用户名: 密码: 验证码:
抗肿瘤抗生素阿嗪霉素B和氯丝菌素的生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿嗪霉素B(Azinomycin B)又叫嗜癌霉素A,是1954年由日本科学家从Streptomyces sahachiroi的发酵产物中分离得到的一种有良好的体内抗肿瘤活性和潜在的体外细胞毒活性的天然化合物。后来又从另外一种链霉菌Streptomyces griseofuscus的发酵产物中也分离得到了Azinomycin B的其它结构类似物(Azinomycins),Azinomycins的结构非常独特,含有一个奈甲酸单元,一个环氧丙烷结构,还有现知化合物中独一无二的氮杂双环(1-azabicyclo[3.1.0]-hexane ring)结构。其中Azinomycin B的活性最好,抗肿瘤活性与临床应用的丝裂霉素相当。机理是通过环氧丙烷和氮丙啶烷基化DNA的嘌呤碱基,形成链间交联,从而起到抑制细胞增殖的作用。Azinomycin B结构的不稳定性,限制了其开发利用,利用化学方法改造其结构成本高昂,组合生物合成的方法可以高效低成本的产生活性更好,结构更稳定的Azinomycin B的类似物。
     利用Ⅰ型重复使用聚酮合成酶(iterative typeⅠpolyketides, iPKS)的保守序列,设计兼并性引物,PCR扩增到Ⅰ型重复使用聚酮合成酶的DNA片段,并以之为探针筛选Azinomycin B的产生菌Streptomyces sahachiroi NRR2485的Cosmid基因组文库,克隆到了基因组上约60kb的DNA序列,生物信息学分析显示其为Azinomycin B的生物合成基因簇,包含39个开放阅读框。通过在异源宿主Streptomyces albus中单独表达aziB,得到产物5-甲基萘甲酸,共表达aziB,aziB1,aziB2得到产物3-甲氧基-5-甲基萘甲酸,从而证明了克隆的DNA序列包含Azinomycin B的生物合成基因簇。通过同源重组的方法对ORF 36进行了基因中断后,还能检测到Azinomycin B的产生。从而确定了Azinomycin B的生物合成基因簇的边界。
     氯丝菌素(Chlorothricin,CHL)是一个产生于S.antibioticus DSM40725的螺环乙酰乙酸内酯家族抗生素,该家族天然产物具有广泛生物活性(包括抗感染、抗肿瘤、抗疟和胆固醇合成抑制等),以Ⅰ型聚酮合成酶基因片段作为探针,结合染色体步移的方法克隆了S.antibioticus DSM 40725染色体上122 kb左右的完整CHL生物合成基因簇。发现在其中chlBl编码的是一个Ⅰ型重复使用聚酮合成酶。Azinomycin B生物合成基因簇中的aziB编码的也是一个Ⅰ型重复使用聚酮合成酶。ChlB1和AziB1组织结构相同,蛋白序列同源性高,但是ChlB1催化合成单环芳香化合物6-甲基水杨酸,而AziB催化合成双环的5-甲基萘甲酸。以ChlB1和AziB为对象研究Ⅰ型重复使用聚酮合成酶的催化机制,对ChlB1和AziB的脱水功能域(DH domain),酮基还原功能域(KR domain)的特异性位点突变,结果AziB的DH,KR的突变体中没有检测到可能的中间体,而在ChlB1的947的H突变成F的DH突变体,检测到6-甲基水杨酸,1540位的Y突变成F后的KR突变体产生了苔色酸(OSA),说明在Ⅰ型重复使用聚酮合成酶的催化过程中DH的功能是重要的但不是必须的,KR的功能的缺失并不影响其进一步的延伸反应。
     通过对Azinomycin B生物合成基因簇中p450羟化酶AziB1,氧甲基转移酶AziB2,非核糖体聚肽合成酶(NRPS) AziAl的体外测活研究,证明了AziB1催化的是Ⅰ型重复使用聚酮合成酶的产物5-甲基萘甲酸C-3位置的羟化,AziB2催化的是接下来氧甲基化,最后有AziA1识别3-甲氧基-5-甲基萘甲酸并以之为起始单元,起始Azinomycin B的生物合成,证明了Ⅰ型重复使用聚酮合成酶AziB产物的后修饰是发生在游离小分水平上的,而不是发生在酰基载体蛋白(ACP)连接的蛋白水平上的。
     氯丝菌素具有较好的抗菌和抗肿瘤活性,在前期的研究中发现的其Ⅰ型重复使用聚酮合成酶ChlB1产物6-甲基水杨酸的后修饰是发生在ACP连接小分子的蛋白水平上的,在这个过程中,两个酰基转运蛋白(AT) ChlB3, ChlB6的底物容忍性相对宽泛,而且在对ChlB1这一Ⅰ型重复使用聚酮合成酶的机制研究的过程中,通过点突变KR结构域的方法成功的把ChlB1这一六甲基水杨酸合成酶(6-MSAS)改造成了苔色酸合成酶(OSAS),在这些基础上,把ChlB1遗传改造来的OSAS,导入到Chlorothricin产生菌S.antibioticus DSM40725的chlB1中断的突变菌株中,得到的新的重组菌株产生了新的Chlorothricin类似物7和8,7和8显示出更高的抗菌活性。从而完成了从生物合成机制的基础研究到组合生物合成利用的一个经典过程。
Azinomycin B, also named Carzinophilin A, first isolated from Streptomyces sahachiroi by Japanese scientists in 1954, has potent antitumor activity in vivo and cytotoxicity. Then scientists isolated other Azinomycin B analogues-Azinomycins form the fermentation culture of Streptomyces griseofuscus. Azinomycins feature a set of unusual, densely assembled functionalities:a 3-methoxy-5-methyl naphthoic acid (NPA) moiety, a 2-amino-1,3-dicarbonyl group, an epoxide domain, and an unprecedented aziridino [1,2a] pyrrolidine (1-azabicyclo [3.1.0] hexane) ring system which has been the uniqueness structure in nature product. Azinomycin B has the best bioactivity among the Azinomycins. Its effect in vivo is comparable to that of the clinically used DNA ISC drug mitomycin C. Azinomycin B binds within the major groove of DNA, and forms covalent interstrand crosslinks (ISCs) with apparent sequence selectivity by electrophilic attacks of C10 and C21 onto N7 positions of purine bases. Because of the poor availability and extreme instability of Azinomycin B, extensive synthetic efforts have been carried out but very expensive to generate a number of azinomycin analogues for investigations into the structure-bioactivity relationship. Base on the research for the biosysthsis path way of Azinomycin B, Combinatorial biosynthesis of the Azinomycin B may be a economical way to produce new Azinomycin B analogues with better bioactivity and stability.
     A DNA fragment was got by PCR amplification with a general primers designed in accordance with the conservative amino acid of the iterative typeⅠpolyketides(PKS). After screening the cosmid library of the genome of the Streptomyces sahachiroi NRR2485 with the PCR product as a probe, A 60kb DNA fragment was sequenced and deduced to be the biosysthesis gene cluster of the Azinomycin B which cotains 39 ORFS. Heterogeneous expression of aziB solo in the Streptomyces albus generated 5-methyl NPA, Co-heterogeneous expression of aziB, aziBl, aziB2 produced 3-methoxy-5-methyl NPA. These results confirmed the DNA sequence we cloned take responsibility for the biosysthesis of Azinomycin B. The mutant for ORF 36 knocked out still produced Azinomycin B, indicated that ORF36 was the boundary of Azinomycin B biosysthesis gene cluster.
     Chlorothricin is a spirotetronate antibiotics produced by Streptomyces antibioticus DSM 40725. The spirotetronate antibiotics have bioactivity including anti-infection,antitumer, antimalaria, and cholesterol biosynthesis. A 122kb DNA fragment encoding the biosynthetic gene cluster of Chlorothricin was cloned form the genome withⅠtype PKS as probes, we found a iterative typeⅠpolyketides ChlB1 which has the same organization and high sequence indensity with AziB form Azinomycin B gene cluster. Surprisedly, ChlB1 synthesis signal ring product-6-Methylsalicylic acid (6-MSA), AziB synthesis two rings product 5-methyl-NPA. what is the catalysis mechanism for them? we mutanted the dehydratase(DH) domain, ketereductase(KR) domain of ChlB1 and AziB. All mutants of AziB did not produce any intermediates, but DH mutant of ChlB1 (H947F) still produced 6-MSA and KR mutant of ChlB1 (produced orsellinic acid (OSA). All these information indicated that the DH domain of the iterative typeⅠPKS is very important but not the essential and the deletion of the function of KR domain did not affect the next extension reaction.
     Over-expression of the p450 hydroxylase aziB1, the O-methyltransferase aziB2, the non-ribosomal peptide synthetase aziA1 in Ecoli BL21(DE3). We characterized that AziB1 catalyzes a regiospecific hydroxylation at C3 position of 5-methyl-NPA, and the resulting hydroxyl group can be subsequently O-methylated by AziB2 to furnish the methoxy functionality to give 3-methoxy-5-methyl NPA, then 3-methoxy-5-methyl NPA was specifically recognize/activated by the NRPS AziAl in vitro, supporting its function as a loading module to employ 3-methoxy-5-methyl-naphthoyl as the starting unit for initiating the backbone formation of azinomycin B. These dates comfirmed the functions of the aziB 1, azi B2, aziA1 and that the
     post-modification of product of iterative typeⅠpolyketides azi B occurred on the free naphthoic acids.
     Because of good antibacterial and antitumor activity, Chlorothricin was a candidate for combinatorial biosynthesis. Post-modification of product of iterative typeⅠpolyketides chlB1 occurred on the acyl carrier protein (ACP)-tethered 6-MSA.Former research work indicated that two acyltransferases(AT) chl B3,Chl B6 were less substrate specifically recognize, moreover, during study the mechanism of iterative typeⅠpolyketides, we successfully changed the 6-Methylsalicylic acid synthase (6-MSAS) Chl B1 to orsellinic acid synthase (OSAS). This KR mutant chl B1 was introduced in the chl Bl knocked out mutant of Streptomyces antibioticus DSM 40725, surprisedly,this new mutant produced two new Chlorothricin analogues 7 and 8which have improved bioactivity.
引文
1.戴纪刚等《中华医史杂志》1999,29卷,第2期
    2. Raper, K. B. The third International Symposium on the Genetics of Industrial Microorganisms, Madison, Wisconsin.1978,44,645-653
    3. Byford,M.F., Baldwin, J.E., Shiau C.Y., and Schofield, C.J. The Mechanism of ACV Synthetase. Chem. Rev.1997,97,2631-2649
    4. Staunton, J. Biosynthesis of Erythromycin and Rapamycin. Chem. Rev.1997,97, 2611-2629
    5. Galm,U., Hager, M.H., Van Lanen, S.G., Ju, J., Thorson, J.S., and Shen, B. Antitumor Antibiotics:Bleomycin, Enediynes, and Mitomycin, Chem. Rev.2005,105,739-758
    6. Hutchinson, C.R. Biosynthetic Studies of Daunorubicin and Tetracenomycin C. Chem. Rev.1997,97,2525-2535
    7. Ikeda, H., and Ohmura, S. Avermectin Biosynthesis. Chem. Rev.1997,97,2591-2609
    8. Dittmann, J., Wenger, R.M., Kleinkauf, H., and Lawen, A. Mechanism of cyclosporin A biosynthesis. Evidence for synthesis via a single linear undecapeptide precursor, J. Biol.Chem.1994,269,2841-2846
    9. Cragg, G. M., Newman, D. J., Snader, K. M. Natural Products in Drug Discovery and Development. J. Nat. Prod.1997,60,52-60
    10. Newman, D. J., Cragg, G. M., Snader, K. M. Natural Products as Sources of New Drugs over the Period 1981-2002. J. Nat. Prod.2003,66,1022-1037
    11. Newman, D. J. Natural Products as Leads to Potential Drugs:An Old Process or the New Hope for Drug Discovery? J. Med. Chem.,2008,51,2589-2599
    12. Butler, M.S. Natural products to drugs:natural product derived compounds in clinical trials. Nat. Prod. Rep.2005,22,162-195
    13. Hopwood, D.A. Genetic Contributions to Understanding Polyketide Synthases. Chem. Rev.1997,97,2465-2498
    14. Shen B. Polyketide biosynthesis beyond the type Ⅰ,Ⅱ, and Ⅲ polyketide synthase paradigms. Curr.Opion. Chem. Biol.2003,7,285-295
    15. Shen, B. Biosynthesis of aromatic polyketides. Topics Curr. Chem.2000,209 1-51
    16. Moore, B. S., Hopke, J. N. Discovery of a new bacterial polyketide biosynthetic pathway. ChemBioChem 2001,2,35-38
    17. Schwarzer, D., Finking, R., Marahiel, M. A. Nonribosomal peptides:from genes to products. Nat. Prod. Rep.2003,20,275-287
    18. Bruner, S.D. Structural Basis for the Cyclization of the Lipopeptide Antibiotic Surfactin by the Thioesterase Domain SrfTE. Structure,2002,10,301-310
    19. Du, L., Cheng, Y.Q., Ingenhorst, G., Tang, G.-L., Huang, Y, Shen, B. "Hybrid peptide-polyketide natural products:biosynthesis and prospects towards engineering novel molecules" in Genetic Engineering, Principle and Methods, Setlow, J. K. ed., Kluwer Academic/Plenum Publishers,2003,25,227-267
    20. Molnar, I., Schupp, T., Ono, M., Zirkle, R. E., Milnamow, M., Nowak-Thompson, B., Engel, N., Toupet, C., Stratmann, A., Cyr, D. D., Gorlach, J., Mayo, J. M., Hu, A., Goff, S., Schmid, J., Ligon, J. M. The biosynthetic gene cluster for the microtubule-stabilizing agents ecpthilones A and B from Sorangium cellulosum Soce90. Chem. Biol.2000,7, 97-109
    21. Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C., Julien, B. Cloning and heterologous expression of an epothilone gene cluster. Science 2000,287,640-642
    22. Chen, H., O'Connor, S., Cane, D. E., Walsh, C. T. Epothilone biosynthesis:assembley of the methylthiazolylcarboxy starter unit on the EpoB subunit. Chem. Biol.2001,8, 899-912
    23. O'Connor, S., Chen, H., Walsh, C. T. Enzymatic assembly of epothilones:the EpoC subunit and reconstitution of the EpoA-ACP/B/C polyketide and nonribosomal peptide interfaces. Biochemistry 2002,41,5685-5694
    24. Schneider, T. L., Walsh, C. T., O'Connor, S. Utilization of alternate substrates by the first three modules of the epothilone synthetase assembly line. J. Am. Chem. Soc.2002,124, 11272-11273
    25. Frykman, S., Tsuruta, H., Lau, J., Regentin, R., Ou, S., Reeves, C., Carney, J., Santi, D., Licari, P. Modulation of epothilone analog production through media design. J. Ind. Microbiol. Biotechnol.2002,28,17-20
    26. Liu, W, Christenson, S.D., Standage, S., Shen, B. Biosynthesis of enediyne antirumor antibiotic C-1027. Science 2002,297,1170-1173
    27. Ahlert, J., Shepard, E., Lomovskaya, N., Zazopoulos, E., Staffa, A., Bachmann, B. O., Huang, K., Fonstein, L., Czisny, A., Wjitwam, R. E., Farnet, C. M., Thorson, J. S. The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 2002,297, 1173-1176
    28. Tang, G-L., Cheng, Y.-Q., Shen, B. The biosynthetic gene cluster of the antitumor antibiotic leinamycin from streptomycus atroolivaceus S-140 revealing unprecedented
    architectural complexity for a hybrid non-ribosomal peptide and polyketide synthetase. Chem. Biol.2004,11,33-45
    29. Cheng, Y.-Q., Tang, G-L., Shen, B. Type Ⅰ polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc. Natl. Acad. Sci. USA.2002,100, 3149-3154
    30. Kwon, H. J., Smith, W. C, Scharon, A. J., Hwang, S. H., Kurth, M. J., Shen, B. C-O bond formation by polyketide synthases. Science 2002,297,1327-1330
    31. Mootz, H. D., Schwarzer, D., Marahiel, M. A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 2002,3,490-504
    32. May, J. J., Wendrich, T. M., Marahiel, M. A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 2001,276,7209-7217
    33. Keating, T. A., Marshall, C. G, Walsh, C.T. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. Biochemistry 2000,39,15513-15521
    34. Keating, T. A., Marshall, C. G, Walsh, C.T. Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 2000,39,15522-15553
    35. Rix, U., Fischer, C., Reming, L. L., Rohr, J. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep.2002,19,542-580
    36. Walsh, C. T., Chen, H., Keating, T. A., Hubbard, B. K., Losey, H. C., Luo, L., Marshall, C. G, Ann Miller, D., Patel, H. M. Tailoring enzymes that modify nonrombosomal peptides during and after chain elongation on NRPS assembly lines. Curr. Opin. Chem. Biol.2001,5,525-534
    37. Lamb, D.C., Waterman,M.R., Kelly, S.L., and Guengerich, F.P. Cytochromes P450 and drug discovery. Curr. Opin. Biotechnol.2007,18,504-512
    38. Rein, K.S., and Borrone, J. Polyketides from dinoflagellates:Origins, pharmacology and biosynthesis. Comp. Biochem. Physiol.1999,124,117-131
    39. Poppe, L., and Novak, L. Selective Biocatalysis-a Synthetic Approach, VCH, Weinheim, 1992.
    40. Walsh, C.T. Enzymatic Reaction Mechanism,1979,309-522
    41. Sono, M., and Dawson, J.H. Heme-Containing Oxygenases. Chem. Rev.1996,96, 2841-2887
    42. Cerny, M.A., and Hanzlik, R.P. Cytochrome P450-Catalyzed Oxidation of N-Benzyl-N-cyclopropylamine Generates Both Cyclopropanone Hydrate and 3-Hydroxypropionaldehyde via Hydrogen Abstraction, Not Single Electron Transfer. J. Am. Chem. Soc.2006,128,3346-3354
    43. Sansen, T., Stout, C.D., and Johnson. E.F. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited by the Structure of Human P450 1A2. J. Biol. Chem. 2007,282,14348-14355
    44. Andenen, O.F., and Hutchinson, C.R. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 1993,32,1905-1913.
    45. Lambalot, R.H., and Cane, D.E. Overproduction and characterization of the erythromycin C-12 hydroxylase, EryK. Biochemistry 1995,34,1858-1866
    46. Mendes, M.V., Recio, E., Fouces, R., Luiten, R., Marti'n, J.F., and Aparicio, J.F. Engineered biosynthesis of novel polyenes:a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem. Biol.2001,8,635-644
    47. Mendes, M. V., Ant_on, N., Marti'n J. F.,and J. F. Aparicio, J.F. Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Biochem. J.2005,386,57-62
    48. Filippini, S., Solinas, M.M., Breme, U., Schluter, M.B., Gabellini, D., Biamonti, G., Colombo, A.L., and Garofano, L. streptomyces peucetius daunorubicin biosynthesis gene dnrF sequence and heterologous expression. Microbiol.1995,141,1007-1016
    49. Fujii, I., Chen, Z., Ebizuka, Y., and Sankawa, U. Identification of emodinanthrone oxygenase in fungus Aspergillus terreus. Biochem. Int.1991,25,1043-1049
    50. Prado, L., Fernandez, E., Weibach, U., Blanco, G., Quiros, L.M., Brana, A.F., Mendez, C., Rohr, J., and Salas, J.A. Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin. Chem. Biol.1998,6,19-30
    51. Fujii, I., Iijima, H., Tsukita, S., Ebizuka Y., and Sankawa, U. Purification and Properties of Dihydrogeodin Oxidase from Aspergillus terreus. Biochem.1987,101,11-18
    52. Huang, K.X., Fujii, I., Ebizuka, Y., Gomi K., and Sankawa, U. Molecular cloning and heterologous expression of the gene encoding dihydrogeodin oxidase:a multicopper blue enzyme from Aspergillus terreus. J. Biol. Chem.1995,270,21495-21502
    53. Miyairi, N., Sakai, H., Konomi, T., Imanaka, H., Enterocin, a new antibiotic taxonomy, isolation and characterization. J. Antibiot.1976,29,227-235
    54. Piel, J., Hertweck, C., Shipley, P.R., Hunt, D.M., Newman, M.S., and Moore, B.S.
    Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate "Streptomyces maritimus":evidence for the derailment of an aromatic polyketide synthase. Chem. Biol.2000,7,943-955
    55. Moore B.S., and Piel, J. Engineering biodiversity with type Ⅱ polyketide synthase genes. Antonie Van Leeuwenhoek 2000,78,391-398
    56. Itoh, T., Taguchi, T., Kimberley, M.R., Booker-Milburn, K.I., Stephenson, G.R., Ebizuka Y., and Ichinose, K. Biochemistry 2007,46,8181-8188
    57. Taguchi, T., Itou, K., Ebizuka, Y., Malpartida, F., Hopwood, D.A., Surti, C.M., Booker-Milburn, K.I., Stephenson G.R., and Ichinose, K. Chemical.17 characterisation of disruptants of the Streptomyces coelicolor A3 (2) actⅥ genes.18 involved in actinorhodin biosynthesis. J. Antibiot.2000,53,144-152.
    58. Staunton J., and Weissman, K.J. Polyketide biosynthesis:a millenium review. Nat. Prod. Rep.2001,18,380-416
    59. Moss, S.J., Martin C.J., and Wilkinson, B. Loss of co-linearity by modular polyketide synthases:a mechanism for the evolution of chemical diversity. Nat. Prod. Rep.2004,21, 575-593
    60. Gokhale, R.S., Sankaranarayanan, R., and Mohanty, D. Versatility of polyketide synthases in generating metabolic diversity. Curr. Opin. Struct. Biol.2007,17,736-743
    61. Van Lanen S.G., and Shen, B. Advances in polyketide synthase structure and function. Curr. Opin. Drug Discov. Devel.2008,11,186-195
    62. Itoh, T., Taguchi, T., Kimberley, M.R., Booker-Milburn, K. I., Stephenson, G.R., Ebizuka, Y., and Ichinose, K. Actinorhodin Biosynthesis:Structural Requirements for Post-PKS Tailoring Intermediates Revealed by Functional Analysis of ActⅥ-ORF1 Reductase. Biochemistry 2007,46,8181-8188.
    63. Taguchi, T., Itou, K., Ebizuka, Y., Malpartida, F., Hopwood, D.A., Surti, C.M., Booker-Milburn, K.I., Stephenson, G.R., and Ichinose, K. Chemical characterisation of disruptants of the Streptomyces coelicolor A3 (2) actⅥ genes involved in actinorhodin biosynthesis. J. Antibiot.2000,53,144-152.
    64. Oja, T., Palmu, K., Lehmussola, H., Lepparanta, O., Hannikainen, K., Niemi, J., Mantsala, P., and Metsa-Ketela, M. Characterization of the Alnumycin Gene Cluster Reveals Unusual Gene Products for Pyran Ring Formation and Dioxan Biosynthesis. Chem. Biol.2008,15,1046-1057
    65. Korman, T.P., Hill, J.A., Vu, T.N., and Tsai, S.C. Structural Analysis of Actinorhodin Polyketide Ketoreductase:Cofactor Binding and Substrate Specificity.Biochemistry 2004, 43,14529-14538
    66. Korman, T.P., Tan, Y.H., Wong, J., Luo, R., and Tsai, S.C. Inhibition kinetics and emodin cocrystal structure of a type Ⅱ polyketide ketoreductase. Biochemistry 2008,47, 1837-1847.
    67. Weymouth-Wilson. A.C. The role of carbohydrates in biologically active natural products. Natural Product Reports 1997,14,99-110
    68. Blanchard, S., and Thorson, J.S. Enzymatic tools for engineering natural product glycosylation. Current Opinion in Chemical Biology2006,10,263-271
    69. Salas J.A., and Mendez, C. Engineering the glycosylation of natural products in actinomycetes. TRENDS in Microbiology 2007,15,219-232
    70. He, X., Agnihotri, G., and Liu, H.W. Novel enzymatic mechanisms in carbohydrate metabolism. Chem. Rev.2000,100,4615-4661
    71. He, X., and Liu, H.W. Formation of unusual sugars:mechanistic studies and biosynthetic applications. Annu. Rev. Biochem.2002,71,701-754
    72. Hallis, T. M., and Liu, H.W. Learning Nature's strategies for making deoxy sugars: pathways, mechanisms, and combinatorial applications. Acc. Chem. Res.1999,32, 579-588
    73. He, X., and Liu, H.W. Mechanisms of enzymatic C-O bond cleavages in deoxyhexose biosynthesis. Curr. Opin. Chem. Biol.2002,6,590-597
    74. Mulichak, A.M., Walsh, C.T., and Garavito, R.M. Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc. Natl. Acad. Sci. USA.2003,100,9238-9243
    75. Mittler, M., Bechthold, A., and Schulz, G.E. Structure and Action of the C-C Bond-forming Glycosyltransferase UrdGT2 Involved in the Biosynthesis of the Antibiotic Urdamycin.J. Mol. Biol.2007,372,67-76
    76. Jansson, A., Koskiniemi, H. et al. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis with bound products. J. Biol. Chem. 2004,279,41149-41156
    77. Ishida, K., Fritzsche, K., and Hertweck, C. Geminal Tandem C-Methylation in the Discoid Resistomycin Pathway. J. Am. Chem. Soc.2007,129,12648-12649
    78. Zhou, Z.S., Zhao, G., and Wan, W. in Frontiers of Biotechnology & Pharmaceuticals, ed. H. Zhen, G. Ming and J. Reiner, Science Press, New York,2001, vol.2, pp.199-217
    79. Rix, U., Fischer, C, Remsing, L.L., and Rohr, J. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep.2002,19,542-580
    80. Menendez, N.M., Alam, N.E., Brana, A.F., Rohr, J., Salas, J.A., and Mendez, C.M. Tryptophan recycling is responsible for the interferon-γ resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells. Mol. Microbiol.2004, 53,903-915
    81. Menendez, N.M., Brana, A. F., Salas, J.A., and Mendez, C.M. Involvement of a chromomycin ABC transporter system in secretion of a deacetylated precursor during chromomycin biosynthesis. Microbiology 2007,153,3061-3070
    82. Ghatge,M.S., Palaniappan, N., Alhamadsheh, M.M., Bari, J.D., and Reynolds, K.A. Application of a Newly Identified and Characterized 18-O-Acyltransferase in Chemoenzymatic Synthesis of Selected Natural and Nonnatural Bioactive Derivatives of Phoslactomycins. Appl. Environ. Microbiol.2009,75,3469-3476
    83. Haagen, Y., Glauk, K., Fay, K., Kammerer, B., Gust, B., and Heide, L. A Gene Cluster for Prenylated Naphthoquinone and Prenylated Phenazine Biosynthesis in Streptomyces cinnamonensis DSM1042. ChemBioChem 2006,7,2016-2027
    84. Liang, P.H., Ko, T.P., and Wang, A.H. Structure, mechanism, and function of prenyltransferases. Eur. J. Biochem.2002,269,3339-3354.
    85. Thulasiram, H.V., Erickson, H.K., and Poulter, C.D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science,2007, 316,73-76
    86. O'Maille, P.E., Malone, A., Dellas, N., BJr, A.H., Smentek, L., Sheehan, I., Greenhagen, B.T., Chappell, J., Manning, G., and Noel, J.P. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chem. Biol.2008,4, 617-623
    87. Saleh, O., Haagen, Y., Seeger, K., and Heide, L. ChemInform Abstract:Prenyl Transfer to Aromatic Substrates in the Biosynthesis of Aminocoumarins, Meroterpenoids and Phenazines:The ABBA Prenyltransferase Family. Phytochemistry 2009,70,1728-1738
    88. Kuzuyama, T., Noel, J.P., and Richard, S.B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature,2005,435,983-987
    89. Tello, M., Kuzuyama, T., Heide, L., Noel, J.P., and Richard, S.B. The ABBA family of aromatic prenyltransferases:broadening natural product diversity. Mol. Life Sci.2008, 65,1459-1463
    90. Kumano,T., Richard, S.B., Noel, J.P., Nishiyama, M., and Kuzuyama, T. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities. Bioorg. Med. Chem.2008,16, 8117-8126
    91. Wang, Q., Xia, J., Guallar, V., Krilov, G., and Kantrowitz, E.R. Mechanism of thermal decomposition of carbamoyl phosphate and its stabilization by aspartate and ornithine transcarbamoylases. Proc.Natl. Acad. Sci. USA.2008,105,16918-16923
    92. Spiteller, P., Bai, L., Shang, G., Carroll, B.J., Yu, W., and Floss, H.G. The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J. Am. Chem. Soc.2003,125,14236-14237
    93. Salas, J.A., and Mendez, C. Biosynthesis pathways for deoxysugars in antibiotic-producing actinomycetes:isolation, characterization and generation of novel glycosylated derivatives. J. Mol. Microbiol. Biotechnol.2005,9,77-85
    94. Salas,J.A., and Mendez, C. Indolocarbazole antitumour compounds by combinatorial biosynthesis. Curr. Opin. Chem. Biol.2009,13,152-160
    95. Mendez, C., and Salas, J.A. Engineering glycosylation in bioactive compounds by combinatorial biosynthesis. Ernst Schering Res. Found. Workshop 2005,51,127-146.
    96. Mendez, C., Luzhetskyy, A., Bechthold, A., and Salas, J.A. Glycosyl-transferases, important tools for drug design. Curr. Top.Med. Chem.2008,8,710-724
    97. Nedal, A., and Zotchev, S.B. Biosynthesis of deoxyaminosugars in antibiotic-producing bacteria. Appl. Microbiol. Biotechnol.2004,64,7-15
    98. Seco, E.M., Miranzo, D., Nieto, C., and Malpartida, F. The pcsA gene from Streptomyces diastaticus var.108 encodes a polyene carboxamide synthase with broad substrate specificity for polyene amides biosynthesis. Appl.Microbiol. Biotechnol.2010, 85,1797-1807
    99. Gao, P., and Huang, Y. Detection, distribution, and organohalogen compound discovery implications of the reduced flavin adenine dinucleotide-dependent halogenase gene in major filamentous actinomycete taxonomic groups. Appl. Environ. Microbiol,2009,75, 4813-4820
    100.Neumann, C.S., Fujimori, D.G., and Walsh,C.T. Halogenation strategies in natural product biosynthesis. Chem. Biol.2008,15,99-109
    101.van Pee, K.H., and Patallo, E.P. Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl. Microbiol. Biotechnol.2006,70,631-641
    102.David, O.H., Christoph, S., et al. Biochemistry/Biosynthesis of an organofluorine molecule. Nature 2002,416,279
    103.Dong, C., Huang, F., et al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 2004,427,561-565
    104.Deng, H., Cobb, S. L., et al., The Fluorinase from Streptomyces cattleya Is Also a Chlorinase. Angew. Chem., Int. Ed.2006,45,759-762
    105.Eustaquiol, A.S., Pojer, F., et al., Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat. Chem. Bio.2008,4,69-74
    106.Hohaus, K., Altmann,A., et al., Purification and Partial Characterization of Tryptophan 7-Halogenase (PrnA) from Pseudomonas fluorescens. Angew. Chem. Int. Ed.2000,39, 2300-2302
    107.Yeh, E., Garneau, S., et al., Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycinbiosynthesis. Proc. Natl. Acad. Sci.USA.2005,102,3960-3965
    108.Dong, C., Flecks, S., et al., Tryptophan 7-Halogenase (PrnA) Structure Suggests a Mechanism for Regioselective Chlorination.Science 2005,309,2216-2219
    109.Dorrestein, P.C., Yeh,E., et al., Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc. Natl. Acad. Sci.USA.2005,102,13843-13848
    110.Li, S.,Van Lanen, S.G, Shen, B., et al., Regiospecific Chlorination of (S)-β-Tyrosyl-S-Carrier Protein Catalyzed by SgcC3 in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. J. Am. Chem. Soc.2007,129,12432-12438
    111.Galonie, D. P., Vaillancourt, F.H., et al., Halogenation of Unactivated Carbon Centers in Natural Product Biosynthesis:Trichlorination of Leucine during Barbamide Biosynthesis. J. Am. Chem. Soc.2006,128,3900-3901
    112.Wichard,T., Pohnert,G., et al., Formation of Halogenated Medium Chain Hydrocarbons by a Lipoxygenase/Hydroperoxide Halolyase-Mediated Transformation in Planktonic Microalgae. J. Am. Chem. Soc.2006,128,7114-7115
    113.Seco, E.M., Fotso, S., Laatsch, H., and Malpartida, F. A tailoring activity is responsible for generating polyene amide derivatives in Streptomyces diastaticus var. 108. Chem. Biol.2005,12,1093-1101
    114.Kopp.F., and Marahiel, M. A. Where chemistry meets biology:the chemoenzymatic peptides and polyketides. Curr. Opin. Biotechnol. 2007,18,513-520.
    115.Kotowska, M., Pawlik, K., Smulczyk-Krawczyszyn, A., Bartosz-Bechowski, H., and Kuczek, K. Type Ⅱ thioesterase ScoT, associated with Streptomyces coelicolor A3(2) modular polyketide synthase Cpk, hydrolyzes acyl residues and has a preference for propionate. Appl. Environ. Microbiol. 2009,75,887-896.
    116.Zhou, Y., Meng, Q., You, D., Li, J., Chen, S.,Ding, D., Zhou,X., Zhou, H., Bai, L., and Deng, Z.X. Selective removal of aberrant extender units by a type II thioesterase for efficient FR-008/candicidin biosynthesis in Streptomyces sp. strain FR-008. Appl. Environ. Microbiol.2008,74,7235-7242
    117.Harvey, B.M., Hong, H., Jones, M.A., Hughes-Thomas, Z.A., Goss, R.M., Heathcote, M.L., Bolanos-Garcia, V.M., Kroutil, W., Staunton, J., Leadlay, P.F., and Spencer, J.B., Evidence that a novel thioesterase is responsible for polyketide chain release during biosynthesis of the polyether ionophore monensin. ChemBioChem 2006,7,1435-1442.
    118.He, J., Muller, M., and Hertweck, C. Formation of the Aureothin Tetrahydrofuran Ring by a Bifunctional Cytochrome P450 Oxygenase. J. Am. Chem. Soc.2004,126, 16742-16743.
    119.Floss, H.G. Combinatorial biosynthesis -potential and problem. Journal of Biotechnology 2006,124,242-257
    12O.Weissman, K.J., and Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. Nature Reviews Microbiology 2005,3,925-936
    121.Baltz, R.H. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nature Biotechnology 2006,24,1533-1540
    122.Cane, D.E., Walsh, C.T., and Khosla, C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science,1998,282,63-68
    123.Clardy, J., Fischbach, M.A., and Walsh, C.T., New antibiotics from bacterial natural products. Nature Biotechnology 2006,24,1541-1550
    124.Fischbach, M.A., and Walsh, C.T. Directing biosynthesis. Science,2006,314,603-605
    125.Wilkinson, B., and Micklefield, J., Mining and engineering natural-product biosynthetic pathways. Nature Chemical Biology,2007,3,379-386
    126.Galm, U., and Shen, B. Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. Expert Opinion on Drug Discovery 2006,1,409-437
    127.Hutchinson, C.R., Borell, C.W., Otten, S.L. et al. A perspective on drug discovery and development through the genetic engineering of antibiotic-producing microorganisms. Journal of Medicinal Chemistry 1989,32:929-937
    128.Hutchinson, C.R., and Fujii, I. Polyketide synthase gene manipulation:a structure-function approach in engineering novel antibiotics. Annual Review of Microbiology 1995,49,201-238
    129.Kennedy, J., and Hutchinson, C.R. Nurturing nature:engineering new antibiotics. Nature Biotechnology 1999,17,538-539
    130.Khosla, C. Combinatorial chemistry and biology:an opportunity for engineers. Current Opinion in Biotechnology 1996,7,219-222
    131.Khosla, C. Harnessing the biosynthetic potential of modular polyketide synthases. Chemical Reviews 1997,97,2577-2590
    132.Khosla, C. and Keasling, J.D. Metabolic engineering for drug discovery and development. Nature Reviews. Drug Discovery 2003,2,1019-1025
    133.Kittendorf, J.D., and Sherman, D.H. Developing tools for engineering hybrid polyketide synthetic pathways. Current Opinion in Biotechnology 2006,17,597-605
    134.Menzella, H.G., and Reeves, C.D. Combinatorial biosynthesis for drug development. Current Opinion in Microbiology 2007,10,238-245
    135.Mootz, H.D., Schwarzer, D., and Marahiel, M.A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 2002,3,490-504
    136.Salas, J.A., and Mendez, C. Engineering the glycosylation of natural products in actinomycetes. Trends in Microbiology 2007,15,219-232
    137.Shen, B. Polyketide biosynthesis beyond the type Ⅰ, Ⅱ and Ⅲ polyketide synthase paradigms. Current Opinion in Chemical Biology 2003,7:285-295
    138.Shen, B., Liu, W., and Nonaka, K. Enediyne natural products:biosynthesis and prospect towards engineering novel antitumor agents. Current Medicinal Chemistry 2003,10,2317-2320
    139.Staunton, J., and Weissman, K.J. Polyketide biosynthesis:a millennium review. Natural Product Reports 2001,18,380-416
    140.Staunton, J., and Wilkinson, B. Combinatorial biosynthesis of polyketides and nonribosomal peptides. Current Opinion in Chemical Biology,2001,5,159-164
    141.Strohl,W.R. Biochemical engineering of natural product biosynthesis pathways. Metabolic Engineering 2001,3,4-14
    142.Thomas, M.G., Bixby, K.A., and Shen, B. Combinatorial biosynthesis of anticancer natural products, in Anticancer Agents from Natural Products (eds G.M. Cragg, D.G.I. Kingston and D.J. Newman), CRC Press, Boca Raton, FL,2005, pp.519-551.
    143.Van Lanen, S.G., and Shen, B. Microbial genomics for the improvement of natural product discovery. Current Opinion in Microbiology 2006,9,252-260
    144.Van Lanen, S.G. and Shen, B. Progress in combinatorial biosynthesis for drug discovery. Drug Discovery Today:Technologies 2006,3,285-292
    145.Walsh, C.T. Combinatorial biosynthesis of antibiotics:challenges and opportunities. ChemBioChem 2002,3,125-134.
    146.Walsh, C.T. Polyketide and nonribosomal peptide antibiotics:modularity and versatility. Science 2004,303,1805-1810
    147.European pharmacopoeia,3rd ed. European Directorate for the Quality of Medicines and HealthCare,1997. Strasbourg, France.
    148.Ikeda, H., and Omura, S. Avermectin biosynthesis. Chemical Review 1997,97, 2591-2610
    149.Mazodier, H., Petter, R., Thompson, C. Intergeneric conjugation between Escherichia and Streptomyces species. J. Bacteriol.1989,171,3583-3585
    150.Chater K.F., and Wilde L.C. Streptomyces albus G mutants defective in the SalGI restriction-modification system. J. Gen. Microbiol.1980,116,323-334.
    151.Ta, T., Koga, F., Sano, Y., Kanamori, K., Matsumae, A., Sunagawa, R., Hoshi, T., Shima, T., Ito, S., and Tomizawa, S. Carzinophilin, a new tumor inhibitory substance produced by streptomycyes, Ⅰ. J. Antibiot.1954,7A,107-112
    152.Yokoi, K., Nagaoka, K., and Nakashima, T. Azinomycins A and B, new antitumor antibiotics. Ⅱ:Chemical structures, Chem. Pharm. Bull.1986,34,4554-4561
    153.Lown, J.W., and Majumdar, K.C. Studies related to antitumor antibiotics. Part Ⅸ. Reactions of carzinophillin with DNA assayed by ethidium fluorescence. Can. J. Biochem.1977,55,630-635
    154.Armstrong, R.W., Salvati, M.E., and Nguyen, M. Novel interstrand cross-links induced by the antitumor antibiotic carzinophilin/azinomycin B. J. Am. Chem. Soc.1992,114, 3144-3145
    155.Fujiwara, T., Saito, I., and Sugiyama, H. Highly efficient DNA interstrand crosslinking induced by an antitumor antibiotic, carzinophilin. Tetrahedron Lett.1999,40,315-318
    156.Alcaro, S., and Coleman, R.S. A molecular model for DNA cross-linking by the antitumor agent azinomycin B. J. Med. Chem.2000,43,2783-2788
    157.Zang, H., and Gates, K.S. DNA binding and alkylation by the "Left Half" of azinomycin B. Biochemistry 2000,39,14968-14975
    158.Hartley, J.A., Hazrati, A., Kelland, L.R., Khanim, R., Shipman, M., Suzene,t F., and Walker LF. A synthetic azinomycin analogue with demonstrated DNA cross-Linking activity:insights into the mechanism of action of this class of antitumor agent. Angew. Chem. Int. Engl.2000,39,3467-3470
    159.Coleman, R.S., Perez, R.J., BurK, C.H., and Nacarro, A. Studies on the Mechanism of Action of Azinomycin B:Definition of regioselectivity and sequence selectivity of DNA cross-Link formation and clarification of the role of the naphthoate.J. Am. Chem. Soc. 2002,124,13008-13017
    160.LaPla, R.C., Landreau, C.A.S., Shipman, M., and Johes, J.D.D. On the origin of the DNA sequence selectivity of the azinomycins. Org. Biomol. Chem.2005,3,1174-1175
    161.Kelly, G.T., Liu, C., Smith Ⅲ, R., Coleman, R.S., and Watanabe, C.M.H. Cellular effects induced by the antitumor agent azinomycin B. Chem. Biol.2006,13,485-492
    162.Shimada, N., Uekusa, M., Denda, T., Ishii, Y., Iizuka, T., Sato, Y, Hatori, T., Fukui, M., and Sudo, M. Clinical studies of carzinophilin, an antitumor substance. J. Antibiot.1955, 8,67-76
    163.Coleman, R.S., and Li, J., and Navarro, A. Total synthesis of azinomycin AAngew. Chem. Int. Engl.2001,40,1736-1739
    164.Hodgkinson, T.J., Kelland, L.R., Shipman, M., and Suzenet, F. Chemical synthesis and cytotoxicity of some azinomycin analogues devoid of the 1-azabicyclo[3.1.0]hexane subunit. Bioorg. Med. Chem Lett.2000,10,239-241
    165.Alcaro, S., Ortuso, F., and Coleman, R.S. DNA cross-linking by azinomycin B:Monte Carlo simulations in the evaluation of sequence selectivity.J. Med. Chem.2002,45, 861-870
    166.Miyashita, K., Park, M., Adachi, S., Seki, S., Obika, S., and Imanishi, K. A 3,4-Epoxypiperidine structure as a novel and simple DNA-cleavage unite. Bioorg. Med. Chem. Lett.2002,12,1075-1077
    167.Alcaro, S., Ortuso, F., and Coleman, R.S. Molecular modeling of DNA cross-linking analogues based on the azinomycin scaffold. J. Chem. Inf. Model.2005,45,602-609
    168.Casely-Hayford, M.A., Pors, K., James, C.H., Patterson, L.H., Hartley, J.A., and Searcey, M. Design and synthesis of a DNA-crosslinking azinomycin analogue. Org. Biomol. Chem.2005,3,3585-3589
    169.LaPla, R.C., Landreau, C.A.S., Shipman, M., Hartley, J.A., and Johes, J.D.D. Azinomycin inspired bisepoxides:influence of linker structure on in vitro cytotoxicity and DNA interstrand cross-linking. Bioorg. Med. Chem. Lett.2005,15,2861-2864
    170.David-Cordonnier, M.H., Casely-Hayford, M., Kouach, M., Briand, G., Patterson, L.H., Bailly, C., et al. Stereoselectivity, sequence specificity and mechanism of action of the azinomycin epoxide. ChemBioChem 2006,7,1658-1661
    171.Coleman, R.S., Tierney, M.T., Cortright, S.B., and Carper, D.J. Synthesis of functional "Top-Half" partial structures of azinomycin A and B. J. Org. Chem.2007,72,
    7726-7735
    172.Coleman, R.S., Woodward, R.L., Hayes, A.M., Crane, E.A., Artese, A., Ortuso, F., et al. Dependence of DNA sequence selectivity and cell cytotoxicity on azinomycin A and B epoxyamide stereochemistry. Org. Lett.2007,9,1891-1894
    173.Corre, C, and Lowden, P.A. The first biosynthetic studies of the azinomycins:acetate incorporation into azinomycin B. Chem. Commun.2004,8,990-991.
    174.Corre, C, Landreau, C.A., Shipman, M., and Lowden, P.A. Biosynthetic studies on the azinomycins:The pathway to the naphthoate fragment. Chem. Commun.2004,22, 2600-2601.
    175.D'Amelio, N., Gaggelli, E., Mlynarz, P., Molteni, E., Valensin, G, LubitzFusarin, W. biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 2004,5, 1196-1203
    176.Sthapit, B., Oh, T.J., Lamichhane, R., Liou, K., Lee, H.C., Kim, C-G, Sohng, J.K. Neocarzinostatin naphthoate synthase:an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Letters 2004,566, 201-206
    177.Otsuka, M., Ichinose, K., Fujii, I., and Ebizuka Y. Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in "Streptomyces carzinostaticus. Antimicrob Agents Chemother.2004,48,3468-3476
    178.Liu, W., Christenson, S.D., Standage, S., Shen, B. Biosynthesis of enediyne antitumor antibiotic C-1027. Science 2002,297,1170-1173;
    179.Ahlert, J., Shepard, E., Lomovskaya, N., Zazopoulos, E., Staffa, A., Bachmann, B. O., Huang, K., Fonstein, L., Czisny, A., Wjitwam, R. E., Farnet, C. M., Thorson, J. S. The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 2002,297, 1173-1176
    180.Gaisser, S., Trefzer, A., Stockert, S., Kirschning, A., Bechthold, A. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tu57. J. Bacteriol 1997,179,6271-6278
    181.Zhao, Q., He, Q., Ding, W., Tang, M., Kang, Q., Yu, Y, Deng, W., Zhang, Q., Fang,J., Tang, G, and Liu W. Characterization of the Azinomycin B Biosynthetic Gene Cluster Revealing a Different Iterative Type I Polyketide Synthase for Naphthoate Biosynthesis, Chem. Biol.2008,15,693-705
    182.Jia, X., Tian, Z., Shao, L., Qu, X., Zhao, Q., Tang, J., Tang, G., and Liu, W. Genetic Characterization of the Chlorothricin Gene Cluster as a Model for Spirotetronate Antibiotic Biosynthesis. Chem. Biol.2006,13,575-585
    183. Huang, W.J., Jia,J., et al, Crystal structure of beta-ketoacyl-acyl carrier protein synthase Ⅱ from E.coli reveals the molecular architecture of condensing enzymes. EMBO.J.1998,1183-1191
    184. Funa, N., Ozawa,H., et al, Phenolic lipid synthesis by type Ⅲ polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci, USA.2006, 103,6356-6361
    185. Zhu, X.C., Yu, F.G., et al., Production of Dihydroisocoumarins in Fusarium verticillioides by Swapping Ketosynthase Domain of the Fungal Iterative Polyketide Synthase Fumlp with That of Lovastatin Diketide Synthase. J. Am. Chem. Soc.2007, 129,36-37
    186. Chen, A.Y., Schnarr, N.A., et al., Extender Unit and Acyl Carrier Protein Specificity of Ketosynthase Domains of the 6-Deoxyerythronolide B Synthase. J. Am. Chem. Soc. 2006,128,3067-3074
    187. Jacobsen, J.R., Cane, D.E., et al., Spontaneous priming of a downstream module in 6-deoxyerythronolide B synthase leads to polyketide biosynthesis. Biochemistry,1998, 37,4928-4934
    188. Wu,J.Q., Zaleski,T.J., et al., Polyketide Double Bond Biosynthesis. Mechanistic Analysis of the Dehydratase-Containing Module 2 of the Picromycin/Methymycin Polyketide Synthase. J. Am. Chem. Soc.2005,127,17393-17404
    189. He, Q., Jia, X., Tang, C., Tian, Z., Tang, G, and Liu, W. Dissection of Two Acyl-Transfer Reactions Centered on Acyl-S-Carrier Protein Intermediates for Incorporating 5-Chloro-6-methyl-Omethylsalicyclic Acid into Chlorothricin. ChemBioChem.2009,10,813-819
    190. Sono, M., and Dawson, J.H. Heme-Containing Oxygenases, Chem. Rev.1996,96, 2841-2887
    191. Meunier, B., de Visser, S.P., and Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev.2004,104,3947-3980
    192. Xue, Y., Liu, H.W., and Sherman, D.H. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol 1998,5,661-667
    193. Xue, Y., and Sherman, D.H. Biosynthesis and Combinatorial Biosynthesis of Pikromycin-Related Macrolides in Streptomyces venezuelae. Metabolic Engineering 2001,3,15-26
    194. Sherman, D.H., and Podust, L.M. The Structural Basis for Substrate Anchoring, Active Site Selectivity, and Product Formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem.2006,281,26289-26297
    195. Meunier, B., P. de Visser, S., and Shaik. S Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev.2004,104,3947-3980
    196. Matthews,R.G, Cobalamin-dependent methyltransferases. Acc.Chem.Res.2001,34, 681-689
    197. LozanO,M.J.F., Remsing,L.L., et al.; Characterization of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus. J. Biol. Chem.2000,275,3065-3074
    198. Varoglu,M., Mao,Y., et al, Mapping the Mitomycin Biosynthetic Pathway by Functional Analysis of the MitM Aziridine N-Methyltransferase. J. Am. Chem. Soc. 2001,123,6712-6713
    199. Kim,B., Jung,B., et al, Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli.J.Agric.Food..Chem. 2006,54,823-828
    200. Kim, D.H., Kim, B., et al., Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. Journal of Biotechnology 2005,119, 155-162
    201. Linne, U., and Marahiel, M. A. Reactions catalyzed by mature and recombinant nonribosomal peptide synthetases. Methods Enzymol.2004,388,293-315
    202. Ehmann, D. E., Shaw-Reid, C. A., Losey, H. C, and Walsh, C. T. Proc. Natl. Acad. Sci. USA.2000,97,2509-2514
    203. Keller-Schierlein, W., Muntwyler, R., Pache, W., and Zahner, H. Mataolic products of microorganisms. Chlorothricin and deschlorothricin. Helc. Chim. Acta.1969, 52,127-142
    204. Schindler, P. W., and Zahner, H. Metabolic products of microorganisms.96. Mechanism of action of the macrolide-type antibiotic, chlorothricin. Ⅰ. Inhibitor of the pyruvate carboxylase from Bacillus subtilis. Arch. Mikrobiol.1972,82,66-75.
    205. Pache. W., and Chapman. D. Interaction of antibiotics with membranes:chlorothricin. Biochim. Biophys. Acta.1972,255,348-357
    206. Tomita, F., Tamaoki, T., et al. Novel antitumor antibiotics, Tetrocarcins. J. Antibiot.1980,33,668-670
    207.Tomita, F., and Tanmaoki, T. Tetrocarcins, Novel antitumor antibiocics Ⅰ:Producing organism, fermentation and antimicrobial acitivity. J. Antibiot.1980,33,940-945.
    208.Tamaoki, T., Kasai M., Shirahata, K., et al, Novel antitumor antibiocics Ⅱ:Producing organism, fermentation and antimicrobial acitivity. J. Antibiot.1980,33,946-950
    209.Freiberg, C, et al. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J. Biol.Chem. 2004,279,260-266
    210.Campbell J.W., Cronan JE, Jr. Bacterial fatty acid biosynthesis:Targets for antibacterial drug discovery. Annu. Rev. Microbiol.2001,55,305-332
    211.Toh, H., Kond, H., and Tanabe, T. Molecular evolution of biotin-dependent carboxylases. Eur. J. Biochem.1993,215,687-696

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700