用户名: 密码: 验证码:
集值映射的次微分和最优性条件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了几类集值映射的次微分的存在性、性质以及计算两个集值映射和、复合、交的次微分运算法则,建立了锥凸向量优化问题和D.C.向量优化问题的最优性条件,引入了非凸集值映射的广义ε次微分的概念,讨论了广义ε次微分的存在性、性质、和、差运算法则,并作为应用建立了向量优化问题的最优性条件。具体内容如下:
     第一章,首先回顾了向量优化各问题的研究现状,然后分别介绍了次微分和D.C.优化问题的发展和研究现状,最后阐述了本文的选题动机和主要工作。
     第二章,介绍了本文涉及的一些基本符号和一些基本概念,也回顾了向量优化问题中的相依导数,相依epi导数,各种次微分,几类有效解等概念。
     第三章,首先证明了文献(Yang,1992)和文献(Chen and Jahn,1998)中引入的集值映射的两种弱次梯度的存在性定理,并推广了文献(Chen and Jahn,1998)和文献(Peng et al,2005)中相对应的结论。然后给出了文献(Borwein,1981)中引入的集值映射的强次微分的存在性定理,并得到了强次微分和文献(Baier and Jahn,1998)中用导数所定义的次微分之间的关系。
     第四章,给出了文献(Chen and Jahn,1998)中引入的集值映射的CJ-弱次微分的几种性质,利用Sandwich定理得到了两个集值映射和的CJ-弱次微分运算法则。而且根据相依导数的性质,得到了用相依导数所引入的弱次微分的性质以及计算两个集值映射的和、复合、交的次微分运算法则。
     第五章,利用集值映射的CJ-弱次微分和文献(李声杰,1998)中用相依导数引入的L-次微分分别讨论了约束集为给定集合和约束集由锥凸映射所决定的两类集值优化问题的充分和必要最优性条件,并比较了一些结论和相应文献中的结果。
     第六章,首先利用集值映射的强次微分建立了D.C.集值优化问题的弱有效解的充分最优性条件和必要最优性条件,并且比较了必要最优性条件和相关文献中的结论。而且,借助于一个特殊的标量化函数证明了D.C.优化问题和一个实集值优化问题的解的等价关系。然后利用向量值映射的强次微分和ε-次微分,建立了D.C.向量优化问题的ε-Pareto弱有效解和ε-Pareto真有效解的最优性条件。最后,作为应用,建立了分式规划的ε-Pareto弱有效解和ε-Pareto真有效解的最优性条件。
     第七章,利用范数引入了非凸向量映射的广义ε次微分的概念,讨论了广义ε次微分的存在性和性质,刻画了广义ε次微分和方向导数之间的关系,然后给出了两个向量映射的和与差的广义ε次微分运算法则,也给出了广义ε次微分的正齐次性。最后作为应用,建立了向量优化问题的充分和必要最优性条件。
     第八章,简要总结了本文中的内容,并提出了一些遗留的问题和今后准备思考的问题。
In this thesis, the existence theorems, some properties and some calculus rules forcalculating the subdifferential of the sum, composition and intersection of twoset-valued mappings for the several kinds of subdiferential for set-valued mappings arestudied. Optimality conditions of cone-convex vector optimization problems and specialnonconvex vector optimization problems, which are D.C. vector optimization problemsare established. A generalized ε subdifferential is introduced for a nonconvex vectorvalued mapping. And the existence theorems, the properties and the calculus rules of thegeneralized ε subdifferential for the sum and the difference of two vector valuedmappings were disscussed. And, as applications, optimality conditions are establishedfor vector optimization problems. It is organized as follows:
     In Chapter1, the development and current researches on the topic of vectoroptimization problems are firstly recalled. Then, the development and current researchesfor subdifferential and D.C. multiobjective optimization problems are reviewed,respectively. Finally, the motivations and the main research work are also given.
     In Chapter2, some basic notions and definitions of vector optimization problemsare recalled. These definitions mainly refer to contingent derivative, contingentepiderivative, different kinds of subdifferential and kinds of efficient solutions.
     In Chapter3, firstly, the existence theorems of two kinds of weak subgradients forset-valued mappings introduced in (Yang,1992) and (Chen and Jahn,1998), which arethe generalizations of Theorem7in (Chen and Jahn,1998) and Theorem4.1in (Peng etal,2005) respectively, are proven. Then, an existence theorem of the subgradients forset-valued mappings, which introduced by Borwein in (Borwein,1981), and therelations between this subdifferential and the subdifferential introduced by Baier andJahn in (Baier and Jahn,1998), are obtained.
     In Chapter4, some properties of the CJ-weak subdifferential of set-valuedmappings introduced in (Chen and Jahn,1998) and the calculus rules of the CJ-weaksubdifferential for the sum of two set-valued mappings are obtained by using a so-calledSandwich theorem. Moreover, in virtue of the property of the contingent derivative,some properties and some exact calculus rules for calculating the subdifferential of thesum, composition and intersection of two set-valued mappings are given.
     In Chapter5, by using the concepts of the CJ-weak subdifferential of set-valued mappings and the L-subdifferential introduced by the contingent derivative in (Li,1998),necessary and sufficient optimality conditions are discussed of cone-convex set-valuedoptimization problems, whose constraint sets are determined by a fixed set and aset-valued mapping, respectively. And some results are compared with the relatedresults in the literature.
     In Chapter6, by using the concept of the strong subdifferential for set-valuedmappings, the sufficient and necessary optimality conditions for generalized D.C.multiobjective optimization problems are established. And the necessary optimalityconditions are compared with the related results in the literature. Moreover, by using aspecial scalarization function, a real set-valued optimization problem is introduced andthe equivalent relations between the solutions are proved for the real set-valuedoptimization problem and a generalized D.C. multiobjective optimization problem.Then, by virtue of the concepts of the strong subdifferential and the ε-subdifferentialof vector valued mappings, sufficient and necessary optimality conditions areestablished for an ε-weak Pareto minimal point and an ε-proper Pareto minimal pointof a D.C. vector optimization problem. As an application, sufficient and necessaryoptimality conditions are also given for an ε-weak Pareto minimal point and anε-proper Pareto minimal point of a vector fractional mathematical programming.
     In Chapter7, a generalized ε subdifferential, which was defined by a norm, isfirst introduced for a nonconvex vector valued mapping. Some existence theorems andthe properties of the generalized ε subdifferential are discussed. A relationshipbetween the generalized ε subdifferential and a directional derivative is investigatedfor a vector valued mapping. Then, the calculus rules of the generalizedε subdifferential for the sum and the difference of two vector valued mappings weregiven. The positive homogeneity of the generalized ε subdifferential is also provided.Finally, as applications, necessary and sufficient optimality conditions are establishedfor vector optimization problems.
     In Chapter8, the results of this thesis are briefly summarized. And some problemswhich are remained and thought over in future are put forward.
引文
陈光亚.2004.优化和均衡中的某些问题[J].重庆师范大学学报(自然科学版),21(1):1-3.
    陈光亚.2005.向量优化问题某些基础理论及其发展[J].重庆师范大学学报(自然科学版),22(3):6-9.
    董加礼.1994.不可微多目标优化[J].数学进展,23(6):517-528.
    高岩.2008.非光滑分析和优化及其应用[M].科学出版社.
    林锉云,董加礼.1992.多目标优化的方法与理论[M].长春:吉林教育出版社.
    李声杰.1998. S-凸集值映射的次梯度和弱有效解[J].高校应用数学学报(A辑),13(4):463-472.
    盛宝怀,刘三阳.2000.多目标集值优化理论及其进展[J].宝鸡文理学院学报(自然科学版),20(1):1-11.
    汪寿阳.1984.多目标最优化中的共轭对偶理论[J].系统科学与数学,4(4):303-313.
    Amahroq, T., Thibault, L.1995. On proto-differentiability and strict proto-differentiability ofmultifunctions of feasible points in perturbed optimization problems[J] Numer. Funct. Anal.Optim.16:1293-1307.
    Amahroq, T., Penot, J.P., Syam, A.2008. On the subdifferentiability of the difference of twofunctions and local minimization[J]. Set-Valued Anal.,16:413-427.
    Aubin, J.P., Ekeland, I.1984. Applied Nonlinear Analysis[M]. New York: John Wiley and Sons.
    Aubin, J.P., Frankowska, H.1990. Set-Valued Analysis[M]. Boston: Birkhauser.
    Azimov, A.Y., Gasimov, R.N.1999. On weak conjugacy, weak subdifferentials and duality withzero gap in nonconvex optimization[J]. Int. J. of Appl. Math.,1:171-192.
    Azimov, A.Y., Gasimov, R.N.2002. Stability and duality of nonconvex problems viaaugmentedLagrangian[J]. Cybernet. Systems Anal,,38:412-421.
    Baier, J., Jahn, J.1999. On subdifferentials of set-valued maps[J]. J. Optim. Theory Appl.,100:233-240.
    Bednarczuk, E., Song, W.1998. Contingent epiderivative and its applications to set-valuedoptimization[J]. Control and Cybernetics,27:376–386.
    Borwein, J.M.1981. A lagrange multiplier theorem and a sandwich theorem for convex relations,Math. Scand..48:189-204.
    Borwein, J.M., Preiss, D.1987. A smooth variational principle with applications tosubdifferentiability and to differentiability of convex functions[J]. Trans. Amer. Math. Soc.,30:3517-527.
    Borwein, J.M., Ioffe, A.1996. Proximal analysis in smooth spaces[J]. CECM Research Report93-04(1993), Set-valued Anal.,4:1-24.
    Bot, R.I., Hodrea1, I.B., Wanka, G.2008.ε-Optimality conditions for composed convexoptimization problems[J]. J. Optim. Theory Appl.,153:108-121.
    Bot, R.I., Nechita, D.-M.2011. On the Dini-Hadamard subdifferential of the difference of twofunctions[J]. J. Glob. Optim.,50:485-502.
    Breckner, W.W., Kassay, G.1997. A systematization of convexity concepts for sets and functions[J].J. Convex Anal.4:109-127.
    Chen, G.Y., Craven, B.D.1990. A vector variational inequality and optimization over anefficientset[J]. Math. Meth. Oper. Res.,34:1-12.
    Chen,G.Y., Jahn, J.1998.Optimality conditions for set-valued optimization problems[J]. Math.Meth. Oper. Res.,48(2):187-200.
    Chen, G.Y., Goh, C.J., Yang, X.Q.2000. On gap functions for vector variational inequalities[A], inGiannessi, F.(ed.), Vector Variational Inequalities and Vector Equilibria,Kluwer AcademicPublishers, Dordrecht, Holland,55-72.
    Chen, G.Y., Huang, X.X., Yang, X.Q.2005. Vector Optimization: Set-Valued and Variation Analysis,in: Lecture Notes in Economics and Mathematical Systems[M]. Berlin:Springer.
    Clarke, F.H.1973. Necessary conditions for nonsmooth problems in optimal control and the calculusof variations[M]. Ph.D. Thesis, Univ. of Washington.
    Clarke, F.H.1975. Generalized gradients and applications[J]. Transactions of the AmericanMathematical Society,205:247-262.
    Clarke, F.H.1976. A new approach to Lagrange multipliers[J]. Math. Oper. Res.,1:165-174.
    Clarke, F.H.1983. Optimization and Nonsmooth Analysis[M]. New York: John Wiley and Sons.
    Clarke, F.H.1989. Methods of dynamic and nonsmooth optimization[M]. CBMS-NSF RegionalConf. series in applied mathematics, vol.57, SIAM, Philadelphia.
    Corley, H.W.1988. Optimality conditions for maximization of set-valued functions[J]. J. Optimiz.Theory Appl.,58:1-10.
    Durea, M., Dutta, J., Tammer. C.2010. Lagrange Multipliers forε-Pareto Solutions in VectorOptimization with Nonsolid Cones in Banach Spaces[J]. J. Optim. Theory Appl.,145:196-211.
    Deville, R., Godefroy, G., Zizler, V.1993. A smooth variational principle with applications toHamilton-Jacobiequations in infinite dimensions[J]. J. Functional Anal.,111:197-212.
    Ekeland, I.1974. On the variational principle[J]. J. Math. Anal. Appl.,47:324-353.
    Edgeworth, F.Y.1981. Mathematical Psychics[M]. London: Kegan Paul.
    Flores-Baz á n, F.2001. Optimality conditions in non-convex set-valued optimization[J]. Math.Methods Oper. Res.,53(3):403–417.
    Flores-Baz á n, F., Bienvenido, J.2009. Strict efficiency in set-valued optimization[J]. SIAM J.Control Optim.,48(2):881-908.
    Flores-Baz á n, F., Oettli, W.2001. Simplified optimality conditions for minimizing the difference ofvector-valued functions[J]. J. Optimiz. Theory Appl.,108:571-586.
    Gadhi, N., Metrane, A.2004. Sufficient optimality condition for vector optimization problems underD.C. Data[J]. J. Global Optimiz.,28:55-66.
    Gadhi, N., Laghdir, M., Metrane, A.2005. Optimality Conditions for D.C. Vector OptimizationProblems Under Reverse Convex Constraints[J]. J. Global Optim.,33:527-540.
    Gadhi, N.2005. Optimality Conditions for the Difference of Convex Set-Valued Mappings[J].Positivity,9:687-703.
    Giannessi, F.(ed.).2000. Vector Variational Inequalities and Vector Equilibria: MathematicalTheories[C]. Dordrecht and Holland: Kluwer Academic Publishers.
    Giannessi, F.1980. Theorems of the alternative,quadratic programs and complementary problems[A],in Cottle, R.W., Giannessi, F., Lions, J.L.(eds.), Variational Inequalities and ComplementaryProblems, Wiley, New York,151-186.
    Gong, X.H.2001. Efficiency and Henig efficiency for vector equilibrium problems [J]. J. Optimiz.Theory Appl.,108:139-154.
    Gong, X.H., Dong, H.B., Wang, S.Y.2003. Optimality conditions for proper efficient solutions ofvector set-valued optimization[J]. J. Math. Anal. Appl.,284:332-350.
    Gong, X.H., Yao, J.C.2008a. Connectedness of the set of efficient solutions for generalizedsystems[J]. J. Optimiz. Theory Appl.,138:189-197.
    Gong, X.H., Yao, J.C.2008b. Lower semicontinuity of the set of efficient solutions for generalizedsystems[J]. J. Optimiz. Theory Appl.,138:197-205.
    Gong, X.H.2008. Continuity of the solution set to parametric weak vector equilibrium problems[J].J. Optimiz. Theory Appl.,139:35-47.
    Hernandez, E., Rodriguez-Marin, L.2011. Weak and strong subgradients of set-valued Maps[J]. J.Optim. Theory Appl.149:352-365.
    Huang, N.J., Li, J., Thompson, H.B.2006. Stability for parametric implicit vector equilibriumproblems[J]. Math. Comput. Model.43:1267-1274.
    Huang, X.X., Yang, X.Q.2001. Duality and exact penalization for vector optimization viaaugmented Lagrangian[J]. J. Optimiz. Theory Appl.,111(3):615-640.
    Huang, X.X., Yang, X.Q.2002. Nonlinear Lagrangian for multiobjective optimization andapplications to duality and exact penalization[J]. SIAM J. Optim.,13(3):675-692.
    Hiriart-Urruty, J.B.1979. Tangent Cones, generalized Gradients and Mathematical Programming inBanach spaces[J]. Math. Oper. Res.,4:79-97.
    Hiriart-Urruty, J. B.1989. From convex optimization to nonconvex optimization. In: Clarke, F. H.,Demyanov,V. F., Giannessi, F.(ed.), Nonsmooth Optimization and Related Topics[M]. Plenum,New York.219-239.
    Hiriart-Urruty, J. B., Moussaoui, M., Seeger, A., Volle, M.1995. Subdifferential calculus withoutqualification conditions, using approximate subdifferentials: a survey[J] Nonlinear Anal.,24:1727-1754.
    Ioffe, A.D.1984. Calculus of Dini subdifferentials of functions and contingent coderivatives ofset-valued maps[J]. Nonlinear Anal.,8:517-539.
    Ioffe, A.D.1989. Approximate subdifferentials and applications3: the metric theory[J]. Mathematika,36:1-38.
    Ioffe, A.D.1990. Proximal analysis and approximate subdifferentials[J]. J. London Math. Soc.,41:175-192.
    Jahn, J., Rauh, R.1997. Contingent epiderivatives and set-valued optimization[J]. Math. Meth. Oper.Res.,46:193-211.
    Jahn, J.2004. Vector Optimization Theory, Applications and Extensions[M]. Berlin: Springer.
    Jameson, G.1970. Ordered linear space, Lecture Notes in Mathematics141[M]. Springer-Verlag.
    Kasimbeyli, R.2009. Radial epiderivatives and set-valued optimization[J]. Optimization,58(5):521-534.
    Kasimbeyli, R., Mammadov, M.2009. On weak subdifferentials, directional derivatives, and radialepiderivatives for nonconvex functions[J]. SIAM J. Optim.,20:841-855.
    Koopmans, T.C.1951. Analysis of production as an efficient combination of activities[J]. In: T.C.Koopmans(ed.), Activity analysis of production and allocation, New York: Wiley,33-97.
    Kuhn, H.W., Tucker, A.W.1951. Nonlinear programming[A]. In: Neyman, J.(ed.), Proceedings ofthe second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley:University of California Press,481-492.
    Kü ük, Y., Atasever,., Kü ük, M.2011. Generalized weak subdiffrentials[J]. Optimization,60:1-16.
    Lahoussine, L., Elhilali, A.A., Gadhi, N.2009. Set-valued mapping monotonicity as characterizationof D.C functions[J]. Positivity,13:399-405.
    Lin, L.J.1994. Optimization of set-valued functions[J]. J. Math. Anal. Appl.,186:30-51.
    Liu, J.C. and Yokoyama, K.1999.ε-Optimality and duality for fractional programming[J].Taiwanese J. Math.,3:311-322.
    Li, S.J., Yang, X.Q. and Chen, G.Y.2003. Nonconvex vector optimization of set-valued mappings[J].J. Optimiz. Theory Appl.,283:337–350.
    Li, S.J., Chen, C.R.2006. High order optimality conditions for Henig efficient solutions inset-valued optimization[J]. J. Math. Anal. Appl.,323:1184–1200.
    Li, S.J., Meng K.W., Penot J.P.2009. Calculus Rules for Derivatives of Multimaps[J]. Set-ValuedAnal.,17:21-39.
    Li, S.J., Guo, X.L.2009. Weak subdifferential for set-valued mappings and its applications[J].Nonlinear Anal.,71:5781-5789.
    Li, S.J., Zhu, S.K., Li, X.B. Second-Order Optimality Conditions for Strict Efficiency of ConstrainedSet-Valued Optimization[J]. J. Optimiz. Theory Appl., DOI:10.1007/s10957-012-0076-8.
    Luc, D. T.1989. Theory of Vector Optimization[M]. Springer-Verlag, Berlin.
    Maghri, M.E., Laghdir, M.2009. Pareto subdifferential calculus for convex vector mappings andapplications to vector optimization[J]. SIAM J. Optim.,19:1970-1994.
    Michel, P., Penot, J.P.1985. Calcul sous-differential pour des functions Lipschitziennes etnon-Lipschiziennes[J]. C. R. Acad. Sci. Paris, Ser. I Math.298:269-272.
    Mordukhovich, B.S.1976. The maximum principle in the problem of time-optimal control withnonsmooth constraints[J]. J. Appl. Math. Mech.,40:960-969.
    Mordukhovich, B.S.1980. Metric approximations and necessary optimality conditions for generalclasses of nonsmooth extremal problems[J]. Soviet Math. Dokl.,22:526-530.
    Mordukhovich, B.S.1984. Nonsmooth analysis with nonconvex generalized differentials and adjointmappings[J]. Dokl. Akad. Nauk BSSR,28:976-979.
    Mordukhovich, B.S.1988. Approximation Methods in Problems of Optimization and Control[M].Nauka, Moscow,(Russian; English transl. Wiley-Interscience).
    Mordukhovich, B.S., Nam, N.M., Yen, N.D.2006. Fréchet subdifferential calculus and optimalityconditions in nondifferentiable programming[J]. Optimization.,55:685-708.
    Pareto, V.1896. Cours D’economie Politique[M]. Lausanne:F.Rouge.
    Peng, J.W., Lee, H.W.J., Rong, W.D., Yang, X.M.2005. Hahn-Banach theorems and subgradients ofset-valued maps[J]. Math. Meth. Oper. Res.61:281-297.
    Penot, J.P.1978. Calcul sous-differential et optimisation[J]. J. Funct. Anal.,27:248-276.
    Penot, J.P.1984. Differentiability of relations and differential stability of perturbed optimizationproblems[J]. SIAM J. Control Optim.,22:529-551.
    Penot, J.P.2011. The directional subdifferential of the differenceof two convex functions[J]. J. Glob.Optim.,49:505-519.
    Phelps, R.R.1974. Support cones in Banach spaces and their applications[J]. Advences inMathematics,13:1-19.
    Pontryagin, L.S.1967. Linear differential games II[J]. Soviet Math. Dokl.,8:910-912.
    Rockafellar, R.T.1963. Convex functions and dual extremum problems[M]. Thesis Harvard. MA.
    Rockafellar, R.T.1970. Convex Analysis[M]. Princeton:Princeton University Press.
    Rockafellar, R.T.1981a. The theory of subgradients and its Applications to problems ofoptimization-convex and nonconvex Functions[M]. Heldermann, Berlin.
    Rockafellar, R.T.1981b. Proximal subgradients, marginal values, and augmented Lagrangians innonconvex optimization[J]. Math. Oper. Res.,6:427-437.
    Rockafellar, R.T.1984. Directional differentiability of the optimal value function in a nonlinearprogramming problem[J]. Mathematical Programming Study,21:213-227.
    Rockafellar, R.T.1989. Proto-differentiability of set-valued mappings and its applications inoptimization[J]. Ann. Inst. H. Poincar é Anal. Non Lin é aire.,6:449-482.
    Sach, P.H.2007. Moreau-Rockafellar theorems for nonconvex set-valued maps[J]. J. Optim. TheoryAppl.,133:213-227.
    Sawaragi, Y., Nakayama, H., Tanino, T.1985. Theory of Multiobjective Optimization[M]. New York:Academic Press.
    Shi, D.S.1991. Contingent derivative of the perturbation map in multiobjective optimization[J]. J.Optim. Theory Appl.,70:385-397.
    Shiraishi, S.1990. First-order and second-order ε-directional derivatives of a marginal function inconvex programming with linear inequality constraints[J]. J. Optim. Theory Appl.,66:489-502.
    Shiraishi, S.1991.ε-directional derivative of a marginal function in parametrized convexprogramming[J]. Bull. Informat. Cybern.,24:177-183.
    Song, W.1997. Conjugate duality in set-valued vector optimization[J]. J. Math. Anal. Appl.,216:265–283.
    Song, W.1998. A generalization of Fenchel duality in set-valued vector optimization[J]. Math. Meth.Oper. Res.,48:259-272.
    Song, W.2000. Vector equilibrium problems with set-valued mappings[A], in Giannessi, F.(ed.),Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer AcademicPublishers, Dordrecht,403-422.
    Song, W.2003. Weak subdifferential of set-valued mappings[J]. Optimization.,52(3):263-276.
    Taa, A.1998. Set-valued derivatives of multifunction and optimality conditions[J]. Numer. Funct.Anal. Optim.,19:121-140.
    Taa, A.2005a. Optimality conditions for vector optimization problems of a difference of convexmappings[J]. J. Glob. Optim.,31:421-436.
    Taa, A.2005b.ε-Subdifferentials of set-valued maps and ε-weak Pareto optimality formultiobjective optimization[J]. Math. Meth. Oper. Res.,62:187-209.
    Tanino, T.1992. Conjugate duality in vector optimization[J]. J. Math. Anal. Appl.167:84-97.
    Treiman, J.S.1985. Generalized gradients, Lipschitz behavior and directional derivatives[J] Can. J.Math.,37:1074-1084.
    Treiman, J.S.1986. Clarke's Gradients and epsilon-subgradients in Banach spaces[J]. Trans. Amer.Math. Soc.,294:65-78.
    Treiman, J.S.1989. Finite dimensional optimality conditions: B-gradients[J]. J. Optim. Theory Appl.,62:139-150.
    Treiman, J.S.1990. Optimal control with small generalized gradients[J]. SIAM J. Control Optim.,28:720-732.
    Ward, D.E., Lee, G.M.2001. Upper subderivatives and generalized gradients of the marginalfunction of a non-Lipschitzian program[J]. Ann. Oper. Res.101:299–312.
    Yang, X.Q.1992. A Hahn-Banach theorem in ordered linear spaces and its applications[J].Optimization,25:1-9.
    Yen, N.D., Yao, J.C.2009. Point-based sufficient conditions for metric regularity of implicitmultifunctions[J]. Nonlinear Anal.,70:2806–2815.
    Z a(linescu, C.2008. Hahn-Banach extension theorems for multifunctions revisited[J]. Math. Meth.Oper. Res.,68:493-508.
    Zowe, J.1974. Subdifferentiability of convex functions with values in an ordered vector space[J].Math. Scand.,34:69-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700