用户名: 密码: 验证码:
GaN材料的制备、性能及生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代半导体材料GaN,具有直接带隙宽(室温下3.39eV)、热导率高、电子饱和迁移率高,发光效率高,耐高温和抗辐射等优异特点,在短波长蓝光-紫外光发光器件、微波器件和大功率半导体器件等方面有巨大的应用前景。许多国家都投入了大量的人力、物力和财力对此进行研究。而研究开发GaN基器件的基本前提是生长出高质量的GaN材料,所以GaN材料的研究便成为了材料研究领域的热点,引起众多物理、化学、材料科学工作者的注意。迄今为止,采用GaN基材料已经制备出了蓝绿光发光二极管(LEDs)、激光器(LDs)、紫外(UV)探测器及金属半导体场效应晶体管(MESFET)、高电子迁移晶体管(HEMT)、异质结双极晶体管(HBT)及金属氧化物半导体场效应晶体管(MOSFET)等电子器件。
     随着微电子和光电子器件突飞猛进的发展,其集成化程度越来越高,器件的尺寸也越来越微型化,因而采用具有优异而独特性质的纳米尺寸材料制造纳米器件是很有意义的。基于上述GaN基材料的优异性能,且理论及实验已经证实,一维GaN纳米材料能够在很大程度上改善蓝/绿/紫外光电器件的性能。因而一维GaN材料被看作是一种很有希望的材料。一维GaN纳米材料的形貌、微结构等决定了其物理化学性能,因而必须首先合成高纯高质量的一维单晶GaN纳米材料,并对材料的各种性能及其微结构进行研究,为下一步的实际应用打下坚实的基础。为了促进GaN基纳米光电器件的发展进程,改善和提高纳米器件的光电性能,适当的掺杂是非常必要的。人们正在尝试采用不同手段来实现一维GaN纳米材料的各种不同元素的掺杂,并由此研究了掺杂GaN在光学、电学、磁学等方面的性能。目前,尽管对一维GaN纳米材料的合成、掺杂、微观结构、生长机理及物性研究等已进行了大量的开拓性的工作,但还处在初级研究阶段。探索操作简单可控且易于规模化生产的高质量一维GaN纳米材料的合成方法、发掘其新奇的特性以及合理利用其优良性能等,仍面临巨大的挑战。因此还有必要对一维GaN材料进行较为深入的研究。
     本论文主要采用磁控溅射后退火的两步生长工艺在S(i111)衬底上合成一维GaN纳米结构,主要研究了不同生长条件对纳米结构形貌的影响。通过X射线衍射(XRD)、傅里叶红外吸收谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM及HRTEM)、X射线光电子能谱(XPS)及光致发光谱(PL)等测试手段对样品的结构、形貌、成分及发光特性进行了表征分析。主要内容如下:
     1.一维Dy掺杂GaN纳米结构的合成
     首次采用共溅法在Si(111)衬底上沉积稀土掺杂Ga2O3薄膜,然后在氨气气氛下退火合成高质量的一维Dy掺杂GaN纳米结构材料。XPS测试结果表明合成的产物主要为Ga、N及少量的Dy;XRD及FTIR分析结果表明产物具有六方纤锌矿单晶结构,且由于Dy的掺杂使GaN晶格有轻微的膨胀;通过PL测试,在576nm处发现了Dy3+的4f内层电子从4F9/2到6H13/2的特征跃迁,所有这些说明采用该方法合成了Dy掺杂GaN材料。同时研究了氨化温度、氨化时间、掺杂浓度、缓冲层、及衬底对一维Dy掺杂GaN纳米结构的影响。结果如下:
     氨化温度对一维Dy掺杂GaN纳米结构的结晶质量和形貌的影响很大。随着氨化温度的升高,纳米结构的结晶质量先升高后降低,其形貌从少量的纳米线,到少量的纳米线纳米棒的混合,到大量具有较高纵横比的单晶纳米线,再到少数微米柱体的聚集体。这种形貌的变化归因于不同氨化温度下原子迁移率的变化。温度较低时,原子具有的动能较小,迁移率较低,没有足够的能量迁移到生长的最佳位置,因而形成的纳米线数量较少;随着氨化温度的升高,原子获得的动能不断增加,迁移率增大,使其有足够的能量迁移到生长位置,纳米线逐渐增多;但当氨化温度继续升高到一定值时,由于原子的横向迁移率的增加速度比纵向迁移率快,因而纳米线逐渐变粗,同时由于高温时GaN的分解,使纳米线变短,数量变少。
     氨化时间对一维Dy掺杂GaN纳米结构的影响也很显著。随着氨化时间的延长,纳米结构的形貌从纳米棒到纳米线再到纳米棒聚集,其直径逐渐变大,晶体质量先提高后降低,发光特性也有类似的变化。氨化时间较短时,原子没有足够的时间迁移到能量最佳位置,当氨化时间达到一定值时,所有的原子获得足够的时间迁移到生长位置,成为纳米结构中的一员;当时间继续延长,没有新的原子迁移,但GaN的分解还在继续,这时GaN的分解速度大于生成速度,同时新生成GaN还会继续向纳米线晶核处迁移,进行新一轮的生长,因而纳米结构变短变粗。
     Dy元素的掺杂降低了原子的迁移率,阻碍了纳米结构的径向生长。在最佳氨化条件下,随着Dy掺杂量的增多,纳米结构的长度逐渐变短,从纳米线到纳米棒最后到纳米颗粒。
     Au缓冲层的采用,降低了纳米线的生长温度,在950℃时就合成大量纳米线,纳米线有两种形貌,一种是Au含量较高的弯曲状且直径较粗的纳米线,一种是Au含量较低的平直状的较细纳米线;但在高温(1000℃)时,纳米线的形貌较单一,呈短线状团聚在一起,说明高温时Au的催化作用相对变弱。
     另外,衬底的选择对GaN纳米结构的生长也很重要。在氨化温度为950℃时,石英衬底更有利于一维Dy掺杂GaN纳米结构的生长,但具体的生长条件有待于进一步的研究。
     综上,一维Dy掺杂GaN纳米结构的最佳生长条件为1000℃时氨化15min,最佳的掺杂浓度有待于进一步研究。
     2.一维Tb掺杂GaN纳米结构的合成
     首次采用共溅射后氨化的两步生长工艺在Si(111)衬底上合成一维Tb掺杂GaN纳米结构。采用XPS、XRD、FTIR、SEM、HRTEM及PL谱等测试手段观察和分析了纳米结构的形貌、成分、结构及发光性能。结果显示,当Tb层厚度为5nm时,溅射薄膜在950℃下氨化15min后,合成了大量的具有六方纤锌矿结构的单晶GaN纳米线,这些纳米线形貌弯曲,直径约20~100nm,长约十几微米,无序的覆盖在整个衬底表面。XPS和EDS谱显示纳米线的主要成分为Ga、N、Tb。HRTEM给出了其中一根纳米线的内部结构信息,发现纳米线位错和缺陷较少,相邻两晶面间的距离稍大于相应的未掺杂GaN的晶面间距。FTIR测试结果发现Ga-N键的吸收峰位于558.94cm-1处,与文献报道一致。PL测试发现除了常见的紫外发光峰外,还出现了在544nm处的Tb3+的4f内层电子的5D4-7F3特征跃迁引起的绿色发光峰,及413nm处的可能与Tb掺杂有关的发光峰。上述结果说明一维Tb掺杂GaN纳米线的合成。
     纳米线的形貌随氨化温度、氨化时间及掺杂浓度的变化而变化。当温度为900℃时,少量的纳米线以团簇形式出现在衬底表面,当温度升高到950℃时,整个样品表面被纳米线无序的覆盖,当温度继续升高到1000℃,由于GaN的分解,出现少量的纳米棒和纳米锥。当氨化时间从10min逐渐延长到20min时,合成的样品的形貌经历了少量的纳米线、大量的干净的纳米线、大量的纳米线与纳米颗粒相连的变化过程。Tb元素的掺杂同样降低了原子的迁移率,阻碍了掺杂纳米线的径向生长。随着Tb掺杂浓度的增加,GaN样品的形貌从纳米线变为纳米棒最后变为纳米颗粒膜。
     3. Au纳米点阵模板合成一维GaN纳米结构
     采用Au纳米点阵模板在Si衬底上合成了一维GaN纳米结构。首先采用直流磁控溅射技术在Si(111)衬底上沉积一定厚度的Au层,然后在Ar气中退火,形成Au纳米点阵模板。在其上溅射Ga2O3薄膜,然后氨化合成一维GaN纳米结构。采用XRD、FTIR、SEM、HRTEM及PL等测试手段对样品的结构、形貌和发光特性进行了研究。结果表明,实验条件下合成的一维GaN纳米结构是具有六方纤锌矿结构,发光性能良好。纳米结构的形貌受氨化温度、氨化时间、缓冲层等因素的影响。当缓冲层厚度为30nm时,于950℃氨化15min时合成的样品最好。
     4.场控磁控溅射沉积GaN薄膜
     以带电粒子在电磁场和磁镜场中的运动作为理论依据,首次通过在基片处加一磁场,来改变溅射空间的磁场分布,进而改变Ga2O3薄膜的溅射沉积参数。以两步生长工艺,即首先在Si衬底上沉积Ga2O3薄膜,后在管式恒温炉中氨化退火合成GaN薄膜。测试结果发现外磁场的加入提高了薄膜的溅射速率及薄膜的晶化程度,溅射薄膜经1050℃氨化后得到高致密度的六方纤锌矿结构的单晶GaN颗粒膜,薄膜的发光性能良好。与未加磁场时相比,获得高质量单晶GaN薄膜的氨化温度提高了。
     5.一维GaN纳米结构生长机制初探
     首次初步提出了缺陷能聚集限制生长的理论模型来解释一维GaN纳米结构的生长机制。通过对实验现象的观察和分析,发现衬底表面的纳米结构成簇生长或只从某一特定区域生长。我们认为这是由于实验过程中缓冲层的使用,导致Si衬底表面的能量重新分布,形成多个缺陷能聚集体。这些聚集体内断键态较多,表面能较高,为使系统总能量降至最低,外来原子便在聚集体内聚集成核,然后在表面自由能的作用下逐渐成长为一维GaN纳米结构。GaN纳米结构生长过程中出现的新的缺陷能聚集体会改变其一维生长方向,出现弯曲、分叉等现象。
GaN, the third-generation semiconductor materials, has shown great prospect in applications of short wavelength blue and ultraviolet (UV) light-emitting devices (LEDs), microwave devices and high-power semiconductor devices, due to its unique properties such as broad direct bandgap, high thermal conductivity, high electron saturated mobility, high thermal stability, and so on. Many countries have put a lot of manpower, material and financial resources to study it. The premise of the research and development of GaN-based devices is the growth of high quality GaN materials, so the study of GaN materials receives extensive attention of physical, chemical, materials scientists. To date, blue-green LEDs, lasers (LDs), UV detectors and electronic devices, such as Metal Semiconductor Field Effect Transistor (MESFET), High Electron Mobility Transistor (HEMT), HeteroJunction Bipolar Transistor (HBT), Metal Oxide Semiconductor Field Effect Transistor (MOSFET)and so on, have been fabricated by GaN-based materials.
     With the rapid development of microelectronic and optoelectronic devices, the integrated degree is higher and higher and the size of the devices is smaller and smaller. Therefore, it is of great significance to fabricate nanodevices using nano-size materials with excellent and unique properties. The theories and experiments have proved that one-dimension GaN nanostructures can significantly improve the properties of the blue / green / UV optical and electrical devices. So one-dimension GaN materials are thought to be a kind of promising materials. The morphology and microstructure of the GaN nanostructures determine their physical and chemical properties. Single crystal GaN nanostructures especially nanowires with high purity and high quality must be first synthesized. Then various properties and microstructures of them should be studied, which provides a solid foundation for the next applications. In order to promote the development of GaN optoelectronic nano-devices with better optical and electrical properties, the appropriate doping is necessary. Various methods are tried to achieve GaN nanostructures with different dopants and study the effect of dopants on the optical, electrical and magnetic properties of the nanostructures. Although a lot of pioneering works have been done on the synthesis, doping, microstructure, growth mechanism and physical properties of the GaN nanostructures, it is still in the initial research stage. It is very difficult to find a simple controllable method to synthesize high-quality one-dimensional GaN nano-materials with unique features and good properties. Therefore there is necessary to study one-dimensional GaN materials in detail.
     One-dimension GaN materials were synthesized on Si (111) substrates by two-step growth technique through magnetron sputtering and ammoniating. The effects of different growth conditions on the morphology of GaN nanostructures were discussed mainly. The structure, morphology, compositions and optical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), x-ray photoelectron spectroscopy (XPS) scanning electron microscope (SEM) transmission electron microscope (TEM) and photoluminescence (PL). The main contents were as follows:
     1. Synthesis of one-dimensional Dy-doped GaN nanostructures
     Rare earth doped Ga2O3 films were deposited on the Si (111) substrates through co-sputtering, then annealed under flowing ammonia atmosphere and one-dimension Dy doped GaN nanostructures with high quality were synthesized. The results of XPS suggest that the compositions of the products are Ga, N and a small amount of Dy. The results of XRD and FTIR show that the products have a hexagonal wurtzite crystal structure, and crystal lattice is slightly expand due to the doping of Dy. Through the PL results, the characteristic transition of 4f inner electrons of Dy3+ from 4F9/2 to 6H13/2 is discovered at 576nm. All the results prove the synthesis of one-dimension Dy-doped GaN nanostructures. The effects of ammoniating temperature, ammoniating time, doping concentration, buffer layer and substrates on the one-dimension Dy-doped GaN nanostructures are also discussed. The results are as follows:
     Ammoniating temperature has a great influence on the quality and structure of one-dimension Dy-doped GaN nanostructures. With the increase of temperature from 950℃to 1050℃, the crystal quality of the samples improves firstly, and then drops. The morphology of the samples varies from a small number of nanowires to a small number of nanorods nanowires, then to a large number of single crystal nanowires with high aspect ratio and finally to a few micron cylinder aggregates. These changes in morphology are due to the atomic mobility at different temperature. At a low temperature, the atomic mobility is low. There is not enough energy for atoms to move to the best position, which results in the growth of a small number of nanowires. At a high temperature, the atomic mobility increases. Atoms obtain enough energy to move to growth position. The amount of nanowires increases. However, when the temperature increases to a certain value, the diameter of nanowires becomes big due to the fact that the increase rate of lateral mobility of atoms is faster than vertical mobility. Also the length of the nanowires becomes short and the amount is small, which is due to the decompose or desorption of GaN at high temperature.
     Ammoniating time has a significant effect on the one-dimensional Dy-doped GaN nanostructures. With the increase of time, the morphology of the products varies from nanorods to nanowires, then to nanorods. The diameters of nanostructures increase gradually. The crystal quality of nanostructures improve first and then drops. The optical properties have similar changes. When the ammoniating time is short, the atoms do not have enough time to migrate to the best power position. when the ammoniating time to reach a certain value, all the atoms have sufficient time to move to the growth position and become a member of nanostructures. When time continues to increase, no new atom migrates and the decomposition of GaN is continuing. So the decomposition rate of GaN is bigger than formation rate, resulting in growth of shorter nanostructures. At the same time, the newborn GaN still migrated to the position of crystal nucleus and start a new round growth, resulting the formation of the thicker nanostructures.
     The doping of Dy element reduces the atomic mobility, also blocks the vertical growth of nanostructures. At the optimum growth conditions, the length of the GaN nanostructures becomes shorter with the increase of the doping concentration. The morphology of GaN nanostructures varies from nanowires to nanorods and finally to nanoparticles.
     The growth temperature of GaN nanostructures drops with the use of Au buffer layer. At 950℃, many nanowires with twoies were synthesized. One morphology with high Au content is curve and has a big diameter. The other with low Au content is straight and thin. At high temperature (1000℃), the nanowires have the same morphology of short nanowires and congregate together, indicating that the catalysis of Au become weak relatively. In addition, the substrate is also important to the growth of GaN nanostructures. At 950℃, quartz substrate is more suitable for the growth of one-dimension Dy doped GaN nanostructures growth. The specific growth conditions need further research.
     In summary, the optimum growing conditions of one-dimensional Dy-doped GaN nanostructures are of ammoniating temperature at 1000℃and ammoniating time at 15min, the best doping concentration needs further studies.
     2. Synthesis of one-dimension Tb-doped GaN nanostructures
     Using co-sputtering and two-step growth technique, one-dimension Tb-doped GaN nanostructures were synthesized on Si (111) substrates. XRD, FTIR, SEM, EDS, HRTEM and PL are employed to characterize the structure, morphology, composition and optical properties. When the Tb layer thickness is 5nm, a large quantity of GaN nanowires with hexagonal wurtzite crystal structure were synthesized at 950℃for 15min. These nanowires with a curve morphology have diameters of about 20~100nm and lengths of ten microns. They disorderly covered the entire surface of the substrates. EDS spectrum showed that the main compositions of nanowires are Ga, N and Tb of about 2at. %. The internal structure information of one nanowire given by HRTEM shows fewer dislocations and defects. The distance between two adjacent crystal faces is slightly larger than the corresponding distance of undoped GaN. The FTIR results showed that the Ga-N bond absorption peak located at 558.94cm-1, which is consistent with the reported position. Except for the common UV emission peak, there is also a green emission peak at the 544nm corresponding to 5D4-7F3 characteristic transitions of 4f inner electrons of Tb3+. Another peak located at 413nm maybe relates with Tb. These results indicate the synthesis of one-dimension Tb-doped GaN nanostructures.
     The morphology of nanowires changed with the ammoniating temperature, ammoniating time and doping concentration. At 900℃, a small amount of nanowire-clusters distributed on the substrate surface. At 950℃, a large quantity of nanowires covered the whole substrate surface. At 1000℃, some aggregations of nanowires and nanocentrums with a small amount are found on the substrates, which is due to the decomposition of GaN. When the time increases from 10min to 20min, the amount of nanowires increases gradually. And the nanowires ammoniated for 15min have the most clean surface. Likely Dy doping, the doping of Tb also reduces the atomic mobility and hinders the the vertical growth of nanostructures. With the increase of doping concentration, the morphology of the nanostructures changed from nanowires to nanorods, finally to nanoparticle films.
     3. Synthesis of one-dimension GaN nanowires with Au nano-dot template
     One-dimension GaN nanowires were synthesized on Si (111) substrates using Au nanodot template. First, Au films with a certain thickness were deposited on Si (111) substrates by DC magnetron sputtering technique, then annealed in Ar gas to form Au nanodot template. Finally, Ga2O3 films were deposited on Au template and ammoniated to synthesize one-dimension GaN nanostructures. XRD, FTIR, SEM, HRTEM and PL are used to characterize the structure, morphology and optical properties of the products. The results show that the GaN nanowires have hexagonal wurtzite crystal structure and possess good optical properties. Ammoniating temperature, time and buffer layers affect the morphology of nanowires greatly. The samples synthesized at 950℃for 15min have the best morphology, while the thickness of Au films is 30nm.
     4. Magnetic field controlled magnetron sputtering to deposit GaN films
     Based on the theory of a charged particle movement in electromagnetic field and the magnetic mirror field, a magnetic field was added under the substrates, which changed the distribution of magnetic field in sputtering space and then changed the sputtering parameters. GaN films were form by two-step growth technique. That is, Ga2O3 films were first deposited on Si substrates and then ammoniated in a tube quartz furnace. The results indicate that the applied magnetic field enhances the sputtering rate and the crystalline degree of Ga2O3 films. Single-crystal wurtzite structure GaN films with high density and good optical properties were obtained through ammoniating Ga2O3 films at 1050℃. As a result of the added magnetic field, the ammoniating temperature to obtain high quality single crystal GaN film with high quality increases.
     5. The primary research of one-dimension GaN nanostructure growth mechanism
     For the first time, defect-energy aggregation confined growth theory model was proposed to explain the one-dimension GaN nanostructure growth mechanism Through observation and analysis of the experimental phenomenon, nanostructures grown from some special sites on the substrate surface are found. This phenomenon is due to the use of buffer layer, which results in the energy re-distribution on Si substrates and forms some defect aggregates. Many unsaturated bonds in these aggregates make the surface energy increase. In order to minimize the total energy of the system, atoms are preferential to aggregate in the sites of defects and form crystal nucleus. Under the role of the surface free energy, these crystal nucleus finally grew up to one-dimension GaN nanostructures. In the growth of the GaN nanostructrures, new defect-energy aggregations will change its growth direction and lead to the curve and bifurcate nanostructures.
引文
[1] Johnson W. C., Parson J. B., Crew M. C., Nitrogen compounds of gallium[J]. J. Phys. Chem., 1932, 36 (10):2651-2654.
    [2] Maruska H. P., Tietjen J. J., The preparation and properties of vapor-deposition single-crystal-line GaN[J]. Appl. Phys. Lett., 1969, 15(10):327-329.
    [3] Amano H., Akasaki I., Hiramatsu K., Koide N., Sawaki N., Effects of the buffer layer in metalorganic vapour phase epitaxy[J]. Thin Solid Films, 1988, 163:415-420.
    [4] Nakamura S. GaN growth using GaN buffer layer[J]. Jpn. J. Appl. Phys., 1991, 30(10A):L1705-L1707.
    [5] Amano H., Kito M., Hiramatsu K., Akasaki I., P-Type conduction in Mg-doped GaN treated with low-energy electrobeam irradiation (LEEBI) [J]. Jpn. J. Appl. Phys., 1989, 28(12):L2112-L2114.
    [6] Nakamura S., Mukai T., Senoh M., Iwasa N., Thermal annealing effects on p-type Mg-doped GaN films[J]. Jpn. J .Appl. Phys, 1992, 31(2B):L139-L142.
    [7] Gu B., Wang S., Xu Y., Qin F., Dou B., Chang J., Deng X., Yang D., GaN-based semiconductor materials and its applications in short wavelengthoptoelectronic devices[J]. High technology letters, 2002, 12(3):104-110.
    [8] Hays D. C., Cho H., Jung K. B., Abernathy C. R., Pearton S. J., Selective dry etchingusing inductively coupled plasmas:Part II. InN/GaN and InN/AIN[J]. Appl. Surf. Sci., 1999, 147(1-4):134-139.
    [9] Munir Z. A. , Searcy A.W., Activation Energy for the Sublimation of Gallium Nitride[J]. J. Chem. Phys., 1995, 42(12):4223-4228.
    [10] Logan R. A. , Thurmond C. D., Heteroepitaxial thermal gradient solution growth of GaN[J]. J. Electrochem. Soc.,1972, 119(12):1727-1735.
    [11] Lakshmi E., Dielectric properties of reactively sputtered gallium nitride films[J]. Thin Solid Films, 1981, 83(3):L137-L140.
    [12] Adesida I., Mahajan A., Andideh E., Asif Khan M., Olsen D. T., Kuznia J. N., Reactive ion etching of gallium nitride in silicon tetrachloride plasmas[J]. Appl. Phys. Lett, 1993, 63(20):2777-2779.
    [13] Qiu X.G., Segawa Y., Xue Q. K., Xue Q. Z., Sakurai T., Influence of threading dislocations on the near-bandedge photoluminescence of wurtzite GaN thin films on SiCsubstrate[J]. Appl. Phys. Lett., 2000, 77(9):1316-1318.
    [14] Kirilyuk V., Zauner A. R. A., Christianen P. C. M., Weyher J. L., Hageman P. R., Larsen P. K., Exciton-related photoluminescence in homoepitaxial GaN of Ga and N polarities[J]. Appl. Phys. Lett, 2000, 76(17):2355-2357.
    [15] Pankove J. I., Berkeyheiser J. E., Maruska H. P., Wittke J., Luminescent properties of GaN[J]. Solid State Commun., 1970, 8(13):1051-1053.
    [16] Dingle R., Ilegems M., Donor-acceptor pair recombination in GaN[J]. Solid State Commun.,1971, 9(3):175-180.
    [17] Varshni Y. P., Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34:149-154.
    [18] Nakamura S., Mukai T., Senoh M., In situ monitoring and Hall measurements of GaN grown with GaN buffer layers[J]. J.Appl. Phys, 1992, 71(11):5543-5549.
    [19] Amano H., Swakai N., Akasaki I., Toyoda Y., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Appl Phys. Lett. 1986, 48(5):353-355.
    [20] Amano H., Kito M., Hiramatsu K. , Akasaki I., P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) [J]. Jpn. J. Appl. Phys. 1989, 28(12):L2112-L2114.
    [21] Smith M., Chen G. D., Lin J.Y., Jiang H.X., Salvador A., Serdlov B.N., Botchkarev A., Morkoc H., Goldenberg B., Mechamisms of band-edge emission in Mg-doped p-type GaN[J]. Appl. Phys. Lett, 1996, 68(14):1883-1885.
    [22]张东东,共溅法Mg掺杂氮化镓纳米结构的制备与研究.山东:山东师范大学,2009:
    [23]段猛,郝跃,GaN基蓝色LED的研究进展[J].西安电子科技大学学报,2003,30(1):60-65.
    [24] Nakamura S., Senoh M., Nagahama S., Iwasa N., Yamada T., Matsushita T., Kiyoku H., Sugimoto Y., InGaN-Based Multi-Quantum-Well-Structure Laser Diodes[J]. Jpn. J. Appl. Phys., 1996, 35(1B):L74-L76.
    [25] Nakamura S., Senoh M., Nagahama S., Iwasa N., Yamada T., Matsushita T., Sugimoto Y., Kiyoku H., Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 233 K[J]. Appl. Phys. Lett., 1996, 69(20):3034-3036.
    [26] Nakamura S., Senohm., Nagahama S., Iwasa N., Yamada T., Matsushita T., Kiyoku H., Sugimoto Y., Kozaki T., Umemoto H., Sano M., Chocho K., Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates[J]. Appl. Phys. Lett., 1998, 72(16):2014-2016.
    [27]梁春广,张毅, GAN——第三代半导体的曙光[J].半导体学报,1999,20(2):89-99.
    [28] Khan M. A., Kuznia J. N., Hove J. M. V., Pan N., Carter J., Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions[J]. Appl. Phy. Lett., 1992, 60(24):3027-3029.
    [29] Binari S. C., Diettich H. B., GaN and Related Materials. edited by Peatron S. J . (Gordon and Breach Science Publishers), 1997, 509.
    [30] Ozgur A., Kim W., Fan Z., Botchkarev A., Salvador A., Mohammad S. N., Sverdlov B., Morkoc H., High transconductance-nomally-off GaN MODFETs[J]. Electron. Lett., 1995, 31(16):1389-1390.
    [31] Pankove J .I., Leksono M., Chang S. S., et al. MRS Internet J, 1996, 1:39-40.
    [32]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社,2001:34.
    [33] Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., Room-temperature ultraviolet nanowires nanolasers[J]. Science, 2001, 292 (5523):1897-1899.
    [34] Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., H. Dai, Nanotube molecular wires as chemical sensors[J]. Science 2000, 287(5453):622-625.
    [35] Favier F., Walter E. C., Zach M. P., Benter T., Penner R. M., Hydrogen sensors and switches from electrodeposited palladium mesowire arrays[J]. Science 2001, 293(5538):2227-2231.
    [36] Li Z., Chen Y., Li X., Kamins T. I., Nauka K., Williams R. S., Sequence-specific label-free DNA sensors based on silicon nanowires[J]. Nano. Lett. 2004, 4(2):245-247.
    [37] Bachtold A., Hadley P., Nakanishi T., Dekker C., Logic circuits with carbon nanotube transistors[J]. Science, 2001, 294(5545):1317-1320.
    [38] Huang Y., Duan X., Cui Y., Lauhon L. J., Kim K. H., Lieber C. M., Logic gates and computation from assembled nanowire building blocks[J]. Science, 2001, 294(5545):1313-1317.
    [39] Huang Y., Duan X., Cui Y. , Lieber C. M., Gallium nitride nanowire nanodevices[J]. Nano Letters 2002, 2(2):101-104.
    [40] Han W., Fan S., Li Q., Synthesis of gallium nitride Nanorods through a carbon nanotube-confined reaction[J]. Science, 1997, 277(5330):1287-1289.
    [41] Hashimoto A., Motiduke T., Yamamoto A., Formation of GaN nano-column structure by nitridation[J]. Mater. Sci. Forum, 1998, 264-268:1129-1132.
    [42] Goldberger J., He R., Zhang Y., Lee S., Yan H., Choi H. J., Yang P., Single-crystal gallium nitride nanotubes[J]. Nature, 2003, 422(6932):599-602.
    [43] Kipshidze G.., Yavich B., Chandolu A., Yun J., Kuryatkov V., Ahmad I., Aurongzeb D., Holtz M., Temkin H., Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition[J]. Appl. Phys. Lett. 2005, 86(3):033104.
    [44] Hersee S. D., Sun X., Wang X., The controlled growth of GaN nanowires[J]. Nano Letters, 2006, 6(8):1808-1811.
    [45] Tchernycheva M., Sartel C., Cirlin G., Travers L., Patriarche G., Harmand J. C., Sang L. S., Renard J., Gayral B., Nevou L., Julien F., Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy:structural and optical characterization[J]. Nanotechnology, 2007, 18 (38):385306 (1-7).
    [46] Li Q., Wang G. T., Improvement in aligned GaN nanowire growth using submonolayer Ni catalyst films[J]. Appl. Phys. Lett., 2008, 93( 4):043119 (1-3 ).
    [47] Cheng G. S., Zhang L. D., Zhu Y., Fei G. T., Li L., Large-scale synthesis of single crystalline gallium nitride nanowires[J]. Appl. Phy. Lett., 1999, 75(16):2455-2457.
    [48] Cheng G. S., Chen S. H., Zhu X. G., Mao Y. Q., Zhang L. D., Highly ordered nanostructures of sigle crystalline GaN nanowires[J]. Mater. Sci. & Eng. A, 2000, 286(1):165-168.
    [49] Jung W. G., Jung S. H., Kung P., Razeghi M., Fabrication of GaN nanotubular material using MOCVD with an alumminium oxide membrane[J]. Nanotechnology, 2006, 17 (1):54-59.
    [50] Wagner R. S., Ellis W. C., Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett. ,1964, 4(5):89-91.
    [51] Wagner R. S., Growth of crystals by the vapour-liquid-solid mechanism in whisker technology[M], A.P Levitt press, alley, New York, 1970:47.
    [52] Givargizov E. I., Fundamental aspects of VLS growth[J]. J. Cryst. Growth.,1975, 31:20-30.
    [53] Duan X. F., Lieber C. M., Laser-assisted catalytic growth of single crystal GaNnanowires[J]. J. Am. Chem. Soc., 2000, 122(1):188-189.
    [54] Ng D. K. T., Tan L. S, Hong M. H., Synthesis of GaN nanowires on gold - coated substrates by pulsed laser ablation[J]. Current Apllied Physics, 2006, 6(3):403 -406.
    [55] Chen X. L., Li J. Y., Cao Y. G., Lan Y. C., Qiao Z.Y., Straight and smooth GaN nanowires[J]. Adv. Mater., 2000, 12 (19):1432-1434.
    [56] Li J. Y., Chen X. L., Cao Y. G., Qiao Z. Y., Lan Y. C., Raman scattering spectrum of GaN straight nanowires[J]. Appl. Phys. A, 2000, 71:345-346.
    [57] Chen C. C., Yeh C. C., Large-scale catalytic synthesis of crystalline gallium nitride nanowires[J]. Adv. Mater., 2000, 12(10):738-741.
    [58] Wang, J. C., Feng S. Q., Yu D. P., High quality GaN nanowires synthesized using a CVD approach[J]. Appl. Phys. a-Mater., 2002, 75:691-693.
    [59] Cai X. M., Djuri?i? A. B., Xie M. H.,Growth mechanism of stacked-cone and smooth-surface GaN nanowires[J]. Appl. Phys. Lett., 2005, 87(18):183103.
    [60] Zhan J., Liu R. J., Hao X., Tao X., Jiang M. Growth of GaN nanowires through a pyrolysis method with vapor-liquid-solid mechanism[J]. Surface and coatings Technology, 2007, 201(9-11):5578-5581.
    [61] Xu B. S., Zhai L. Y., Liang J., Ma S. F.,Jia H. S., Liu X. G., Synthesis and characterization of high purity GaN nanowires[J]. J. Cryst. Growth., 2006, 291(1):34-390.
    [62] Kand S. M., Shin T. I., Dihn S. V., Yang J. H., Kim S. W., Yoon D. H., Synthesis and properties of triangular-shaped GaN nanorods via growth mode control[J]. J. Cryst. Growth, 2009, 311(3):490-494.
    [63] Peng H .Y., Wang N., Zhou X. T., Zheng Y. F., Lee C .S., Lee S. T., Control of growth oritentation od GaN nanowires[J]. Chem. Phys. Lett. .2002, 359(3-4):241-245.
    [64] Li J. Y., Chen X. L., Qiao Z. Y., Cao Y. G., Lan Y. C., Formation of GaN nanorods by a sublimation method [J]. J. Cryst. Growth, 2000, 213(3-4):408-410.
    [65] Shi W. S., Zhang Y. F., Wang N., Lee C. S., Lee S. T., Microstructures of gallium nitride nanowires synthesized by oxide-assisted method [J]. Chem. Phys. Lett., 2001, 345(5-6):377-380.
    [66] Dung X. F., Lieber C. M., Laser-assisted catalytic growth of single crystal GaN nanowires [J]. J. Am. Chem. Soc., 2000,122(1):188-189.
    [67] Jang W. S., Kim S. Y., Lee J., Park J., Park C. J., Lee C. J., Triangular GaN-BN core-shell nanocables:Synthesis and field emission[J]. Chem. Phys. Lett., 2006, 422(1-3):41-45.
    [68]隋研萍,GaN材料的射频等离子体分子束外延生长及其掺杂特性研究.上海:中国科学院上海微细统与信息技术研究所博士学位论文,2006:
    [69] Dietl T., Ohno H., Matsukura F., Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors[J]. Phys. Rev. B 2001, 63(19):195205.
    [70] Deepak F. L., Vanitha P. V., Govindaraj A., Rao C. N. R., Photoluminescence spectra and ferromagnetic properties of GaMnN nanowires[J]. Chem. Phys. Lett., 2003, 374(3-4):314–318.
    [71] Chen X., Lee S. J., Moskovits M., Modification of the electronic properties of GaN nanowires by Mn doping[J]. Appl. Phys. Lett., 2007, 91(8):082109.
    [72] Byeun Y. K., Han K. S., Choi H. J., Choi S. C., Controlled doping of single crystalline diluted magnetic semiconductor Ga1-xMnxN Nnanowires[J]. Materials Science and Engineering A, 2007,452-453:499-502.
    [73] Xu C., Chun J. H., Lee H. J., Jeong Y. H., Han S. E., Kim J. J., Kim D. E., Ferromagnetic and Electrical Characteristics of in Situ Manganese-Doped GaN Nanowires[J]. J. Phys. Chem. C, 2007, 111(3):1180-1185.
    [74] Radovanovic P. V., Barrelet C. J., Gradecˇak S., Qian F., Lieber C. M., General synthesis of manganese-doped II-VI and III-V semiconductor nanowires[J]. Nano Lett., 2005, 5(7):1407-1411.
    [75] Oh E., Choi J. H., Seong H. K., Choi H. J., Optical properties of GaN and GaMnN nanowires grown on sapphire substrates[J]. Appl. Phys. Lett., 2006, 89(9):092109.
    [76] Han D. S., Park J., Rhie K. W., Kim S., Chang J., Ferromagnetic Mn-doped GaN nanowires[J]. Appl. Phys. Lett., 2005, 86(3):032506.
    [77] Wang Q., Sun Q., Jena P., Ferromagnetism in Mn-Doped GaN Nanowires[J]. Phys. Rev. Lett., 2005, 95(16):167202 .
    [78] Radovanovic P. V., Stamplecoskie K. G., Pautler B. G., Dopant Ion Concentration Dependence of Growth and Faceting of Manganese-Doped GaN Nanowires[J]. J. AM. Chem. Soc., 2007, 129(36):10980-10981.
    [79] Ham M. H., Oh D. K., Myoung J. M., Transport propertiesin(Ga,Mn)N nanowires field-effect transistors[J]. J. Phys. Chem. C, 2007, 111(30):11480-11483.
    [80] Cimpoiasu E., Stern E., Klie R., Munden1 R .A., Cheng G. , Reed M. A.. The effect of Mg doping on GaN nanowires[J]. Nanotechnology, 2006, 17(23):5735–5739.
    [81] Park Y. S., Na J. H., Taylor R. A., Park1 C. M., Lee K. H., Kang T. W.,The recombination mechanism of Mg-doped GaN nanorods grown by plasma-assisted molecular-beam epitaxy[J]. Nanotechnology, 2006, 17(3):913–916.
    [82] Zhao H. Z., Fang Q., Wang D., Charles M. L., Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices[J]. Nano Lett., 2003, 3(3):343-346.
    [83] Seong H. K., Kim J. Y., Kim J. J., Lee S. C., Kim S. R., Kim U., Park T. E., Choi H. J., Room-Temperature Ferromagnetismin Cu Doped GaN Nanowires[J]. Nano Lett., 2007, 7 (11):3366–3371.
    [84] Narukawa M., Koide S., Miyake H., Hiramatsu K., Growth of undoped and Zn-doped GaN nanowires[J]. J. Cryst. Growth, 2009, 311(10):2970-2972.
    [85] Ji L., Meng X. M., Jiang Y., Lee C. S., Bello I., Lee S. T., Gallium nitride nanowires doped with silicon[J]. Appl. Phys. Lett., 2003, 83, (20):4241-4243.
    [86] J. R. Kim, Kim B. K., Lee I. J., Kim J. J., Kim J., Lyu S. C., Lee C. J., Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires[J]. Phys. Rev. B, 2004, 69(23):233303.
    [87] Dhara S., Datta A., Wu C. T., Lan Z. H., Chen K. H., Wang Y. L., Chen Y. F., Hsu C. W., Chen L. C., Lin H. M., Chen C. C., Blue shift of yellow luminescence band inself-ion-implanted n-GaN nanowire[J]. Appl. Phys. Lett., 2004, 84(18):3486-3488.
    [88] Dhara S., Datta A., Wu C. T., Lan Z .H., Chen K .H., Wang Y. L., Hsu C.W., Dhen C. H., Chen L.C., Chen C. C., Hexagonal-to-cubic phase transformation in GaN nanowires by Ga+ implantation[J]. Appl. Phys. Lett., 2004, 84(26):5473-5475.
    [89] Dhara S., Datta A., Wu C. T., Lan Z .H., Chen K .H., Wang Y. L., Chen L. C., Hsu C.W., Lin H. M., Chen C. C., Enhanced dynamic annealing in Ga+ ion-implanted GaN nanowires[J]. Appl. Phys. Lett., 2003, 82(3):451-453.
    [90] Dhara S., Datta A., Wu C. T., Chen K .H., Wang Y. L., Muto S., Tanabe T., Shen C. H., Hsu C. W., Chen L. C., maruyama T., Mechanism of nanoblister formation in Ga+ self-ion implanted GaN nanowires[J]. Appl. Phys. Lett., 2005, 86(20):203119(1-3).
    [91] Zhou S. M. Fabrication and PL of Al-doped gallium nitride nanowires[J]. Physics Letters A, 2006, 357 (4-5):374-377.
    [92] Zhou S. M., Near UV photoluminescence of Hg-doped GaN nanowires[J]. Physica E, 2006, 33 (2):394-399.
    [93] Kuykendall T., Pauzauskie P. J., Zhang Y., Goldberger J., Sirbulu D., Denlinger J., Yang P., Crystallographic alignment of high-density gallium nitride nanowire arrays[J].Nature Mater., 2004, 3:524-528.
    [94] Steckl A. J., Birkhahn R., Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy[J]. Appl. Phys. Lett., 1998, 73(12):1700-1702.
    [95] Wilson R. G., Schwartz R. N., Abernathy C. R., Pearton S. J., Newman N., Rubin M., Fu T., Zavada J. M., 1.54-μm photoluminescence from Er-implanted GaN and AlN[J]. Appl. Phys. Lett., 1994, 65(8):992-994.
    [96] King S. W., Carlson E. P., Therrien R. J., X-ray photoelectron spectroscopy analysis of GaN/(0001)AlN and AlN/(0001)GaN growth mechanisms[J]. J. Appl. Phys., 1999, 86(10):5584-5593.
    [97] Elkashef N., Srinivasa R. S., Major S., Sabharwal S. C., Muthe K. P., Sputter deposition of gallium nitride films using a GaAs target[J]. Thin Solid Films, 1998, 333(1-2):9-12.
    [98] Kingsley C. R., Whitaker T. J., Wee A. T. S. Jackman R. B., Foord J. S., Development of chemical beam epitaxy for the deposition of gallium nitride[J]. Mater. Sci. Eng, B, 1995, 29(1-3):78-82.
    [99] Sasaki T., Matsuoka T., Substrate-polarity dependence of metal-organic-vapor- phase epitaxy-grown GaN on SiC[J]. J. App. Phys, 1988, 64(9):4531-4535.
    [100] Wei Q., Xue C., Sun Z., Cao W., Zhuang H., Formation of GaN film by ammoniating Ga2O3/Al2O3 deposited on Si(111) substrate[J]. Rare Metal Materials and Engineering, 2005, 34(2):312-315.
    [101] Veal T. D., Mahboob I, Piper L .F. J, McConville C. F. Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1-X alloys[J]. Appl. Phys. Lett., 2004, 85(9):1550-1552.
    [102] Li D., Sumiys M., Fuke S., Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy[J]. J. Appl. Phys., 2001, 90(8):4219-4223.
    [103]吴玉新,一维GaN纳米结构和GaN薄膜的制备及其特性研究.山东:山东师范大学硕士学位论文,2006:
    [104] Zhuang H. Z., Gao H. Y., Xue C. S., Dong Z. H., Effect of Ammoniating Temperature of ZnO/Ga2O3 Films on Fabrication of GaN Nanosize M aterials on Si Substrates[J]. Rare Metal Materials and Engineering, 2005, 34(1):73-76.
    [105] Yang Y. G., Ma H. L., Xue C. S., Zhuang H. Z., Hao X. T., Ma J., Teng S. Y., Preparation and structural properties for GaN films grown on Si (111) by annealing[J].Applied Surface Science, 2002, 193(1-4):254-260.
    [106] Boo J. H., Rohr C., Ho W., MOCVD of BN and GaN thin films on silicon:new attempt of GaN growth with BN buffer layer[J]. J. Cryst. Growth,1998, 189/190(1-2):439-444.
    [107] Sun Y., Miyasato T., Outdiffusion of the excess carbon in SiC films into Si substrate during film growth[J]. J. Appl. Phys, 1998, 84(11):6451-6453.
    [108]王玉霞,温军,郭霞汤洪高,黄继颇,王连卫,林成鲁.在Si(111)上脉冲ArF准分子激光淀积晶态定向α-SiC薄膜[J].半导体学报, 2000, 21(6):570-575.
    [109] Demichelis F., Crovini G.., Pirri C. F., Tresso E., Amato G., Coscia U., Ambrosone G., Rava P., Optimization of a-Si1-xCx:H films prepared by ultrahigh vacuum plasma enhanced chemical vapour depositon for electroluminesencent devices[J]. Thin Solid Films, 1994, 241(1-2):274-277.
    [110] Xiao H., Ma H., Xue C., Hu W., Ma J., Zong F., Zhang X., Ji F., Synthesis and structural properties of GaN particles from GaO2H powders[J]. Diamond and related materials, 2005, 14:1730-1734.
    [111]张昊翔,叶志镇,陆焕明,赵炳辉,阙端麟,硅基GaN薄膜的外延生长[J]. 1999, 20(2):143-146.
    [112] Lozykowski H. J., Jadwisienczak W. M., Brown I., Visible cathodoluminescence of GaN doped with Dy, Er, and Tm[J]. Appl. Phys. Lett., 1999, 74(8):1129-1131.
    [113] Chen C. C., Yeh C. H., Chen C. H., Yu M. Y., Liu H. L., Wu J J., Chen K. H., Chen L. C., Peng J. Y., Chen Y. F., Catalytic Growth and Characterization of Gallium Nitride Nanowires[J]. J. Am. Chem. Soc., 2001, 123(12):2791-2798.
    [114] Peng H. Y., Zhou X. T., Wang N., Zheng Y. F., Liao L. S., Shi W. S., Lee C. S., Lee S. T., Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition[J]. Chem. Phys. Lett, 2000, 327(5-6):263-270.
    [115]黄览,张宇,郭志睿,顾宁,半胱氨酸诱导金纳米带室温合成[J].科学通报, 2008, 53(20):2531-2533.
    [116] Dai, L., Liu, S. F., You, L. P., Zhang, J. C, Qin, G. G., Effects of In surfactant on the crystalline and photoluminescence properties of GaN nanowires[J]. J. Phys.:Condens. Matter, 2005, 17(43):L445-L449.
    [117] Sawahata J., Bang H., Seo J., Takiguchi M., Akimoto K., Structural and optical properties of Eu- and Tb-doped GaN[J]. J. Ceram. Process. Res., 2005, 6(2):184187.
    [118]王涛,潘孝军,张振兴,李辉,谢二庆,铽掺杂纳米晶GaN薄膜的室温可见发光.中国稀土学报, 2008, 26(2):244-247.
    [119]薛成山,张冬冬,庄惠照,黄英龙,王邹平,王英, Mg掺杂GaN纳米线的结构及特性[J].物理化学学报, 2009, 25(1):113-115.
    [120]贾圣果,于大鹏, GaN纳米线的成核及生长机理研究[J].北京大学学报(自然科学版), 2003, 39(3):336-340.
    [121]胡建新,带电粒子在正交恒定磁场中运动状态的分析[J].大学物理, 2004, 23(4):8-10, 24.
    [122]刘爱红,佘守宪,轴对称缓变磁场中的等离子体与磁约束原理[J].物理与工程, 2002, 12(5):14-23.
    [123]刘列,刘永贵,杨建坤,磁镜场约束等离子体的粒子模拟[J].国防科技大学学报, 2001, 23(3):21-24.
    [124]叶燕慧,李保山,电场和磁场对催化剂制备过程的影响[J].工业催化, 2008, 16(10):1-3.
    [125]朱炎,狄国庆,陈亚杰,赵登涛,梯度磁场中薄膜厚度梯度[J].固体电子学研究与进展, 2002, 22(3):367-370.
    [126]朱炎,狄国庆,赵登涛,外加磁场对磁控溅射过程及薄膜物性的影响[J].功能材料与器件学报, 2001, 7(4):384-388.
    [127]赵新民,狄国庆,基片下磁场磁控对溅射辉光及薄膜梯度的影响[J].物理学报, 2004, 53(1):306-310.
    [128]顾佳烨,狄国庆,储开慧,基片下磁场中溅射镀铜薄膜及其微结构[J].功能材料与器件学报, 2007, 13(6):625-629.
    [129] Srihari V., Sridharan V., Sahu H. K., Raghavan G., Sastry V. S., Sundar C. S., Combustion synthesis of Ga2O3 nanoparticles[J]. J. Mater. Sci., 2009, 44:671-675.
    [130] Ishikawa H., Kobayashi S., Koide Y., Yamasaki S., Nagai S., Umezaki J., Koike M., Murakami M., Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces[J]. J. Appl. Phys., 1997, 81(3): 1315-1322.
    [131] Volmer M., Esterman I., Uber den mechanismus der molekulabscheidung an kritallen[J]. Physik 1921, 7:13-17.
    [132] Sears G. W., A mechanism of whisker growth[J]. Acta Metallurgica,1955, 3:367.
    [133] Xia Y., Yang P., Sun Y,. Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H.,One-dimensional nanostructures:synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15(5):353-389.
    [134] Wang N., Cai Y., Zhang R. Q., Growth of nanowires[J]. Materials science and engineering R, 2008, 60(1-6):1-51.
    [135] Shi W. S., Peng H. Y., ZhengY. F., Wang N., Shang N. G., Pan Z. W., Lee C. S., Lee S. T., Synthesis of large areas of highly oriented, very long silicon nanowires[J]. Adv. Mater. 2000, 12(18):1343-1345.
    [136] Wu, Y.; Yang, P., Direct observation of vapor- liquid-solid nanowire growth[J]. J. Am. Chem. Soc. 2001, 123(13):3165-3166.
    [137] Chen X. L., Lan Y. C., Li J. Y., Cao Y. G., He M., Radial growth dynamics of nanowires[J] J. Cryst. Growth, 2001, 222:586-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700