用户名: 密码: 验证码:
基于α-硫代羰基底物的炔硫醚的一锅合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炔硫醚在有机合成、单分子膜自组装以及纳米自组装等方面具有重要地位。因此探索新的合成炔硫醚的方法有着非常重要的理论和实际意义。一锅合成法是一种资源节约和环境友好的方法,它具有操作简化、总产率较高以及经济节省等特点,很受研究者的青睐。本文在实验室前期研究工作的基础上,以消除反应为基本反应,着重从方法学角度考察了各种α-硫代羰基化合物为底物,“一锅三步”制备炔硫醚的合成战略。本文大致可以分为两个部分:第一部分主要介绍炔硫醚(芳炔硫醚、二(芳乙炔)硫醚、(4-芳基-1,3-丁二炔)硫醚和共轭烯炔硫醚)的一锅合成方法研究;第二部分以苯基芳乙炔硫醚为例介绍了炔硫醚在[3+2]环加成中的应用。
     本文首次比较系统地研究了各种α-硫代芳基乙酮(51a—k,52a—k,71a—k)为底物制备芳乙炔硫醚(53a—k,54a—k,72a—k)的“一锅三步”反应。试剂分三个阶段加入:i)碱;ii) ClP(O)(OEt)2;iii)碱。论文考察了四类碱(BuLi、LiHMDS、LDA和t-BuOK)对“一锅反应”的影响,结果表明第一阶段碱的使用对芳乙炔硫醚的合成影响很大,直接决定其反应历程;通过对磷酸烯醇酯中间体的捕捉、结构分析,以及该中间体在LiHMDS下的消除反应,验证了“一锅反应”机理的合理性:包括亲核取代和消除等基本反应,经历了碳负离子和烯醇负离子的互变异构结构,最终消除一分子磷酸二乙酯得到各种芳乙炔硫醚。与过去的双消除相比,“一锅三步”反应的优点一方面表现在整个反应过程中,只需使用一种底物,反应试剂分三个阶段加入,操作上更加简便;另一方面,与硫原子连接的基团容易扩展,可以是烷基、芳基等取代基。此外,底物的制备简单,由廉价易得的芳基乙酮为起始原料,依次通过溴化和亲核取代反应高产率获得。
     本文首次提出了以二(芳甲酰甲基)硫醚(91a—h)为底物的二(芳乙炔)硫醚(92a—h)的一锅合成策略,考察了BuLi和LiHMDS对“一锅反应”的影响;成功获得了二(芳乙炔)硫醚92h的适合X-射线单晶衍射分析的晶体,并对其进行了晶体结构分析。
     本文首次提出了以4-烃硫基-1-芳基-1,3-丁二酮(101a—e,102a—e,103a—e)为底物的(4-芳基-1,3-丁二炔)硫醚(104a—e,105a—e,106a—e)的一锅合成策略;通过1H NMR分析考察了原料和底物在CDCl3中酮式和烯醇式结构的比例关系;将“一锅三步”合成策略与甲基(4-芳基-1,3-丁二炔)硫醚的双消除一锅合成方法进行了比较。底物(4-烃硫基-1-芳基-1,3-丁二酮)是以芳基乙酮为起始原料,依次经缩合、溴化和亲核取代反应制得。
     本文以芳香醛为起始原料,依次经羟醛缩合、溴化和亲核取代反应获得了一种新的底物4-烃硫基-1-芳基-1-丁烯-3-酮(131a—e,132a—e,133a—e),首次提出了基于该底物的共轭烯炔硫醚(134a—e,135a—e,136a—e)的一锅合成策略,对一锅反应产物的构型通过空间排斥作用进行了推测。
     本文以苯基芳乙炔硫醚为例,将炔硫醚应用于[3+2]环加成反应,首次在三唑上导入含硫的基团,得到两种互为异构体的1-苄基-4-芳基-5-苯硫基-1,2,3-三唑(147a—b,148d—h)和1-苄基-5-芳基-4-苯硫基-1,2,3-三唑(148a—b,148d—h),均为新化合物;成功获得三唑147a和148a的适合X-射线单晶衍射分析的晶体,对其进行了晶体结构分析,确定了两种异构体的构型;对其反应机理进行了推测。
     本文以消除反应为基本反应,通过合成路线设定,碱对反应的影响及中间体捕捉和分析,提出了基于-硫代羰基底物的各种炔硫醚的一锅合成思想。这种为炔硫醚的合成提供的新的方法学研究,不仅丰富了有机化学内容,对于炔硫醚在纳米自组装的应用也具有重要意义。本文共制得71个炔硫醚化合物,其中有54个是新化合物。所有原料都经过了1HNMR测定得到了确认,所有炔硫醚以及三唑化合物都经过了1HNMR、13CNMR、IR、MS和HRMS表征得到确认。
Ethynyl sulfides are very important intermediates in organic synthesis and can be used asversatile building blocks for a variety of chemical purposes. So it is academic and practicalsignificance to explore new methods for preparing ethynyl sulfides. The one-pot procedure,which has the advantage of simplified process, higher total yield and economical operation, isa resource-saving and environment friendly methodology and has long been an attractive areaof research. On the basis of the previous work of our lab, one-pot three-step strategy forpreparing ethynyl sulfides by-thio carbonyl compounds as substrates was developed. Mystudy can be divided into two parts entirely: the one-pot synthetic protocol of ethynyl sulfides(including arylethynyl sulfides, bis(arylethynyl) sulfides, aryl diyne sulfides and conjugatedenyne sulfides) was described in the first part; the application of ethynyl sulfides in [3+2]cycloaddition reaction was discussed in the second part.
     The one-pot three-step procedure for preparing arylethynyl sulfides (53a—k,54a—k,72a—k) by-thio aryl ethanone (51a—k,52a—k,71a—k) as substrates was presented forthe first time. The reagents were added to the solution of the substrates in THF sequentially asfollows: i) base; ii) ClP(O)(OEt)2; iii) base. BuLi, LiHMDS, LDA and t-BuOK werediscussed in one-pot reaction. The results showed the use of the base in the first stageinfluenced on the synthesis of arylethynyl sulfides greatly and decided the mechanism of thereaction. To obtain insight into the mechanism of this one-pot reaction, we attempted toisolate enol phosphate intermediates. A differentiated two-step procedure was performed toprove the formation of enol phosphate. The results from the1H and31P NMR spectroscopicdata reveal that the intermediate was formed in a Z/E mixture. And the Z-configuration ofmajor isomer has also been confirmed by NOESY experiment. Furthermore, we investigatedthe elimination reaction of enol phosphate intermediates, which, upon treatment theintermediates in THF with LiHMDS, occurred smoothly to provide arylethynyl sulfides.Therefore, on the basis of this evidence, we can conclude that the mechanism involves theformation of an enol phosphate and a subsequent base-induced elimination. Compared withthe double elimination mentioned, the advantage of the one-pot three-step protocol use onlyone substrate and the reagent just can be added in three stages into the system, the operationbecomes more conveniently. Additionally, the substrates can be obtained easily from arylehtanone through bromination and nucleophilic substitute reaction.
     The one-pot procedure for bis(arylethynyl) sulfides (92a—h) by substrates bis(arylethanonyl) sulfides (91a—h) as substrates was presented. BuLi and LiHMDS wereexamined in one-pot reaction.92h was characterized by X-ray single crystal diffraction.
     The one-pot procedure for aryl diyne sulfides (104a—e,105a—e and106a—e) by4-(alkylthio)-1-arylbutane-1,3-dione (101a—e,102a—e and103a—e) as substrates wasdiscussed. The ration of β-diketo and enol structures of the materials107a—h and thesubstrates in CDCl3was investigated by1H NMR. The comparation of the method to preparearyl diyne sulfides between the one-pot three-step protocol and the double elimination one-potprotocol was employed. The substrate can be obtained from aryl ethanone via condensation,bromination and nucleophilic substitute reaction.
     The preparation of conjugated enyne sulfides (134a—e,135a—e,136a—e) via one-potprocedure by-thio aryl substrates (131a—e,132a—e,133a—e) was described for the firsttime. The substrates can be obtained from aryl aldehydes via aldol condensatioon,bromination and nucleophilic substitute reaction. And the configuration of conjugated enynesulfides was postulated by the steic effect.
     The [3+2] cycloaddition reaction between phenyl ethynyl sulfides and benzyl azide wasdescribed and triazoles ((147a—b,147d—h) and148a—b,148d—h) were obtained.147aand148a were characterized by X-ray single crystal diffraction and the configuration wasdecided. The probable mechanism was postulated.
     In the dissertation, the idea of the one-pot three-step protocol to prepare ethynyl sulfidesby-thio carbonyl compounds as substrates was discussed by designing synthesis route,choosing appropriate base, capturing and identifying the intermediates. The one-pot procedurewill enrich the content of organic chemisty and it is significance of the application inself-assembled monolayers and related fields. All materials were characterized by1H NMR.All ethynyl sulfides and the triazoles were identified by1H NMR,13C NMR, IR, MS andHRMS.
引文
[1] Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev.1996,96(4),1533-1544.
    [2] Katz, E.; Bückmann, A. F.; Willner, I. Self-powered enzyme-based biosensors. J. Am.Chem. Soc.2001,123(43),10752-10753.
    [3] Madoz, J.; Kuznetzov, B. A.; Fernandez, V. M. et al. Functionalization of gold surfacesfor specific and reversible attachment of a fused β-galactosidase and choline-receptorprotein. J. Am. Chem. Soc.1997,119(5),1043-1051.
    [4](a) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry: Chemistry:Biology, and Material Science, Wiley-VCH, Weinheim,2005.(b) Stang, P. J.;Diederich, F. Modern Acetylene Chemistry, Wiley-VCH, Weinheim,1995.(c) Wang, C.;Batsanov, A. S.; Bryce, M. R. et al. Molecular wires comprising π–extended ethynyl-and butadiynyl-2,5-diphenyl-1,3,4-oxadiazole derivatives: synthesis, redox, structural,and optoelectronic properties. J. Am. Chem. Soc.2006,128,3789-3799.(d) Wang, C.;Batsanov, A. S.; Bryce, M. R.; et al. Oligoyne single molecule wires. J. Am. Chem. Soc.2009,131,15647-15654.
    [5]黄宪,王彦广,陈振初.新编有机合成化学.北京:化学工业出版社.2002:100-101.
    [6] Truce, W. E.; Hill, H. E.; Boudakian, M. M. Acetylenic sulfur compounds. I.preparation and characterization of p-tolymercatoacetylene and1-phenyl-2-phenylmerca-pto-acetylene. J. Am. Chem. Soc.1956,78(12),2760-2762.
    [7] Arens, J. F. Ethynyl ethers and thioethers as synthetic intermediates. Advances inOrganic Chemistry1960,2,117-212.
    [8] Magriotis, P. A.; Brown, J. T. Phenylthioacetylene. Org. Synth.1995,72:252-259.
    [9] Lalezari, I.; Shafiee, A.; Yalpani, M.1,2,3-Selenadiazole and its Derivatives. J. Org.Chem.,1971,36(19),2836-2838.
    [10] Shafiee, A.; Toghraie, S.; Aria, F. et al. Selenium heterocycles. XXXV (1). synthesisand pyrrolysis of aryloxy-, arylthio-, and arylseleno-1,2,3-selenadiazoles. J.Heterocyclic Chem.1982,19,1305-1308.
    [11] Braga, A. L.; Comasseto, J. V.; Petragnani, N. Pyrolysis of-acyl,-thio phosphoranes→thioacetylenes. Tetrahedron Lett.1984,25(11),1111-1114.
    [12] Voets, M.; Smet, M.; Dehaen, W. Synthesis of alkynyl sulfides resulting from a novelring cleavage of5-chloro-1,2,3-thiadiazoles in the presence of organometallic reagents.J. Chem. Soc., Perkin Trans.11999,1473-1475.
    [13] Miller, J. A.; Ullah, G. M.; Welsh, G. M. et al. Synthesis and cytotoxic properties of aseries of bicycle[3.2.1]octane-methylene ketones. Tetrahedron Lett.2001,42,2729-2731.
    [14] Maruyama, H.; Hiraoka, T. A stereocontrolled synthesis of thienamycin from6-aminopenicillanic acid. J. Org. Chem.1986,51,399-402.
    [15] Werz, D. B.; Fischer, F. R.; Gleiter, R. et al. Macrocyclic cyclophanes with two andthree,ω-dichalcogena-1,4-diethynylaryl units: syntheses and structural properties. J.Org. Chem.2008,73,8021-8029.
    [16] Klein, T. R.; Bergemann, M.; Fangh nel, E. et al. Versatile route to functonalized1H-2-benzothiopyrans and1H-2-naphthothiopyrans by electrophilic cyclization ofbis(arylmethylthio)acetylenes:2-benzo-and2-naphthothiopyrylium salts. J. Org. Chem.1998,63,4626-4631.
    [17] Braga, A. L.; Reckziegel, A.; Menezes, P. H. et al. Alkynyl sulfides and selenides fromalkynyl bromides and diorganoyl chalcogenides promoted by copper(I) iodide.Tetrahedron Lett.1993,34(3),393-394.
    [18] Braga, A. L.; Silveira, C. C.; Reckziegel, A. et al. Convenient preparation of alkynylselenides, sulfides and tellurides from terminal alkynes and phenylchalcogenyl halidesin the presence of copper(I) iodide. Tetrahedron Lett.1993,34(50),8041-8042.
    [19] Bieber, L. W.; Silva, M. F. da; Menezes, P. H. Short and efficient preparation of alkynylselenides, sulfides and tellurides from terminal alkynes. Tetrahedron Lett.2004,45,2735-2737.
    [20] Arisawa, M.; Fujimoto, K.; Morinaka, S. et al. Equilibrating C-S bond formation byC-H and S-S bond metathesis. Rhodium-catalyzed alkylthiolation reaction of1-alkyneswith disulfides. J. Am. Chem. Soc.2005,127,12226-12227.
    [21] Ni, Z.; Wang, S.; Mao, H.; Pan, Y. A concise synthetic strategy to alkynyl sulfides viatransition-metal-free catalyzed C-S coupling of1,1-dibromo-1-alkenes with thiophenols.Tetrahedron Lett.2012,53,3907-3910.
    [22](a) Corey, E. J.; Fuchs, P. L. A synthetic method for formyl→ethynyl conversion.Tetrahedron Lett.1972,13(36),3769-3772.(b) Poupon, J.-C.; Boezio, A. A.; Charette,A. B. Tetraaryphosphonium salts as solubility-control groups: phosphonium-supportedtriphenylphosphine and azodicarboxylate reagents. Angew. Chem. Int. Ed.2006,45,1415-1420.(c) Pawluc, P.; Hreczycho, G.; Walkowiak, J. et al. A new facile synthesisof1,1-dibromo-2-arylethenes. Synlett.2007,(13),2061-2064.
    [23] Abrams, S. R. A useful method for preparation of carboxylic acids from terminalalkynes. Can. J. Chem.1983,61,2423-2424.
    [24] Narasaka, K.; Hayashi, Y.; Shimadzu, H. et al. Asymmetric [2+2] cycloadditionreaction catalyzed by a chiral titanium reagent. J. Am. Chem. Soc.1992,114(23),8869-8885.
    [25] Riddell, N.; Tam, W. Ruthenium-catalyzed [2+2] cycloadditions of alkynyl sulfides andalkynyl sulfones. J. Org. Chem.2006,71(5),1934-1937.
    [26] Gray, B. D.; McMillan, C. M.; Miller, J. A. et al. Bicyclo[3.2.1]oct-6-enes via (3+2)cycloaddition. Tetrahedron Lett.1987,28(2),235-238.
    [27] Gray, B. D.; McMillan, C. M.; Miller, J. A. et al. Cyclopentenyl sulphides via (3+2)cycloaddition. Tetrahedron Lett.1987,28(6),689-692.
    [28] Gerhard, H.; Steffen, L.; Klaus, H. The first broad application of alkynyl sulfides asdienophiles in cobalt(I)-catalyzed Diels-Alder reactions. J. Org. Chem.2004,69(3),624-630.
    [29] Brust, M.; Bethell, D.; Schiffren D. J. et al. Nove gold-dithiol nano-networks withnon-metallic electronic properties advanced materials. Adv. Mater.1995,(7),795-797.
    [30](a) Lewis, P. A.; Inman, C. E.; Maya, F. et al. Molecular engineering of the polarity andinteractions of molecular electronic switches. J. Am. Chem. Soc.2005,127,17421-17426;(b) Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F. et al. Conductanceswitch in single molecules through conformational changes. Science2001,292,2303-2307.
    [31](a) Sabatani, E.; Cohen-Boulakia, J.; Bruening, M. et al. Thioaromatic monolayers ongold: a new family of self-assembling monolayers. Langmuir1993,9(11),2974-2981.(b) Bryant, M. A.; Joa, S. L.; Pemberton. J. E. Raman scattering from monolayer filmsof thiophenol and4-mercaptopyridine at Pt surfaces. Langmuir1992,8(3),753-756.
    [32] Maye, M. M.; Lim, I.-I. S., Zhong, C.-J. et al. Mediator template transfer ofnanoparticles. J. Am. Chem. Soc.2005,127(5),1519-1529.
    [33](a) Troughton, E. B.; Bain, C. D.; Whitesides, G. M. et al. Monolayer films prepared bythe spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides fromsolution onto gold substrates: structure, properties, and reactivity of constituentfunctional groups. Langmuir1988,4(2),365-385.(b) Katz, E.; Itzhak, N.; Willner, I.Effects of monolayer packing on the electrochemical activity of chemisorbedthioderivatized N,N-dialkyl-4,4‘-bipyridinium. J. Electroanal. Chem.1992,336,357-362.
    [34] Nuzzo, R. G.; Alllara, D. L. Adsorption of bifunctional organic disulfides on goldsurfaces. J. Am. Chem. Soc.1983,105(13),4481-4483.
    [35] Sawant, P.; Kovalev, E.; Klug, J. T. et al. Alkyl xanthates: new capping agents for metalcolloids. Capping of platinum nanoparticles. Langmuir2001,17(10),2913-2917.
    [36] Cooper, J. M.; Greenough, K. R.; McNeil, C. J. Direct electron transfer reactionsbetween immobilized cytochrome c and modified gold electrodes. J. Electroanal. Chem.1993,347,267-275.
    [37] Mielczarski, J. A.; Yoon, R. H. Spectroscopic studies of the structure of the adsorptionlayer of thionocarbamate.2. on cuprous sulfide. Langmuir1991,7(1),101-108.
    [38] Edwards, T. R. G.; Cunnane, V. J.; Parsons, R. et al. Construction of a stableflavin–gold electrode displaying very fast electron transfer kinetics. J. Chem. Soc.,Chem. Commun.1989,1041-1043.
    [39](a) Daniel, M.-C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology. Chem. Rev.2004,104(1),293-346.(b) Resch, R.; Baur, C.; Bugacov,A. et al. J. Phys. Chem. B1999,103,3647-3650.(c) Tan, Y.; Li, Y.; Zhu, D. Langmuir2002,18,3392-3395.
    [40] Lim, I.-I. S.; Zhong, C. J.; An, D. L. et al. X-Shaped Rigid Arylethynes to Mediate theAssembly of Nanoparticles. J. Am. Chem. Soc.2007,129(17),5368-5369.
    [41] Yan, H.; An, D.-L.; Zhong, C. J. et al. Molecularly-mediated assembly of goldnanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures.Chem. Comm.2010,46,2218-2220.
    [42] Yan, H.; An, D.-L.; Zhong, C. J. et al. Rigid, Conjugated and shaped arylethynes asmediators for the assembly of gold nanoparticles. J. Mater. Chem.2011,21,1890-1901.
    [43] Yan, H.; An, D.-L.; Zhong, C.-J. et al. Cationic recognition by tert-butylcalix[4]arene-functionalized nanoprobes. Phys. Chem. Chem. Phys.2011,13,5824-5830.
    [44] Sakai, T.; Seko, K.; Takeda, A. et al. New synthesis of–benzoyloxy aldehydes.Application to the stereoselective synthesis of conjugated (E,E)-dienoic essters. J. Org.Chem.1982,47(6),1101-1106.
    [45] Moskal, J.; van Leusen, A. M. A new synthesis of indoles by electrocyclic ring closureof dialkenylpyrroles. Synthesis of alkenylpyrroles from1-tosylalkenyl isocyanides andMichael acceptors. J. Org. Chem.1986,51(22),4131-4139.
    [46] Garratt, P. J.; Wyatt, M. Regiospecific control in the formation of cyclohexenes fromdienes. The catalysed and non-catalysed reactions of butadiene and2,3-dimethylbutadiene with methyl sorbate. J. Chem. Soc. Chem. Commun.1974,251-251.
    [47] Idoux, J. P.; Ghane, H. Synthesis of esters of2,4-pentadienoic acid. Journal ofChemical and Engineering Data1979,24(2),157-158.
    [48] Rodriguez, J.; Waegell, B. An efficient one-pot preparation of2,4-pentadienoic estersfrom,β-unsaturated aldehydes. Synthesis1988,534-535.
    [49] Olah, G. A.; Wu, A. H. One-flask preparation of symmetrical ketones and1,2-diketonesfrom esters. Synthesis1991,1177-1179.
    [50] Capdevielle, P.; Lavigne, A.; Maumy, M. Simple and efficient copper-catalyzed one-potconversion of aldehydes into nitriles. Synthesis1989,451-452.
    [51]安德烈,孟桂英,张志扬等.双消除法一锅合成甲硫芳炔化合物.化学学报,2006,64(21),2190-2196.
    [52](a) Gibson, D. T. The mobility of groups containing a sulphur atom. J. Chem. Soc.1932,1819-1826.(b) Ogura, K.; Yahata, N.; Watanabe, J. et al. Convenient preparation ofmethylthiomethyl p-tolyl sulfone starting from dimethyl sulfoxide. Bull. Chem. Soc. Jpn.1983,56(11),3543-3544.
    [53] An, D.-L.; Zhang, Z.-Y.; Orita, A. et al. Convenient Synthesis of (1-Propynyl)arenasthrough a One-Pot Double Elimination Reaction, and Their Conversion to Enynes.Synlett.2007,(12),1909-1912.
    [54]张志扬,陈强,安德烈.双消除一锅简便法合成1-丙炔基芳香化合物.化学学报,2009,67(20):2349-2354.
    [55] An, D.-L.; Chen, Q.; Otera, J. et al. Vibrational CD spectroscopy as a powerful Tool forsterochemical study of cyclophynes in solution. Tetrahedron Lett.2009,50,1689-1692.
    [56] Fang, J.-K.; An, D.-L.; Otera, J. et al. Synthesis and spectroscopic stydy ofdiphenylamino-substituted phenylene-(poly)ethynylenes: remarkable effect ofacetylenic conjugation modes. Tetrahedron Lett.2010,51,917-920.
    [57] Fang, J.-K.; An, D.-L.; Otera, J. et al. Synthesis and spectroscopic study ofphenylene-(poly)ethynylenes substituted by amino of amino/cyano groups atterminal(s): electronic effect of cyano group on charge-transfer excitation of acetylenicπ-systems. Tetrahedron2010,66,5479-5485.
    [58] Sosa, J. R.; Tudjarian, A. A.; Minehan, T. G. Synthesis of alkynyl ethers andlow-temperature sigmatropic rearrangement of allyl and benzyl alkynyl ethers. Org. Lett.2008,10(21),5091-5094.
    [59] Ziegler, G. R.; Welch, C. A.; Orzech, C. E. et al. Nucleophilic substitution at anacetylenic carbon: acetylenic thioethers from haloalkynes and sodium thiolates. J. Am.Chem. Soc.1963,85,1648-1651.
    [60] Yoshifuji, M.; Hanafusa, F.; Inamoto, N. Synthetic method of functionalizedunsymmetrical sulfides and disulfides using diphenylphosphinodithioates. Chem. Lett.1979,723-726.
    [61] Amosova, S. V.; Potapov, V. A.; Lasitsa, N. A. The reaction of dimethyl disulfide withphenylacetylene under phase transfer catalysis conditions. Izvestiya Akademii NaukSSSR, Seriya Khimicheskaya1990,(5),1188-1189.
    [62] Stefani, H. A.; Cella, R.; D rr, F. A. et al. Ultrasound-assisted synthesis offunctionalized arylacetylenes. Tetrahedron Lett.2005,46,2001-2003.
    [63] Kano, S.; Yokomatsu, T.; Ono, T. et al. A new synthesis of phenylalkynes from thep-toluenesulfonylhydrazone of-methylthioacetophenone. Synthesis1978,305-307.
    [64] Carre, M. C.; Caubere, P. A very efficient preparation of1,2-diketones. TetrahedronLett.1985,3103-3106.
    [65] Ishibashi, H.; Takamuro, I.; Ikeda, M. et al. A convenient general access to-sulpenylated acetophenones and alkanones. Synthetic Commun.1989,19,443-452.
    [66] Langley, W. D. p-Bromophenacyl bromide. Org. Synth.1929,9,20-21.
    [67] Rahman, M. T.; Kamata, N.; Ryu, I. et al. Quadraphasic phase-vanishing method:application to bromination reactions that produce acidic by-procucts. Synlett.2005,(17),2664-2666.
    [68]胡艾希,董先明,吕震宇等.溴化铜对6-甲氧基-2-酰基萘的选择性溴化反应.应用化学,2000,17(1):90-92.
    [69]胡艾希,陈平,杨郑等.溴化铜对芳基烷基酮的选择性溴化反应研究.中国药物化学杂志,2002,12(6),340-343.
    [70] Ito, Y.; Nakatsuka, M.; Saegusa, T. Syntheses of-chloro ketones by reaction of silylenol ethers with CuCl2and FeCl3. J. Org. Chem.1980,45,2022-2024.
    [71] Boeykens, M.; Kimpe, N. D. Selective transformation of,-dibromomethyl ketonesinto-monosulfenylated ketones. Tetrahedron1994,50(43),12349-123460.
    [72] Hendrickson, J. B.; Hussoin, M. S. Facile dehydration of activated ketones to alkynes.Synthesis1989,217-218.
    [73] Yousaf, T. I.; Lewis, E. S. Enolate Structures contributing to the transition state fornucleophilic substitution on-substituted carbonyl compounds. J. Am. Chem. Soc.1987,109(20),6137-6142.
    [74] Cabiddu, S.; Cancellu, D.; Floris, C. et al. Metalation reactions; part XI. A novel,one-step synthesis of benzo[b]thiophene derivatives. Synthesis1988,(11),888-890.
    [75] Padmanabhan, S.; Ogawa, T.; Suzuki, H. Sodium telluride-mediated sulfenylation of-halo carbonyl compounds with diphenyl disulfide. Bull. Chem. Soc. Jpn.1989,62(4),1358-1360.
    [76] Huang, X.; Zheng, W. X. A new method for the reductive cleavage of S-S bond bysystem of Cp2TiCl2/i-BuMgBr/THF and its application in synthesis of-alkylthiocarbonyl compounds. Synthetic Commun.1999,29(8),1297-1301.
    [77] Paterson, I.; Osborne, S. Enol borinates in organic synthesis: regioselective-sulphenylation and-selenenylation of ketones. Synlett.1991,(3),145-146.
    [78] Orita, A.; Yoshioka, N.; Otera, J. et al. Integrated chemical process: one-pot doubleelimination method for acetylenes. Chem. Eur. J.1999,5(4),1355-1363.
    [79] Orita, A.; An, D. L.; Otera, J. et al. Sulfoximine version of double elimination protocolfor synthesis of chiral acetylenic cyclophanes. Chem. Eur. J.2002,8(9),2005-2010.
    [80] Chen, Y.; Lam, Y. L.; Lai, Y. H. Solid-Phase Synthesis of imidazo [1,2-]pyridineusing sodium benzenesulfinate as a traceless linker. Org. Lett.2002,4(22),3935-3937.
    [81] Lee, J. W.; Oh, D. Y. Conversion of β-oxo sulfones into acetylenic sulfones. Synlett.1990,290.
    [82] Liao, Y.; Qi, H.; Deng, G.-J. et al. Efficient2-aryl benzothiazole formation from arylketones and2-aminobenzenethiols under metal-free conditions. Org. Lett.2012,14(23),6004-6007.
    [83] Paul, S.; Nanda, P.; Gupta, R. et al. Zinc mediated Friedel-Crafts acylation insolvent-free conditions under microwave irradiation. Synthesis2003,(18),2877-2881.
    [84] Yang, W.; Xu, L.; Ren, H. et al. Ru-catalyzed synthesis of dihydrofuroquinolines fromazido-cyclopropyl ketones. Org. Lett.2013,15(6),1282-1285.
    [85] Paul, S.; Gupta, M. Zinc-catalyzed Williamson ether synthesis in the absence of base.Tetrahedron Lett.2004,45,8825-8829.
    [86] Podgor ek, A.; Stavber, S.; Zupan, M. et al. Environmentally benign electrophilic andradical bromination on water‘: H2O2-HBr system versus N-bromosuccinimide.Tetrahedron2009,65,4429-4439.
    [87] Maji, T.; Karmakar, A.; Reiser, O. Visible-light photoredox catalysis: dehalogenation ofvicinal dibromo-,-halo-, and,-dibromocarbonyl compounds. J. Org. Chem.2011,76(2),736-739.
    [88] Rebstock, M. C.; Stratton, C. D. Some compounds related to chloromycetin. J. Am.Chem. Soc.1955,77,4054-4058.
    [89] Macharla, A. K.; Nappunni, R. C.; Marri, M. R. et al. Oxidative bromination of ketonesusing ammonium bromide and oxone. Tetrahedron Lett.2012,53,191-195.
    [90] Richards, J. J.; Melander, C. Synthesis of a2-aminoimidazole library for antibiofilmscreening utilizing the sonogashira reaction. J. Org. Chem.2008,73,5191-5193.
    [91] Patil, R. D.; Joshi, G.; Adimurthy, S. et al. Facile one-pot synthesis of–bromoketonesfrom olefins using bromide/bromate couple as a nonhazardous brominating agent.Tetrahedron Lett.2009,50,2529-2532.
    [92] Park, H. J.; Lim, C. S.; Kim, E. S. et al. Measurement of pH values in human tissues bytwo-photon microscopy. Angew. Chem. Int. Ed.2012,51,2673-2676.
    [93] Drake, N. L.; Tuemmler, W. B. Podophyllotoxin and picropodophyllin. II. Thesynthesis of an open-chain analog. J. Am. Chem. Soc.1955,77,1204-1209.
    [94] Low, D. W.; Pattison, G.; Lam, H. W. et al. Enantioselective Rh(I)-catalyzedcyclization of arylboron compounds onto ketones. Org. Lett.2012,14(10),2548-2551.
    [95] Zhdanko, A. G.; Gulevich, A. V.; Nenajdenko, V. G. One-step synthesis ofN-acetylcysteine and glutathione derivatives using the Ugi reaction. Tetrahedron,2009,65,4692-4702.
    [96] Arisawa, M.; Suwa, K.; Yamaguchi, M. Rhodium-catalyzed methylthio transfer reactionbetween ketone–positions: reversible single-bond metathesis of C-S and C-H bonds.Org. Lett.2009,11(3),625-627.
    [97] Song, H. M.; Kim, K. Rhodium(II)-mediated reactions of thiobenzoylketene S,N-acetalswith–diazo carbonyl compounds: synthesis of2-substituted3-alkylamino-5-phenylthiophenes. J. Chem. Soc., Perkin Trans.12002,2414-2417.
    [98] Ishibashi, H.; Takamuro, I.; Mizukami, Y. et al. A convenient general access to–sulpenylated acetophenones and alkanones. Synthetic Commun.1989,19,443-452.
    [99] Furuta, S.; Kuroboshi, M.; Hiyama, T. Fluorination of orthothioesters through oxidativedesulfurization–fluorination. Bull. Chem. Soc. Jpn.1998,71,1939-1951.
    [100] Anderson, K.; Kuruvilla, A.; Uretsky, N. et al. Synthesis and pharmacologica evaluationof sulfonium analogues of dopamine: nonclassical dopamine agonists. J. Med. Chem.1981,24(6),683-687.
    [101] Boeykens, M.; Kimpe, N. D. Selective transformation of,-dibromomethyl ketonesinto–monosulfenylated ketones. Tetrahedron1994,50(43),12349-12360.
    [102] Dehmel, F.; Ciossek, T.; Maier, T. et al. Trithiocarbonates—exploration of a new headgroup for HDAC inhibitors. Bioorg. Med. Chem. Lett.2007,17,4746-4752.
    [103] Batigalhia, F.; Zaldini, M.; Cass, Q. et al. Selective and mild oxidation of sulfides tosulfoxides by oxodiperoxo molybdenum complexes adsorbed onto silica gel.Tetrahedron2001,57,9669-9676.
    [104] Perez, D. I.; Palomo, V.; Pérez, C. et al. Swithcing reversibility to irreversibility inglycogen synthase kinase3inhibitors: clues for specific design of new compounds. J.Med. Chem.2011,54,4042-4056.
    [105] Sanz, R.; Escribano, J.; Arnaiz, F. J. et al. Selective deoxygenation of sulfoxides tosulfides with phosphites catalyzed by dichlorodioxomolybdenum(VI). Synthesis2004,1629-1632.
    [106] Nozaki, H.; Takaku, M.; Kondo, K. Stable sulphonium phenacylides isolation andreactions. Tetrahedron1966,22,2145-2152.
    [107] Katritzky, A. R.; Xie, L.; Serdyuk, L. Novel and efficient insertions of carbons carryingO-, S-, and N-linked substituents: synthesis of–alkoxyalkyl,-(alkylthio)alkyl, and–(carbazol-9-yl)alkyl ketones. J. Org. Chem.1996,61,7564-7570.
    [108] Rospondek, M. J.; Marynowski, L.; Gora, M. Novel arylated polyaromatic thiophenes:phenylnaphtho[b]thiophenes and naphthylbenzo[b]thiophenes as markers of organicmatter diagenesis buffered by oxidising solutions. Organic Geochemistry2007,38,1729-1756.
    [109] Ochiai, M.; Nishitani, J.; Nishi, Y. A new route for generation of–λ3-iodanyl ketonesvia ester exchange of (Z)-(β-acetoxyvinyl)-λ3-iodanes: their nucleophilic substitutionswith halides and sulphur and phosphorus nucleophiles. J. Org. Chem.2002,67,4407-4413.
    [110] Benati, L.; Capella, L.; Montevecchi, P. C. et al. Free-radical addition of alkanethiols toalkynes. Rearrangements of the intermediate β-thiovinyl radicals. J. Org. Chem.1994,59(10),2818-2823.
    [111] Mikolajczyk, M.; Balczewski, P.; Chefczynska, H. et al.–Alkyl(aryl)sulfenylsubstituted β–ketophosphonates: synthesis, properties and reactivity. Tetrahedron2004,45,3067-3074.
    [112] Loghmani, H.; Poorheravi, M. R.; Sadeghi, M. M. M. et al.-Fluorination ofβ-ketosulfones by selectfluorTMF-TEDA-BF4. Tetrahedron2008,64,7419-7425.
    [113] You, S.; Li, J.; Cai, M. A facile stereoselective synthesis of(Z)--arylsulfonyl-,β-unsaturated ketones. Tetrahedron2009,65,6863-6867.
    [114] Verboom, W.; Schoufs, J.; Meijer, J. et al. Convenient methods for the preparation ofdi(1-alkynyl) sulfides, sulfoxides and sulfones, and application of the sulfoxides andsulfones in the formation of novel heterocyclic systems. Recl Trav. Chim. Pays-Bas1978,244-246.
    [115] Herres, M.; Walter, O.; Lang, H. et al. Synthese und koordinationsverhalten vondi(1-phenyl-ethinyl)-sulfan. J. Organome. Chem.1994,466,237-240.
    [116] Meijer, J.; Vermeer, P.; Verkruijsse, H. D. et al. Reaction of di(1-alkynyl) sulfides withsodium sulfide, selenide and telluride. Formation of1,4-dithiins,1,4-thiaselenins and1,4-thiatellurins. Recl Trav. Chim. Pays-Bas1973,92,1326-1330.
    [117] Zilverschoon, A.; Meijer, J.; Vermeer, P. et al. A convenient synthesis of1-alkynylehtynyl sulfides preparation of mono-substituted1,4-dithiins,1,4-thiaselenins and1,4-thiatellurins. Recl Trav. Chim. Pays-Bas1975,94(7),163-165.
    [118] Lewis, K. D.; Wenzler, D. L.; Matzger, A. J. Potochemistry of diethynyl sulfides: acycloaromatization for the formation of five-membered rings. Org. Lett.2003,5(13),2195-2197.
    [119] Schneider, D. F.; Malherbe, J. S.; Meyer, C. J. et al. General synthesis of symmetricaland unsymmetrical organic sulphides under non-basic reaction conditions. J. Chem.Soc., Perkin Trans.11978,955-961.
    [120] Singh, H.; Gandhi, C. S. Synthesis of nitriles and symmetrical organic sulphides frombiprotic carbothioamides and an-halogenated ketone, ester or nitrile. SyntheticCommun.1979,9(7),569-573.
    [121] Harpp, D. N.; Gingras, M. Cyano and fluorodestannylation: a new methodology usingsome powerful sulfur transfer reagents, the organotin sulfides. Tetrahedron Lett.1987,28(38),4373-4376.
    [122] Harpp, D. N.; Gingras, M.; Aida, T. et al. Bis(tributyltin) sulfide: an effective andgeneral sulfur-transfer reagent. Synthesis1987,(12),1122-1124.
    [123] Gingras, M.; Chan, T. H.; Harpp, D. N. New methodologies: fluorodemetalation oforganogermanium,-tin, and–lead compounds. Applications with organometallicsulfides to produce highly active anions and spectroscopic evidence for pentavalentintermediates in substitution at tin. J. Org. Chem.1990,55(7),2078-2090.
    [124] Nakayama, J.; Machida, H.; Hoshino, M. General synthesis of2,5-dihydrothiophenes(3-thiolenes) from diketo sulfides. Tetrahedron Lett.1985,26(16),1981-1982.
    [125] Allen, F. H.; Kennard, O.; Watson, D. G. et al. Tables and bond lengths determined byX-ray and neutron diffraction. Part1. Bond lengths in organic compounds. J. Chem. Soc.Perkin Trans. II1987, S1-S19.
    [126] Wilson, A. J. C. Ed. International Tables for Crystallography, Vol. C; KluwerAcademic Publishers: Dordrecht,1992, Tables9.5.1.1.
    [127] Karade, N. N.; Tiwari, G. B.; Gampawar, S. V. et al. Convenient synthesis ofsymmetrical diketosulfides from enolizable ketones using
    [hydroxy(tosyloxy)iodo]benzene and Na2S·9H2O. Heteroatom Chemistry2009,20(3),172-176.
    [128] Paul, N.; Muthusubramanian, S. Domino Vilsmeier-Haack/ring closure sequences: afacile synthesis of3-chlorobenzo[b]thiophene-2-carbaldehydes. Tetrahedron Lett.2011,52,3743-3746.
    [129] Matzger,A. J.; Lewis, K. D.; Nathan, C. E. et al. Structure of diethynyl sulfide andbis(phenylethynyl)sulfide. J. Phys. Chem. A2002,106,12110-12116.
    [130](a) Sheldrick, G. M. SHELXS-97. Program for Crystal Structures Determination;University of G ttingen: G ttingen, Germany,1997.(b) Sheldrick, G. M. SHELXL-97:Program for Crystal Structure Refinement; University of G ttingen: G ttingen,Germany,1997.
    [131] Wilson, A. J. C. Ed. International Tables for Crystallography, Vol. C; KluwerAcademic Publishers: Dordrecht,1992, Tables4.2.6.8and6.1.1.4.
    [132]安德烈,赵文应,张英俊等.基于纳米金自组装应用的多甲硫基放炔化合物的设计与合成.湖南大学学报(自然科学版).2008,35(6),46-52.
    [133] Su, Q.; Yan, H.; Gao, S.-C.; et al. An efficient one-pot preparation of methylthioarylbutadiynes by double elimination protocol. Synthetic Commun.(accepted) DOI:10.1080/00397911.2012.729280.
    [134] Davis, B. R.; Rewcastle, G. W.; Woodgate, P. D. Clemmensen reduction. Part6. Thesynthesis of cyclopropane-1,2-diyl diacetates. J. Chem. Soc. Perkin I1979,2815-2819.
    [135] Griffin, R. J.; Hollick, J. J.; Golding, B. T. et al.2,6-Disubstituted pyran-4-one andthiopyran-4-one inhibitors of DNA-dependent protein kinase(DNA-PK). Bioorganic&Medicinal Chem. Lett.2003,13,3083-3086.
    [136] Rees, D. D.; Gunning P. J.; Orsi, A. et al. Chemical compounds. WO2008003978,10Jan2008.
    [137] Choi, H. Y.; Chi, D. Y. Nonselective bromination-selective debromination strategy:selective bromination of unsymmetrical ketones on singly activated carbon againstdoubly activated carbon. Org. Lett.2003,5(4),411-414.
    [138] Zou, X. F.; Jia, X. F.; Wang, X. X. et al. Substitution of acyl for acetyl withN-acylbenzotriazoles catalyzed by samarium triiodide. Synthetic Commun.2007,37,1617-1625.
    [139] Liu, Y.; Qian, J.; Xu, Z. et al. Gold(III)-catalyzed tandem reaction ofO-arylhydroxylamines with1,3-dicarbonyl compounds: highly selective synthesis of3-carbonylated benzofuran derivatives. J. Org. Chem.2010,75,6300-6303.
    [140] Hao, W. Y.; Zhang, Y. M.; Ying, T. K. et al. A facile route to convert acetylacetone intoother β-diketones with acyl chlorides promoted by samarium triiodide. SyntheticCommun.1996,26(12),2421-2427.
    [141] Bao, J.; Ren, J.; Wang, Z. Synthesis of substituted furans through dominoaldol/homo-Michael reactions of formylcyclopropane1,1-diesters with1,3-dicarbonyls.Eur. J. Org. Chem.2012,2511-2515.
    [142] Sada, M.; Uchiyama, M.; Matsubara, S. et al.1,4-Addition of bis(iodozincio)methane to,β-unsaturated ketones: chemical and theoretical/computational studies. Chem.Eur. J.2010,16,10474-10481.
    [143] Katritzky, A. R.; Wang, Z.; Wang, M. et al. Preparation of β-keto esters and β-diketonesby C-acylation/deacetylation of acetoacetic esters and acetonyl ketones with1-acylbenzotriazoles. J. Org. Chem.2004,69,6617-6622.
    [144] Trost, B. M. Atom economy–a challenge for organic synthesis: homogeneous catalysisleads the way. Angew. Chem. Int. Ed.1995,34(3),259-281.
    [145] Nicolaou, K. C.; Dai, W. M.; Tsay, S. C. et al. Designed enediynes: a new class ofDNA-Cleaving molecules with potent and selective anticancer activity. Science1992,256(6),1172-1178.
    [146] Schaus, S. E.; Cavalieri, D.; Myers, A. G. Gene transcription analysis of saccharomycescerevisiae exposed to neocarzinostatin protein-chromophore comples reveals evidenceof DNA damage, a potential mechanism of resistance, and consequences of prolongedexposure. Proc. Natl Acad. Sci. USA,2001,98(20),11075-11080.
    [147] Kabbara, J.; Hoffmann, C.; Schinzer, D. Stephens-Castro-Coupling of halogenatedvinylic and allylic silanes with (homo-)propargylic compounds. Synthesis1995,299-302.
    [148] K nig, B.; Pitsch, W.; Jones, P. G. et al. Synthesis of macrocyclic enediynes by twofoldC-alkylation. Synthesis1996,446-448.
    [149] Hara, R.; Liu, Y.; Takahashi, T. et al. Highly substituted enyne formation by couplingreaction of alkenylzirconium compounds with alkynyl halides. Tetrahedron Lett.1997,38(23),4103-4106.
    [150] Braga, A. L.; Emmerich, D. J.; Silveira, C. C. et al. First coupling reaction of terminalalkynes with sulfur and selenium substituted vinylic tosylates catalyzed by Pd(II).Synlett.2001,(3),369-370.
    [151] Ogawa, A.; Sakagami, K.; Mitsunobu, O. et al. Convenient method for the preparationof1-phenylthio-3-alken-1-ynes and4-hydroxy-1-phenylthio-1,2-alkadienes from acommon precursor. Tetrahedron Lett.2002,43,6387-6389.
    [152] Drake, N. L.; Allen, P. Benzalacetone. Org. Synth.1923,3,17-19.
    [153] Kuse, M.; Isobe, M. Synthesis of13C-dehydrooelenterazine and NMR studies on thebioluminescence of a symplectoteuthis model. Tetrahedron2000,56(17),2629-2639.
    [154] Pawluc, P.; Szudkowska, J.; Hreczycho, G. et al. One-pot synthesis of (E)-styrylketones from styrenes. J. Org. Chem.2011,76,6438-6441.
    [155] Lin, A.; Zhu, C.; Cheng, Y. et al. Organocatalytic asymmetric Michael-type/Wittigreaction of phosphorus ylides: synthesis of chiral–methylene--ketoesters. Org. Lett.2011,13(16),4176-4179.
    [156] Zhang, G.; Wang, Y.; Xu, D. et al. Organocatalytic Michael addition of naphthoquinonewith,β-unsaturated ketones: primary amine catalyzed asymmetric synthesis ofLapachol analogues. Eur. J. Org. Chem.2011,2142-2147.
    [157] Hamelin, J.; Saoudi, A.; Benhaoua, H. et al. Versatile transformations of,β–dibromoesters and ketones in basic media under microwave irradiation. Synthesis2003,2185-2188.
    [158] Gao, K.; Yu, C.-B.; Zhou, Y.-G. et al. Iridium-catalyzed asymmetric hydrogenation of3-substituted2H-1,4-benzoxazines. Adv. Synth. Catal.2012,354,483-488.
    [159] Alcazar, V.; Tapia, I.; Crego, M. et al. Synthesis of3-(phenylthio)-2-oxopropylidenetriphenylphosphorane and its reaction with aldehydes. Anales de Quimica1991,87(1),113-115.
    [160] Ogawa, A.; Sakagami, K.; Mitsunobu, O. et al. Convenient method for the preparationof1-phenylthio-3-alken-1-ynes and4-hydroxy-1-phenylthio-1,2-alkadienes from acommon precursor. Tetrahedron Lett.2002,43,6387-6389.
    [161] Huisgen, R.1,3-Dipolar cycloadditions. Angew. Chem. Int. Ed.1963,2(10),565-632.
    [162] Gothelf, K. V.; J rgensen, K. A. Asymmetric1,3-dipolar cycloaddition reactions.Chem. Rev.1998,98(2):863.
    [163] Rostovtsev, V. V.; Green, L. G.; Sharpless K. B. et al. A stepwise Huisgencycloaddition process: copper(I)-catalyzed regioselective―ligation‖of azides andterminal alkynes. Angew. Chem. Int. Ed.2002,41(14),2596-2599.
    [164] Meldal, M.; Christensen, C.; Tornoe, C. W. Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper(I)-catalyed1,3-dipolar cycloadditions ofterminal alkynes to azides. J. Org. Chem.2002,67(9),3057-3064.
    [165] Francisco, P. B.; Mariano, O. M.; Francisco, S. G. et al. Multivalent neoglycoconjugatesby regiospecific cycloaddition of alkynes and azides using organic-soluble coppercatalysts. Org. Lett.2003,5(11),1951-1954.
    [166] Chittaboina, S.; Xie, F.; Wang, Q. One-pot synthesis of triazole-linked glycoconjugates.Tetrahedron Lett.2005,46,2331-2336.
    [167] Brian, H. M. K.; Stan, G.; Floris, P. J. T. R. et al. Expedient synthesis of triazole-linkedglycosyl amino acids and peptides. Org. Lett.2004,6(18),3123-3126.
    [168] Lee, L. V.; Sharpless, K. B.; Wong, C. H. et al. A potent and highly selective inhibitorof human-1,3-fucosyltransferase via click chemistry. J. Am. Chem. Soc.2003,125,9588-9589.
    [169] Díaz, D. D.; Sharpless, K. B.; Fokin, V. V. et al. Click chemistry in materials synthesis.1. adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J. Polym. Sci.,Part A: Polym. Chem.2004,42(17),4392-4403.
    [170] Wu, P.; Sharpless, K. B.; Fokin, V. V. et al. Efficiency and fidelity in a click-chemistryroute to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes.Angew. Chem. Int. Ed.2004,43(30),3928-3932.
    [171] Stefan, L.; Pilar, R. L.; Peter, G. Click linker: efficient and high-yielding synthesis of anew family of SPOS resins by1,3-dipolar cycloaddition. Org. Lett.2003,5(10),1753-1755.
    [172] Fazio, F.; Paulson, J. C.; Wong, C. H. et al. Synthesis of sugar arrays in microtiter plate.J. Am. Chem. Soc.2002,124(48),14397-14402.
    [173] Meng, J. C.; Averbuj, C.; Finn, M. G. et al. Cleavable linkers for porous silicon-basedmass spectrometry. Angew. Chem. Int. Ed.2004,43(10),1255-1260.
    [174] Lummerstorfer, T.; Hoffmann, H. Click chemistry on surfaces:1,3-dipolarcycloaddition reactions of azide-terminated monolayers on silica. J. Phys. Chem. B2004,108(13),3963-3966.
    [175] Collman, J. P.; Devaraj, N. K.; Chidsey, E. D. et al.―Clicking‖functionality ontoelectrode surfaces. Langmuir2004,20(4),1051-1053.
    [176] Lee, J. K.; Chi, Y. S.; Choi, I. S. et al. Reactivity of acetylenyl-terminatedself-assembled monolayers on gold: triazole formation. Langmuir2004,20(10),3844-3847.
    [177] Whiting, M.; Sharpless, K. B.; Fokin, V. V. et al. Rapid discovery and structure-activityprofiling of novel inhibitors of human immunodeficiency virus type1protease enabledby th copper(I)-catalyzed synthesis of1,2,3-triazoles and their further functionalization.J. Med. Chem.2006,49(26),7697-7710.
    [178] Willis, R. J.; Marlow, I. D. Triazole pesticides. EP400842,1900-12-05.
    [179] Stefan, L.; Peter, G. Click chemistry on solid support: synthesis of a new REM resinand application for the preparation of tertiary amines. Tetrahedron2004,60,8699-8702.
    [180] Yap, A. H.; Weinreb, S. M. β-Tosylethylazide: a useful synthon for preparation ofN-protected1,2,3-triazoles via click chemistry. Tetrahedron Lett.2006,47,3035-3038.
    [181] Wang, Z. X.; Qin, H. L. Regioselective synthesis of1,2,3-triazole derivatives via1,3-dipolar cycloaddition reactions in water. Chem. Commun.2003,2450-2451.
    [182] Tilliet, M.; Levacher, V.; Moberg, C. et al. Convenient preparation of bifunctionalpybox ligands. Tetrahedron2008,64,10244-10249.
    [183] Andrea, C.; Steven, P. N.; Cavallo, L. et al.(NHC)Copper(I)-catalyzed [3+2]cycloaddition of azides and mono-or disubstituted alkynes. Chem. Eur. J.2006,12,7558-7564.
    [184] Himo, F.; Sharpless, K. B.; Fokin, V. V. Copper(I)-catalyzed synthesis of azoles. DFTstudy predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc.2005,127,210-216.
    [185] Yadav, J. S.; Reddy, B. V. S.; Reddy, G. M. et al. Three component, regioselective,one-pot synthesis of β-hydroxytriazoles from epoxides via click reactions‘.Tetrahedron Lett.2007,48,8773-8776.
    [186] Creutz, C. Complexities of ascorbate as a reducing agent. Inorg. Chem.1981,20(12),4449-4452.
    [187] Temelkoff, D. P.; Zeller, M.; Norris, P. N-Glycoside neoglycotrimers from2,3,4,6-tetra-O-acetyl-β-o-glucopyranosyl azide. Carbohydrate Research2006,341(9),1081-1090.
    [188] Chandrasekhar, S.; Basu, D.; Rambabu, C. Three-component coupling of alkynes,Baylis-Hillman adducts and sodium azide: a new synthesis of substituted triazoles.Tetrahedron Lett.2006,47(18),3059-3063.
    [189] Ijsselstijn, M.; Cintrt, J. C. Click chemistry with ynamides. Tetrahedron2006,62,3837-3842.
    [190] Camp, C.; Dorbes, S.; Benoist, E. et al. Efficient and tunable synthesis of newpolydentate bifunctional chelating agents using click chemistry. Tetrahedron Lett.2008,49(12),1979-1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700