synthesis, and Pharmacological Evaluation of R/S-3,4-Dihydro-2,2-dimethyl-6-halo-4-(phenylaminocarbonylamino)-2H-1-benzopyrans:□ Toward Tissue-Selective Pancreatic β-Cell KATP Channel Openers Structurally Related to (±)-Cromakalim. J. Med. Chem.2006,49,4690.
    [2](a) Zhang, G.-Z.; Huang, X.-G.; Li, G.-T.; Zhang, L.-M. Au-Containing All-Carbon l,4-Dipoles:□ Generation and [4+2] Annulation in the Formation of Carbo-/Heterocycles. J. Am. Chem. Soc.2008,130,1814; (b) Li, G.-T.; Huang, X.-G; Zhang, L.-M. Au(I)-Catalyzed Efficient Synthesis of Functionalized Bicyclo[3.2.0]heptanes. J. Am. Chem. Soc.2008,130, 6944. (c) Furstner. A.; Davies, P.W. Catalytic Carbophilic Activation:Catalysis by Platinum and Gold π Acids. Angew. Chem. Int. Ed.2007,46,3410, (d) Hashmi, A.S.K. Gold-Catalyzed Organic Reactions. Chem. Rev,2007,107,3180. (e) Zhang, L.-M.; Sun, J.-W.; Kozmin. S. A. Gold and Platinum Catalysis of Enyne Cycloisomerization. Adv. Synth. Catal.2006,348, 2271.
    [3](a) Fraga, B.M. Natural Sesquiterpenoids. Nat. Prod. Rep.1992,9,217. (b) Merritt, A.T.; Ley, S.V. Clerodane diterpenoids. Nat. Prod Rep.1992,9,243. (c) Dean, F.A. Naturally Occurring Oxygen Ring Compounds; Butterworth:London,1963. (d) Natural Products Chemistry; Nakanishi, K., Goto, T., Ito, S., Natori, S., Nozoe, S., Eds.; Kodansha:Tokyo,1974; Vols.1-3. (e) Dean, F.M. In Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed., Academic Press: New York,1983; Vol.31, pp 237-344. (f) Sargent, M.V.; Dean, F.M. In Comprehensive Heterocyclic Chemistry; Bird, C.W., Cheeseman, G.W.H., Eds.; Pergamon Press:Oxford, 1984; Vol.3, pp 599-656. (g) Lipshutz, B.H. Chem. Rev.1986,86,795.
    [4](a) Jones, R.A. Pyrroles, Part Ⅱ, The Synthesis Reactivity and Physical Properties of Substituted Pyrroles; Wiley:New York,1992. (b) Pelkey, E.T. Prog. Heterocycl. Chem.2005, 17,109. (c) Gribble, G.W. In Comprehensive Heterocyclic Chemistry Ⅱ; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Elsevier:Oxford,1996; Vol.2, p 207. (d) Hall, A.; Atkinson, S.; Brown, S.H.; Chessell, I.P.; Chowdhury, A.; Giblin, G.M.P.; Goldsmith, P.; Healy, M.P.; Jandu, K.S.; Johnson, M.R.; Michel, A.D.; Naylor, A.; Sweeting, J.A. Discovery of Novel, Non-acidic 1,5-biaryl Pyrrole EP1 Receptor Antagonists. Bioorg. Med. Chem. Lett.2007,17, 1200. (e) Bellina, F.; Rossi, R. Synthesis and Biological Activity of Pyrrole, Pyrroline and Pyrrolidine Derivatives with Two Aryl Groups on Adjacent Positions. Tetrahedron 2006,62, 7213. (f) Clark, B.R.; Capon, R.J.; Lacey, E.; Tennant, S.; Gill, J.H. Polyenylpyrroles and Polyenylfurans from an Australian Isolate of the Soil Ascomycete Gymnoascus reessii. Org. Lett.2006,5,701.
    [5]Bowman, W.R.; Bridge, C.F.; Brookes, P.; Cloonan, M.O.; Leach, D.C. Cascade Radical Synthesis of Heteroarenes via Iminyl Radicals. J. Chem. Soc, Perkin Trans.2002,1,58.
    [6]Hashmi, A.S.K.; Braun, I.; Rudolph, M.; Rominger, F. The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics.2012,31,644.
    [7]Chen, S.-F; Wang, J.-B. One-Pot Synthesis of a-Iodo-Substituted a,β-Unsaturated Aldehydes from Propargylic Alcohols. J. Org. Chem.2007,72,4993.
    [8]Fuchter, M. J.; Levy, J. N. One-Pot Formation of Allylic Chlorides from Carbonyl Derivatives. Org. Lett.2008,10,4919.
    [9]Moorthy, J.N.; Samanta, S.; Koner, A.; Saha, S.; Nau, W. M. Intramolecular O-H-O Hydrogen-Bond-Mediated Reversal in the Partitioning of Conformationally Restricted Triplet 1,4-Biradicals and Amplification of Diastereodifferentiation in Their Lifetimes. J. Am. Chem. Soc.2008,130,13608-13617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700