用户名: 密码: 验证码:
集成电路铜互连工艺中先进扩散阻挡层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路器件尺寸的持续缩小,互连延迟越来越成为制约集成电路发展的瓶颈问题。在32nm及以下技术节点,互连工艺中磁控溅射制备的Ta/TaN双层结构扩散阻挡层和铜籽晶层由于台阶覆盖特性不好将带来各种问题。为了降低互连线的电阻,必须在保证器件性能的同时,减小扩散阻挡层和籽晶层的厚度,而且两者必须在高深宽比结构中有非常好的台阶覆盖特性,因此迫切需要研究新型扩散阻挡层/黏附层材料和新型互连工艺,这是半导体发展路线图中提出的一个非常重要的挑战。采用新型扩散阻挡层/黏附层材料和新型淀积工艺有许多问题需要研究,包括新型扩散阻挡层和铜以及低介电常数介质之间的界面反应、新型原子层淀积(Atomic Layer Deposition,ALD)的工艺、ALD薄膜生长机理、表面化学、材料的物理性能和电学性能之间的关系等。对这些问题的研究不仅有科学价值,对未来的阻挡层发展方向提出的一些解决方案也有应用价值。
     基于以上问题本文围绕Cu互连扩散阻挡层“新材料”和“新工艺”两个主题,分成三个部分加以阐述:
     1:新型阻挡层材料W碳化物的研究
     实验比较了相同厚度的Ta/TaN双层结构和Ta或TaN单层结构扩散阻挡层性能,分析了Ta/TaN双层结构优越稳定性的原因,提出了Ta/TaN双层薄膜的微结构演变过程以及其阻挡层的失效机理。
     用共溅射方法制备了各种不同W/C比例的W_xC_y薄膜,比较了不同W_xC_y薄膜阻挡层的稳定性,利用在线激光散射(In-situ LLS)测试比较了Cu在各种W_xC_y薄膜上的团聚行为,利用Kissinger方程提取了Cu的团聚激活能(Ea)。
     研究了W碳化物扩散阻挡层对物理气相淀积Cu薄膜(厚度为100nm)形成孪晶的影响。实验表明在WC扩散阻挡层上无论是刚淀积的还是退火后的Cu薄膜都能形成纳米尺度孪晶,而在W阻挡层上没有类似现象。研究发现Cu在WC阻挡层上的界面能比在W阻挡层上的高很多,而界面能对于形成Cu孪晶非常关键。
     从动力学角度考虑界面上整个铜晶粒的扩散和旋转并提出Cu孪晶的形成机理。结合应力测试研究了Cu薄膜孪晶和团聚行为的联系,孪晶形成造成的应力梯度影响了空位的浓度分布和扩散行为,使得在退火过程中产生空洞。
     2:原子层淀积新工艺方法制备研究超薄TiO_2和TaN扩散阻挡层
     研究了用两种金属有机物先体TDMAT、Ti isopropoxide和三种反应源(H_2O气,H_2O等离子体以及O_2等离子体)制备超薄TiO_2薄膜。用密度函数理论(DFT)计算了原子反应过程,研究了先体脱附行为对TiO_2ALD生长模式及工艺窗口的影响。测试了不同工艺条件生长的TiO_2薄膜的结晶情况,分析了超薄TiO_2薄膜中C杂质含量对薄膜结晶的影响。
     研究了用PDMAT金属有机物先体和两种反应源(NH_3和N_2等离子体)制备TaN薄膜,比较不同反应源对ALD生长模式的影响。比较了不同工艺条件对ALD生长的TaN阻挡层稳定性的影响,证实低反应气体气压和长时间等离子体曝露可以优化淀积工艺。
     3.铜互连中新型籽晶层/黏附层的研究
     研究了物理气相淀积制备的Ru单层,Ru/TaN、Ru/WCN、Ru/TaCN双层结构扩散阻挡层性质,发现在Ru膜上的Cu薄膜在一定退火温度区间有氧化增强现象。发现Ru/TaCN比Ru/TaN双层结构具有更好的稳定性。
     研究了用等体子体增强原子层淀积方法制备Ru薄膜,使用的金属有机物先体是Ru(EtCp)_2,反应物为NH_3等离子体。研究了Ru分别在Si,TiN/Si和TaN/Si三种衬底上的ALD生长模式和薄膜性质。研究了受氧化的TaN衬底对Ru ALD生长的抑制影响。测试了ALD生长的Ru,Ru/TiN以及Ru/TaN等阻挡层的稳定性。初步研究了ALD Ru(7nm)/ALD TaN(5nm)双层结构在低k材料(k=2.5)上的性质。
With continuous scaling down of the devices, the material and process of interconnect technology also require corresponding innovation. In the 32nm and beyond technology node, many issues arise due to the poor conformality caused by relative thick sputtered Ta/TaN bi-layer and seed layer. In order to decrease the resistivity of interconnect lines as well as meet the performance requirement of the device, the need of decreasing barrier and seed layer thickness has increased, and also the aspect ratio of trench and via has increased. Therefore, researches on novel diffusion barrier/seed layer materials and process have attracted great attention. There are many issues need to be studied for using novel material for diffuision barriers/adhesion layer and novel deposition process, which includes interface reaction within Cu/diffusion barrier/Si or low k system, also atomic layer deposition (ALD) process and growth mechanism, surface chemistry and low k surface pretreatment.
     Based on "novel material" and "novel process" for the diffusion barrier, the main contents and results of this dissertation are summaried as follows.
     1: Novel diffusion barrerier material - W carbides
     Ta/TaN bi-layer structure and Ta or TaN single layer with same total thickness are compared as diffusion barrier. The reasons for super thermal stability of Ta/TaN bi-layer structure are analysed. The microstructure evolution and the failure mechanism for Ta/TaN bi-layer diffusion barriers are proposed.
     W_xC_y films with different W/C ratio are prepared by co-sputtering method. The stability of different W_xC_y films as diffusion barriers is compared. The agglomeration behavior of Cu on different W_xC_y films are characterized by in-situ laser light scattering (In-situ LLS) test. The Cu agglomeration activation energys (Ea) on diffirent W_xC_y films are derived by using Kissinger equation.
     The effects of W carbides diffusion barriers on the twinning formation of PVD sputtered Cu films (100nm) are studied. It is found that nano-scale twinning can be formed in the Cu films deposited on the WC diffusion barrier before or after annealing process, while there is no similar result for Cu on W barrier. It reveals that the interface energy for Cu on WC is much higher than that for Cu on W and it is critical for the formation of Cu twinning.
     The Cu twinning formation mechanism is proposed with consideration of the whole Cu grains diffusion and rotation. The correlation between Cu twinning and Cu agglomeration is studied by stress measurement. The stress gradient caused by twinning formation affacts the vacancy concentration distribution and diffusion behavior, which will cause the voids formation after annealing process.
     2: Research on atomic layer deposition of TiO_2 and TaN diffusion barriers
     Ultra thin TiO_2 films prepared by two kinds of metal-organic precursors TDMAT, Ti isopropoxide and three kinds of reactants (H_2O vapor, H_2O plasma and O_2 plasma) are studied. The atomic reaction paths are calculated by using density functional theory (DFT). The effects of precursors desorption on the TiO_2 ALD growth mode and process window are discussed. The crystallization behavior of the TiO_2 thin films with diffirent process conditions is studied. The effects of the C contents on the crystallization temperature for ultra thin TiO_2 films are analyzed.
     TaN films prepared by MO precursor PDMAT and two kinds reactants (NH_3 and N_2 plasma) are studied. The effects of diffirent reactants on the TaN ALD growth mode are discussed. The effects of different reactants on the stability of ALD growth TaN diffusion barriers are compared. It is revealed that the process can be optimized by using lower reactant gas vapour pressure and longer plasma exposure time.
     3: Novel seed/adhersion layer for Cu inteconnect
     Ru single layer, Ru/TaN, Ru/WCN and Ru/TaCN bi-layer structure diffusion barriers prepared by physical vapor deposition are studied. The oxidation enhanced effect on Cu from under Ru layer is revealed.
     Plasma enhanced atomic layer deposition of Ru films prepared with MO precursor Ru(EtCp)2 and NH3 are studied. The growth mode and films properties of ALD Ru on three kinds of substrates including Si, TiN/Si and TaN/Si are compared. Results show that the surface properties of the TaN substrate are crutial to the nucleation for ALD Ru. The stability of ALD grown Ru, Ru/TiN and Ru/TaN barriers is tested. The Ru/TaN barrier can stand up annealing of 400℃/30min on Si substrate. However, results show that Cu has diffusied to the low k substrate for the ALD Ru(7nm)/ALD TaN(5nm) barriers on porous low k material (k=2.5).
引文
[1] The National Technology Roadmap for Semiconductors, 1997.
    
    [2] Bohr Mark T. Interconnect Scaling - The Real Limiter to High Performance ULSI [C]. Proceedings of the 1995 IEEE International Electron devices Meeting,1995:P241-244.
    [3] J. Nucci, H. Neves, Y. Shacham, E. Eisenbraun, B. Zheng and A. Kaloyeros.In-situ Analysis of the Microstructure of Thermally Treated Thin Copper Films [C]. MRS. Symp. Proa, 1993, 309: 377-382.
    [4] S. P. Murarka and S. W. Hymes. Copper Metallization for U1SI and Beyond [J].Critical Reviews in Solid State and Materials Sciences, 1995, 20(2): 87-124.
    [5] A. E. Kaloyeros and E. Eisenbraun. Ultrathin diffusion barriers/liners for gigascale copper metallization [J]. Annu. Rev. Mater. Sci., 200, 30: 363- 385
    [6] K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey and K. H.Kelleher. TANTALUM AS A DIFFUSION BARRIER BETWEEN COPPER AND SILICON - FAILURE MECHANISM AND EFFECT OF NITROGEN ADDITIONS [J]. J. Appl. Phys., 1992, 71(11): 5433-5444.
    [7] T. Laurila, K. Zeng, and J. K. Kivilahti. Failure mechanism of Ta diffusion barrier between Cu and Si [J]. J. Appl. Phys., 2000, 88: 3377-3384.
    [8] L. liu, Y. Wang and H. Gong. Annealing effects of tantalum films on Si and SiO_2/Si substrates in various vacuums [J]. J. Appl. Phys., 2001, 90(1): 416-420
    [9] K. W. Kwon, C. Ryu, R. Sinclair and S. Simon Wong. Evidence of heteroepitaxial growth of copper on beta-tantalum [J]. Appl. Phys. Lett., 1997,71:3069-3071.
    [10] K. W. Kwon, H. J. Lee and R. Sinclair. Solid-state amorphization at tetragonal-Ta/Cu interfaces [J]. Appl. Phys. Lett., 1999, 75: 935-937
    [11] M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, H. T. Chiu. Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si [J]. J. Appl. Phys., 1996, 79(9): 6932-6938.
    [12] W. H. Lee, J. C. Lin, C. Lee. Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N-2/Ar gas mixtures [J]. Materials Chemistry and Physics, 2001, 68(1-3): 266-271
    [13] J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, T. R. Yew. Ta and Ta-N diffusion barriers sputtered with various N-2/Ar ratios for Cu metallization [J]. J. Vac. Sci. Technol. B 2002,20(4): 1522-1526.
    [14] K. L. Ou, W. F. Wu, C. P. Chou, S. Y. Chiou, C. C. Wu. Improved TaN barrier layer against Cu diffusion by formation of an amorphous layer using plasma treatment [J]. J. Vac. Sci. Technol. B, 2002,20(5): 2154-2161.
    [15] Z. L. Yuan, D. H. Zhang, C. Y. Li, K. Prasad, C. M. Tan. Thermal stability of Cu/alpha-Ta/SiO_2/Si structures [J]. Thin Solid Films, 2004,462: 284-287.
    [16] M. Hecker, D. Fischer, V. Hoffmann, H. J. Engelmann, A. Voss, N. Mattern, C.Wenzel, C. Vogt, E. Zschech. Influence of N content on microstructure and thermal stability of Ta-N thin films for Cu interconnection [J]. Thin Solid Films,2002,414(2): 184-191.
    [17] S. Tsukimoto, M. Moriyama, Masanori Murakami. Microstructure of amorphous tantalum nitride thin films [J]. Thin Solid Films, 2004, 460(1-2): 222-226.
    [18] S. S. Wong, C. Ryu, H. Lee, Alvin L.S. Loke, K.-W Kwon, Bhattacharya. S, R.Eaton, Rick Faust, Bob Mikkola, Jay Mucha, John Ormando. Barrier/Seed layer Requirement for Copper Interconnects [C]. Proc. International Interconnect Tech. Conf. IEEE, 1998: P107-109.
    [19] M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, K. Drescher. Behavior of thin Ta-based films in the Cu/barrier/Si system [J]. J. Vac. Sci. Tech., 1999, A 17(3):993-1001.
    [20] H. Wang, A. Tiwari, A. Kvit, X. Zhang. J. Narayan, Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer [J]. Appl. Phys. Lett.,2002, 80(13): 2323-2325.
    [21] G. S. Chen, S. C. Huang, S. T. Chen, and T. J. Yang. An optimal quasisuperlattice design to further improve thermal stability of tantalum nitride diffusion barriers [J]. Appl. Phys. Lett., 2002, 76(20): 2895-2897.
    [22] R. Hubner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, Ch. Wenger, H.-J.Engelmann, Ch. Wenzel, E. Zschech, J. W. Bartha, Structure and thermal stability of graded Ta-TaN diffusion barriers between Cu and SiO_2 [J]. Thin Solid Films, 2003, 437(1-2): 248-256
    [23] L. Y. Yang, D. H. Zhang, C. Y. Li, P. D. Foo. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration [J]. Thin Solid Films, 2004, 462: 176-181.
    [24]R.Hubner,M.Hecker,N.Mattern,V.Hoffmann,K.Wetzig,C.H.Wenger,H.J.Engelmann,C.H.Wenzel,E.Zschech.Degradation mechanisms of Ta and Ta-Si diffusion barriers during thermal stressing[J].Thin Solid Films,2004,458(1-2):237-245.
    [25]S.J.Wang,H.Y.Tsai,and S.C.Sun.Characterization of sputtered titanium carbide film as diffusion barrier for copper metallization[J].J.Electrochem.Soc.,2001,148(8):C563-C568
    [26]S.N.Yoganand,M.S.Raghuveer,K.Jagannadham,L.Wu,A.Karoui,and G.Rozgonyi.Multilayer TiC/TiN diffusion barrier films for copper[J].Appl.Phys.Lett.,2002,80(1):79-81.
    [27]T.Laurila,K.Zeng,J.K.Kivilahti,J.Molarius,T.Riekkinen,I.Suni.Tantalum carbide and nitride diffusion barriers for Cu metallisation[J].Microelectronic Engineering 2002,60(1-2):71-80.
    [28]T.Laurila,K.Zeng,and J.K.Kivilahti,J.Molarius and I.Suni.Amorphous layer formation at the TaC/Cu interface in the Si/TaC/Cu metallization system [J].Appl.Phys.Lette.,2002,80:938-940.
    [29]J.Imahori,T.Oku,M.Murakami.Diffusion barrier properties of TaC between Si and Cu[J].Thin Solid Films,1997,301(1-2):142-148.
    [30]T.Laurila,K.Zeng,and J.K.Kivilahti,J.Molarius and I.Suni.TaC as a diffusion barrier between Si and Cu[J].J.Appl.Phys.,2002,91:5391-5399.
    [31]S.J.Wang,H.Y.Tsai,S.C.Sun.Characterization of tungsten carbide as diffusion barrier for Cu metallization[J].Japanese J.of Appl.Phys.,2000,40(4B):2642-2649.
    [32]S.J.Wang,H.Y.Tsai,S.C.Sun,and M.H.Shiao.Thermal stability of sputtered tungsten carbide as diffusion barrier for copper metallization[J].J Electrochem Soc,2001,148(9):G500-G506.
    [33]S.J.Wang,H.Y.Tsai,S.C.Sun.A comparative study of sputtered TaC_x and WC_x films as diffusion barriers between Cu and Si[J].Thin Solid Films,2001,394(1-2):180-188.
    [34]C.M.Liu,W.L.Liu,W.J.Chen,S.H.Hsieh,T.K.Tsai,L.C.Yang.ITO as a diffusion barrier between Si and Cu[J].J.Electrochem.Soc.,2005,152:G234-G239.
    [35]P.Alen,M.Vehkamaki,M.Ritala,M.Leskela.Diffusion barrier properties of atomic layer deposited ultrathin Ta_2O_5 and TiO_2 films[J].J.Elec.Soc.,2006, 153(4):G304-G308.
    [36]R.Chan,T.N.Arunagiri,Y.Zhang,O.Chyan,R.M.Wallace,M.J.Kim,and T.Q.Hurd.Diffusion studies of copper on ruthenium thin film-A plateable copper diffusion barrier[J].J.Electrochem.Solid-State Lett.,2004,7(8):G154-G157.
    [37]S.K.Cho,S.K.Kim,H.Han,J.J.Kim,and S.M.Oh.Damascene Cu electrodeposition on metal organic chem-ical vapor deposition-grown Ru thin film barrier[J].J.Vac.Sci.Technol.,2004,B22(6):2649-2653.
    [38]O.Chyan,T.N.Arunagiri,and T.Ponnuswamy.Electrodeposition of copper thin film on ruthenium-A potential diffusion barrier for Cu interconnects[J].J.Electrochem.Soc.,2003,150(5):C347-C350.
    [39]T.N.Arunagiri,Y.Zhang,O.Chyan,M.El-Bouanani,M.J.Kim,K.H.Chen,C.T.Wu,and L.C.Chen.5 nm ruthenium thin film as a directly plateable copper diffusion barrier[J].Appl.Phys.Lett.,2005,86(8):083104.
    [40]Q.Wang,J.G.Ekerdt,D.Gay,Y.-M.Sun,and J.M.White.Low-temperature chemical vapor deposition and scaling limit of ultrathin Ru films[J].Appl.Phys.Lett.,2004,84(8):1380-1382.
    [41]D.Josell,D.Wheeler,C.Witt,and T.P.Moffat,Electrochem.Seedless superfill:Copper electrodeposition in trenches with ruthenium barriers[J].Solid-State Lett.,2003,6(10):C143-C145.
    [42]J.Liu,J.Lei,N.Magtoto,S.Rudenja,M.Garza,and J.A.Kelber.The Effects of an Iodine Surface Layer on Ru Reactivity in Air and during Cu Electrodeposition[J].J.Electrochem.Soc.,2005,152:G115-G121.
    [43]H.Kim,T.Koseki,T.Ohba,T.Ohta,Y.Kojima,and H.Sato.Cu Wettability and Diffusion Barrier Property of Ru Thin Film for Cu Metallization[J].J.Electrochem.Soc.,2005,152:G594-G600.
    [44]O.K.Kwon,J.H.Kim,H.S.Park,and S.W.Kang.Atomic layer deposition of ruthenium thin films for copper glue layer[J].J.Electrochem.Soc.,2004,151(2):G109-G112.
    [45]X.Zhao,N.P.Magtoto,and J.A.Kelber.Ruthenium sputter deposition on organosilicate glass and on paralyne:an XPS study of interfacial chemistry,nucleation and growth[C].Mater.Res.Soc.Symp.Proc.,2004,812:129-134.
    [46]X.P.Qu,J.J.Tan,M.Zhou,T.Chen,Q.Xie,G.P.Ru,and B.Z.Li.Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization[J].Appl.Phys.Lett.,2006,88,151912.
    [47]谭晶晶,屈新萍,谢琦,蒋玉龙,茹国平,李炳宗,超薄Ru/TaN双层结构作为铜互连的扩散阻挡层[J].半导体学报,2006,27:197-201
    [48]K.Kwon,S.H.Kwon,H.S.Park,and S.W.Kang.PEALD of a ruthenium adhesion layer for copper interconnects[J].J.Electrochem.Soc.,2004,151:C753-C756
    [49]T.N.Arunagiri,Y.Zhang,O.Chyan M.El-Bouanani,M.J.Kim,K.H.Chen,C.T.Wu,L.C.Chen.5 nm ruthenium thin film as a directly plateable copper diffusion barrier[J].Appl.Phys.Lett.,2005,86:083104
    [50]Q.Wang,J.G.Ekerdt,D.Gay,Y.M.Sun and J.M.White.Low-temperature chemical vapor deposition and scaling limit ofultrathin Ru films[J].Appl.Phys.Lett.,2004,84:1380-1382.
    [51]S.K.Dey,J.Goswamj,D.Gu,H Waard,S.Marcus and C.Werkhoven.Ruthenium films by digital chemical vapor deposition:Selectivity,nanostructure,and work function[J].Appl.Phys.Lett.,2004,84:1606-1608.
    [52]M.Zhou,T.Chen,J.J.Tan,G.P.Ru,Y.L.Jiang,R.Liu and X.P.Qu.Effect of Pretreatment of TaN Substrates on Atomic Layer Deposition Growth of Ru Thin Films[J].Chinese Physics Letters,2007,24(51):1400-1402.
    [53]H.Kim.Atomic layer deposition of metal and nitride thin films:Current research efforts and applications for semiconductor device processing[J].J.Vac.Sci.Technol.B,2003,21:2231-2261.
    [54]T.Aaltonen,P.Allen and M.Ritala.Ruthenium thin films grown by atomic layer deposition[J].Chemical Vapour Deposition,2003,9:45-49.
    [55]T.Aaltonen,M.Ritala and K.Arstila.Atomic layer deposition of ruthenium thin films from Ru(thd)(3) and oxygen[J].Chemical Vapour Deposition,2004,10:215-219.
    [56]O.K.Kwon,S.H.Kown and H.S.Park.Plasma-enhanced atomic layer deposition of ruthenium thin films[J].Electrochem.Solid-State Lett.,2004,7:C46-C48.
    [57]S.Y.Kang,C.S.Hwang and H.Kim.Improvements in growth behavior of CVD Ru films on film substrates for memory capacitor integration[J].J.Electrochem.Soc.,2005,152:C15-C19.
    [58]H.Han,J.J.Kim,and D.Y.Yoon.Pretreatment technique forsurface improvement of Ru films in Ru-metalorganic chemical vapor deposition[J].J.Vac.Sci.Technol.A,2004,22:1120-1123.
    [59] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu. Ultrahigh Strength and High Electrical Conductivity in Copper [J]. Science, 2004, 304: 422-426.
    [60] X. H. Chen, L. Lu and K. Lu. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins [J]. J. Appl. Phys., 2007, 102: 083708.
    [61] Sekiguchi, J. Koike, S. kamiya, M. Saka, K. Maruyama. Void formation by thermal stress concentration at twin interfaces in Cu thin films [J]. Appl. Phys.Lett., 2001, 79: 1264-1266.
    [62] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozolins, K. N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition [J]. Appl. Phys. Lett., 2007, 91: 254105.
    [63] G. S. Chen, P. Y. Lee, S. T. Chen. Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization [J]. Thin Solid Films, 1999, 353: 264-273.
    [64] S. M. Rossnagel. Characteristics of ultrathin Ta and TaN films [J]. J. Vac. Sci.Technol. B., 2002,20(6): 2328-2336.
    [65] K. M. Yin, L. Chang, F. R. Chen, J. J. Kai, C. C. Chiang, G. Chuang, P. Ding, B.Chin, H. Zhang, F. Chen. Oxidation of Ta diffusion barrier layer for Cu metallization in thermal annealing [J]. Thin Solid Films, 2001, 388: 27-33.
    [66] C. Gu, D.W. Lynch, A. B. Yang, C. G. Olson, CE-CATALYZED OXIDATION OF TA(110) [J]. Phys. Rev. B, 1990, 42: 1526-1532.
    [67] F. M. d'Heurle. NUCLEATION OF A NEW PHASE FROM THE INTERACTION OF 2 ADJACENT PHASES - SOME SILICIDES [J]. J. Mater.Res., 1988,3: 167-195.
    [68] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon. Influence of mixing entropy on the nucleation of CoSi_2 [J]. Phys. Rev. B, 2000, 62: 12045-12051.
    [69] Z. Ma, L. H. Allen. KINETIC MECHANISMS OF THE C49-TO-C54 POLYMORPHIC TRANSFORMATION IN TITANIUM DISILICIDE THIN-FILMS - A MICROSTRUCTURE-SCALED NUCLEATION-MODE TRANSITION [J]. Phys. Rev. B., 1994, 49: 13501-13511.
    [70] Z. Ma, L. H. Allen. D. D. J. Allman. EFFECT OF DIMENSION SCALING ON THE NUCLEATION OF C54 TISI_2 [J]. Thin Solid Films, 1994, 253: 451-455.
    [71] G. Hakansson, I. Petrov and J. E. Sundgren. GROWTH OF TAC THIN-FILMS BY REACTIVE DIRECT-CURRENT MAGNETRON SPUTTERING -COMPOSITION AND STRUCTURE [J]. J. Vac. Sci. Technol. A, 1990, 8: 3769-3778.
    [72] D. Deduytsche, C. Detavernier, and R. L. Van Meirhaeghe. High-temperature degradation of NiSi films: Agglomeration versus NiSi_2 nucleation [J]. J. Appl.Phys., 2005, 98(3): 033526.
    [73] J. F. Geisz, T. F. Kuech, M. G. Lagally, F. Cardone, and R. M. Potemski. FILM STRESS OF SPUTTERED W/C MULTILAYERS AND STRAIN RELAXATION UPON ANNEALING [J]. J. Appl. Phys., 1994, 75(3):1530-1533.
    [74] P. B. Ghate, L. H. Hau. INTERNAL STRESSES IN MULTILAYERED STRUCTURES [J]. J. Electrochem. Soc., 1972,119(4): 491-494.
    [75] L. L. Liu, Y. S. Zhang, and T. Y Zhang. Strain relaxation in heteroepitaxial films by misfit twinning. I. Critical thickness [J]. J. Appl. Phys., 2007, 101(6):063501.
    [76] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozolins, K. N. Tu. Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition [J]. Appl. Phys. Lett., 2007, 91: 254105.
    [77] K.N.Tu. Recent advances on electromigration in very-large-scale-integration of interconnects [J]. J. Appl. Phys., 94(9): 5451-5473.
    [78] C. W. Wang, S. F. Chen, and G. T. Chen. Gamma-ray-irradiation effects on the leakage current and reliability of sputtered TiO_2 gate oxide in metal-oxide-semiconductor capacitors [J]. J. Appl. Phys., 2002, 91: 9198-9203.
    [79] R. Pheamhom, C. Sunwoo, and D. H. Kim. Characteristics of atomic layer deposited TiO_2 films and their photocatalytic activity [J]. J. Vac. Sci. Technol. A,2006,24: 1535-1539.
    [80] K. M. Kim, B. J. Choi, and C. S. Hwang. Localized switching mechanism in resistive switching of atomic-layer-deposited TiO_2 thin films [J]. Appl. Phys.Lett., 2007, 90: 242906.
    [81] J. D. Ferguson, A. R. Yoder, A. W. Weimer, and S. M. George. TiO_2 atomic layer deposition on ZrO_2 particles using alternating exposures of TiCl_4 and H_2O [J]. Appl. Surf. Sci., 2001,226: 393-404.
    [82] R. Matero, A. Rahtu, and M. Ritala. In situ quadrupole mass spectrometry and quartz crystal microbalance studies on the atomic layer deposition of titanium dioxide from titanium tetrachloride and water [J]. Chem. Mater., 2001, 13:4506-4511.
    [83] J. Aarik, A. Aidla, H. Mandar, and T. Uustare. Atomic layer deposition of titanium dioxide from TiCl_4 and H_2O: investigation of growth mechanism [J].Appl. Surf. Sci., 2001, 172: 148-158.
    [84] M. Ritala, M. Leskela, L. Niinisto, and P. Haussalo. TITANIUM ISOPROPOXIDE AS A PRECURSOR IN ATOMIC LAYER EPITAXY OF TITANIUM-DIOXIDE THIN-FILMS [J]. Chem. Mater., 1993, 5: 1174-1181.
    [85] J. W. Lim, S. J. Yun, and J. H. Lee. Characteristics of TiO_2 films prepared by ALD with and without plasma [J]. Electrochem. Solid-State Lett., 2004, 7:F73-F76
    [86] J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskela. Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process [J]. Appl. Surf. Sci., 2000, 161: 385-395.
    [87] T. Suntola. Atomic layer epitaxy [J]. Mater. Sci. Rep., 4, 261-312 (1989)
    [88] Y. M. Wu, D. C. Bradley, and R. M. Nix. STUDIES OF TITANIUM-DIOXIDE FILM GROWTH FROM TITANIUM TETRAISOPROPOXIDE [J]. Appl. Surf.Sci., 1993, 64: 21-28.
    [89] S. O. Saied, J. L. Sullivan, T. Choudhury, and C. G. Pearce. A COMPARISON OF ION AND FAST ATOM BEAM REDUCTION IN TIO_2 [J]. Vacuum, 1988,38: 917-922.
    [90] S. Hashimoto and A. Tanaka. Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment [J]. Surf. Interface Anal., 2002, 34:262-265.
    [91] W. J. Maeng and H. Kim. Thermal and plasma-enhanced ALD of Ta and Tioxide thin films from alkylamide precursors [J]. Electrochem. Solid-State Lett.,2006, 9(6): G191-G194.
    [92] G. T. Lim and D. H. Kim. Characteristics of TiO_x films prepared by chemical vapor deposition using tetrakis-dimethyl-amido-titanium and water [J]. Thin Solid Films, 2006,498: 254-258.
    [93] Y. Widjaja and C. B. Musgrave. Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles [J]. J. Chem. Phys., 2002, 117:1931-1934.
    [94] Y. Widjaja and C. B. Musgrave. Quantum chemical study of the elementary reactions in zirconium oxide atomic layer deposition [J]. Appl. Phys. Lett., 2002,81:304-306.
    [95] W. Chen, H. L. Lu, D. W. Zhang, M. Xu, J. Ren, J. Y. Zhang, J. T. Wang, and L.K. Wang. Density functional theory study of adsorption and dissociation of HfCl_4 and H_2O on Ge/Si(100)-(2xl): Initial stage of atomic layer deposition of HfO_2 on SiGe surface [J]. Appl. Phys. Lett., 2005, 86: 142901.
    [96] W. Gu and C. P. Tripp. Role of water in the atomic layer deposition of TiO_2 on SiO_2 [J]. Langmuir, 2005,21:211-216.
    [97] J. W. Elam, M. Schuisky, J. D. Ferguson, and S. M. George. Surface chemistry and film growth during TiN atomic layer deposition using TDMAT and NH_3 [J].Thin Solid Films, 2003,436: 145-156.
    [98] A. Borras, J. Cotrino, and A. R. Gonzalez-Elipe. Type of Plasmas and microstructures of TiO2 thin films prepared by plasma enhanced chemical vapor deposition [J]. J. Electrochem. Soc, 2007, 154: P152-P157.
    [99] W. D. Kim, G. W. Hwang, O. S. Kwon, S. K. Kim, M. Cho, D. S. Jeong, S. W.Lee, M. H. Seo, C. S. Hwang, Y. S. Min, Y. J. Cho. Growth characteristics of atomic layer deposited TiO2 thin films on Ru and Si electrodes for memory capacitor applications [J]. J. Electrochem. Soc, 2005, 152: C552-C559.
    [100]Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, and G. P. Ru.Superior thermal stability of Ta/TaN bi-layer structure for copper metallization [J]. Appl. Surf. Sci., 2006, 253: 1666-1672.
    [101]H. Kim, A. J. Kellock, and S. M. Rossnagel. Growth of cubic-TaN thin films by plasma-enhanced atomic layer deposition [J]. J. Appl. Phys. 2002, 92:7080-7085.
    [102]J. S. Park, M. J. Lee, C. S. Lee, and S. W. Kang. Plasma-enhanced atomic layer deposition of tantalum nitrides using hydrogen radicals as a reducing agent [J].Electrochem. Solid-State Lett., 2001,4: C17-C19.
    [103]J. S. Park, H. S. Park, and S. W. Kang. Plasma-enhanced atomic layer deposition of Ta-N thin films [J]. J. Electrochem. Soc, 2002,149: C28-C32.
    [104]K. I. Na, S. J. Park, and W. C. Jeong, S. H. Kim, S. E. Bo, N. J. Bae and J. H.Lee. Deposition and characteristics of tantalum nitride films by plasma assisted atomic layer deposition as Cu diffusion barrier [C]. MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, 2003, 766: 491-496.
    [105]T. Y. Lin, H. Y. Cheng, T. S. Chin, C. F. Chin, and J. S. Fang. Highly thermal-stable amorphous TaSi_2C_x films as diffusion barrier [J]. J. Electrochem.Soc.,2008, 155: G29-G32.
    [106]A. M. Hoyas, Y. Travaly, J. Schuhmacher, T. Sajavaara, C. M. Whelan, B.Eyckens, O. Richard, S. Giangrandi, B. Brijs, W. Vandervorst, K. Maex, J. P.Celis, A. M. Jonas, and A. Vantomme. The impact of the density and type of reactive sites on the characteristics of the atomic layer deposited WNxCy [J]. J.Appl. Phys., 2006, 99(6): 063515.
    [107]D. S. Wuu, C. C. Chan, and R. H. Horng. Material characteristics and thermal stability of cosputtered Ta-Ru thin films [J]. J. Vac. Sci. Technol. A, 1999, 17:3327-3332.
    [108]L. C. Reldman, J. W. Mayer. Fundamentals of Surface and Thin Film Analysis [M]. North-Holland, New York, 1986
    [109]H. Kim, I. R. D. Moraes, G Tremiliosi, R. Haasch, A. Wieckowski. Chemical state of ruthenium submonolayers on a Pt(111) electrode [J]. Surf. Sci. 2001,474(1-3): L203-L212.
    [110]C. Willocq, A. Delcorte, S. Hertnans, P. Bertrand, M. Devillers. Multitechnique investigation of the physisorption and thermal treatment of mixed-metal clusters on carbon [J]. J. Phys. Chem. B, 2005, 109(19): 9482-9489.
    [111]X. Zhao, N. P. Magtoto, and J. A. Kelber. Chemical vapor deposition of tantalum nitride with tert-butylimino tris(diethylamino) tantalum and atomic hydrogen [J].Thin solid films, 2004, 478(1-2): 188-195.
    [112]Y. Y. Wu, A. Kohn and M. Eizenberg. Structures of ultra-thin atomic-layer-deposited TaNx films [J]. J. Appl. Phys., 2004, 95(11): 6174-6174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700