用户名: 密码: 验证码:
高通量磁光成像表征方法与镝镱铋铁氧体磁光特性的组合筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术和磁光存储器件的发展迫切需要开发具有更大克尔旋转角以及更优秀磁性能的磁光存储材料。组合方法是一种高效率的发现、筛选以及优化材料的新方法。因此,将组合方法应用于对磁光存储材料的研究将会极大地提高磁光存储材料的研究效率。快速并行合成和高通量表征是决定组合方法效率发挥的关键因素,但是相对于并行合成而言,高通量表征技术的发展滞后,将在较长一段时间内成为限制组合材料学发展的主要瓶颈。为了充分满足对磁光存储材料进行高通量表征的需求,我们自行设计并构建了一台能够对磁光材料进行高通量表征的磁光成像装置。与目前商业化的合金磁光存储材料相比,掺铋铁氧体磁光材料在稳定性和克尔旋转角两个方面都具有较大优势,有望应用于磁光存储。在这篇论文里,我们用自行构建的磁光成像装置对(Bi_xDy_yYb_(3-x-y))Fe_5O_(12)体系的铁氧体进行了组合筛选。一方面消除了透明铁氧体薄膜产生的干涉效应对获得内禀克尔旋转角的影响,另一方面运用组合方法筛选出具有较大磁光效应的组分Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)。本论文的撰写按照如下的逻辑顺序组织进行。
     第一章是背景知识的介绍以及相关工作最新研究进展的文献综述。首先详细介绍了组合材料学的基本概念、内涵以及发展历史,综述了组合材料样品库的设计、合成以及表征等方面所取得的进展,特别是对薄膜与粉末等形式的组合材料样品库的并行合成技术以及对样品库的结构、形貌、发光、电学性质、磁学性质以及热学性质进行高通量表征的技术。其次介绍了磁光存储技术的原理,介绍了磁光效应的唯象理论,综述了Mn-Bi合金、稀土-过渡非晶态合金、铁氧体以及Pt/Co多层膜这几种磁光存储材料体系的研究进展,特别是在铁氧体磁光存储材料中进行各种元素替代的研究进展。
     第二章是关于构建组合磁光高通量表征装置的工作。
     该装置的硬件部分主要包括He-Ne激光器、显微物镜、针孔、双凸透镜、偏振晶体、CCD、电磁线圈、各种光学支架以及光学导轨。从He-Ne激光器发出的直径为0.51 mm的激光首先经由显微物镜、针孔以及双凸透镜组成的扩束/空间滤波系统,再经过起偏器转变为线偏振光,并入射到组合材料样品库的相应被测样品区域上;被测样品反射的光经过检偏器后被CCD接收,由计算机采集数据,再经过相应的分析处理,一次性地得到所有被测样品的磁光旋转角。此外我们还编写了一个数据一图像转换软件,该软件可以将表征结果图像化,图像中每个像素点的亮度就对应于样品库中相应位置样品克尔旋转角的大小,这就使得表征结果更加直观。
     该装置的特点是采用了激光光源结合扩束投影成像的方法。由于材料样品库中的样品具有尺寸小、数目众多等特点,采用常规光源难以获得高的信噪比,而使用具有高亮度的激光光源则能在保证一定分辨能力的前提下显著提高表征装置的灵敏度。采用扩束投影成像的方法则赋予了该装置并行表征的能力。针对光强信号是样品反射率与克尔旋转角乘积的事实,采用了将检偏器的透振方向相对于起偏器的消光方向旋转一个小角度的方法,分别在样品未磁化以及磁化时采集两幅图像,通过对两幅图像的比较消除样品反射率的影响,并同时获得所有样品的克尔旋转角。
     对表征装置的空间分辨能力进行了理论计算,应用平面波的单缝衍射模型估算了激光的相干性对装置空间分辨能力的影响,推导出了空间分辨能力与样品到CCD距离的关系,并通过理论计算得出了当样品到CCD的距离为300 mm时的空间分辨能力。用四元物理掩模制备的模拟材料样品库中密集排列的Gd_(1.6)Bi_(1.4)Fe_5O_(12)薄膜样品测试了分辨能力,验证了理论分析的结果,确定了装置的空间分辨能力能满足组合材料研究的要求。
     分别采用传统的磁光表征装置和我们构建的组合表征装置对Gd_(1.6)Bi_(1.4)Fe_5O_(12)薄膜样品进行了表征,并绘制了磁滞迴线,表征结果显示两种装置绘制的磁滞迴线基本重合:对采用磁控溅射共溅射法制各的Gd_(3-x)Bi_xFe_5O_(12)薄膜样品库进行了表征,在表征结果中观察到了磁光旋转角随Bi掺杂浓度的变化情况,结果与文献中常规方法获得的结果一致。这都证明该组合表征装置具备对材料库中的样品进行定量表征的能力。
     第三章是对镝镱铋石榴石铁氧体进行组合筛选方面的工作。
     将Yb~(3+)掺入Bi_xDy_(3-x)Fe_5O_(12)中构成一个三元(Bi_xDy_yYb_(3-x-y))Fe_5O_(12)成分体系有可能在保持Bi_xDy_(3-x)Fe_5O_(12)体系矫顽力的同时提高薄膜的剩余磁化强度,以利于磁光存储,并且也有可能在此三元材料体系中发现具有较高磁光性能的组分。
     在组合筛选前首先针对铁氧体薄膜的透明特点,分析了薄膜干涉效应对磁光旋转角的影响。为了克服这种影响对获得内禀克尔旋转角所造成的困难,我们采取了提高样品库膜厚、降低样品库有效膜厚起伏以及采用不透明衬底三种策略来降低干涉效应的影响。通过制备并表征Dy_2BiFe_5O_(12)检验样品库验证了以上三种策略对降低干涉效应的有效性,这使得对透明磁光薄膜样品库进行高通量表征成为可能,克服了将组合方法应用于氧化物体系磁光材料研究的困难。
     (Bi_xDy_yYb_(3-x-y))Fe_5O_(12)材料样品库的合成采用磁控溅射同时溅射Bi_3Fe_5O_(12)、Dy_3Fe_5O_(12)以及Yb_3Fe_5O_(12)三个靶的方法进行。测量了磁控溅射的溅射速率的空间分布,确定了利用初级样品库寻找具有较大克尔旋转角的材料大致成分区域和利用次级样品库确定该材料的确切组分的研究策略。
     对材料样品库的表征则采用第二章所构建的组合磁光表征装置进行。通过对(Bi_xDy_yYb_(3-x-y))Fe_5O_(12)三元材料样品库的高通量表征筛选出了(Bi_xDy_yYb_(3-x-y))Fe_5O_(12)体系中最强磁光效应的组分:Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)。
     对大块的Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)薄膜样品的研究发现,退火温度对其磁性能有较大影响,当退火温度由670℃提高到690℃的时候,薄膜的剩余磁化强度显著提高,这对磁光存储是有利的。
     通过制备膜厚连续变化的Dy_(0.6)Yb0.5)Bi_(1.9)Fe_5O_(12)样品库,研究了干涉效应对Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)薄膜克尔旋转角的增强效应,并确定当膜厚为510nm时,Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)薄膜具有最大的克尔旋转角3.27°。
The demand for magneto-optical(MO)storage materials with higher Kerr rotation and excellent magnetic properties increased greatly because of the development of information technology and MO storage device.Combinatorial approach is a high efficient method for novel materials screening.The MO storage material research will be accelerated greatly by the application of combinatorial approach.Parallel synthesis and high through-put characterization are the two critical factors which determine the efficiency of combinatorial approach.But the development of high through-put characterization technique is fall behind the development of parallel synthesis.To meet the demand of high-throughput characterization for MO storage materials,we designed a high-throughput magneto-optical Kerr rotation angle characterization system.Comparing with commercial alloy MO storage,Bi-substituted rare earth iron garnet has better stability and higher Kerr rotation.In this thesis,we applied our high-throughput magneto-optical Kerr rotation angle characterization system in combinatorial screening the(Bi_xDy_yYb_(3-x-y))Fe_5O_(12)system,and Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)is found to have the highest Kerr rotation.This thesis is organized according to the logic below.
     Chapter one is the introduction of the related background knowledge.First,the basic concept,content and history of the combinatorial materials science were introduced,and the latest progresses for combinatorial library design,synthesis and characterization especially the combinatorial synthesis technique and high through-put characterization were reviewed.Secondly,the principle of MO storage and the main MO storage materials are summarized.The MO effect was phenomenologically analysed and the development of MO storage materials(Mn-Bi alloy,RE-TM amorphous alloy,Iron Garnet and Pt/Co multilayer)was summarized, especially the research of rare earth iron garnet.
     Chapter two is the design and setup of the combinatorial MOKE high-throughput characterization system.
     The system consists of a He-Ne laser,a micro objective,a pinhole,a double-convex lens,two pieces of Glan-Thompson prism polarizer,a CCD camera,a Helmholtz coil,and many optic stages.The laser beam with diameter of 0.51 mm passes through a beam expander/filter(consisting of a micro objective,a pinhole and a double-convex lens),and a Glan-Thompson prism polarizer to increase the linear polarizability above 10~5.The parallel laser beam incidence on the library is reflected. The reflected beam passes through a polarization analyzer(ibid)and projects on the CCD camera and is recorded by the camera.Next,the data is transferred in a computer.Finally,the Kerr rotations of all the samples are obtained.To visualize the result,we write a program to show the Kerr rotation angle as the function of position in a graphic mode.In the graph,Kerr rotation is represented by the brightness.
     The specific features of the system are the use of laser and parallel beam projection imaging.Considering the sample number in one materials library is usually up to 1000 and the individual sample is often as small as 0.5×0.5 mm~2,the combinatorial MOKE high-throughput characterization system must use the light source with high brightness.The use of laser can increase the sensitivity of the characterization system while maintain a reasonable spatial resolution for combinatorial materials studies.The use of parallel beam projection imaging has the characterization system the ability of parallel characterization.Because the light intensity signal is determined by the product of reflectivity and Kerr rotation angle, we set the polarization angle of the analyzer a small angle from the perpendicular direction of the polarizer and take two pictures with the samples magnetized and demagnetized.Through these two pictures,we can eliminate the influence of reflectivity and get the Kerr rotation of all the samples.
     To estimate the spatial resolution of the system,a fully coherent illuminated Fresnel diffraction model was constructed and the diffraction pattern was calculated. Through the calculation,the spatial resolution increases with the decreasing of the sample-screen distance,and the spatial resolution was also estimated at the sample-screen distance of 300 mm.In order to test the above estimation,we deposited an 800 nm thick Gd_(1.6)Bi_(1.4)Fe_5O_(12)thin film test library using a RF magnetron sputtering machine.The characterization to this library validates the estimation to the spatial resolution.
     We measured the hysteresis loop of the Gd_(1.6)Bi_(1.4)Fe_5O_(12)film by regular MOKE and our combinatorial MOKE high-throughput characterization system.Two hysteresis loops are consistent.We also fabricated Gd_(3-x)Bi_xFe_5O_(12)(0     Chapter three is the combinatorial screening of high Kerr rotation material in BiDyYb Iron Garnet ternary system.
     Doping the BiDy:IG with the third ion Yb~(3+)to form a ternary (Bi_xDy_yYb_(3-x-y))Fe_5O_(12)material system can give rise to more freedom in manipulating material's property,including the potential discovery of new materials with a much higher remanent magnetization while their high coercive field can still be maintained.
     As the the Bi:RIG film is transparent,the influence of film interference to Kerr rotation was analysed theoretically.To eliminate the influence of interference,we increased the film thickness of the library,reduced the nonuniformity of the equivalent film thickness and used opaque silicon as the substrate.By characterization a test Dy_2BiFe_5O_(12)library,we make sure that the influence of interference was reduced to an acceptable level.So the combinatorial approach can be applied in searching for transparent MO film materials.
     (Bi_xDy_yYb_(3-x-y))Fe_5O_(12)combinatorial libraries were fabricated by co-sputtering of Bi_3Fe_5O_(12),Dy_3Fe_5O_(12)and Yb_3Fe_5O_(12)targests,and the natural sputtering rate gradient was utilized to generate the composition gradient.The the sputtering rate distribution was measured.The research strategy was to get the potential high MO composition region in the primary spread and identified the highest MO composition in the secondary spread.
     The combinatorial MOKE high-throughput characterization system which was introduced in chapter two was used to characterize the(Bi_xDy_yYb_(3-x-y))Fe_5O_(12) combinatorial libraries.Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)was screened out,with the highest MO effect in this ternary system.
     Scale-up study of Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)film shows that its hysteresis strongly depends on the annealing temperature.When the annealing temperature was increased from 670℃to 690℃,the remnant magnetism of film enhances significantly.This enhancement is favorable for MO storage.
     We also studied the effect of film thickness on the interference and found that it could be utilized to enhance the extrinsic Kerr rotation.We deposited a thickness gradient Dy_(0.6)Yb_(0.5)Bi_(1.9)Fe_5O_(12)film and imaged the rotation angle as the function of the film thickness.When the film thickness is 510 nm,the maximum Kerr rotation of 3.27°can be achieved.
引文
[1]Kennedy K,Stefanskey T,Davy G,Zackay V F,Parker ER,J.Appl.Phys.1965,36:3808
    [21 Hanak JJ,J.Mater.Sci.1970,5:964
    [3]Xiang XD,Sun XD,Briceno G,Lou YL,Wang KA,Chang H,Wallace-Freedman WG,Chen SW,and Schultz PG,Science 1995,268;1738
    [4]Briceno G,Chang H,Sun XD,Schultz PG,Xiang XD,Science 1995,270;273
    [5]Sun XD,Gao C,Wang J,Xiang XD,Appl.Phys.Lett.1997,70:3353
    [6]Danielson E,Golden JH,Mcfarland EW,Reaves CM,Weinberg WH,Wu XD,Nature 1997,389:944
    [7]Danielson E,Devenney M,Giaquinta DM,Golden JH,Haushalter RC,McFarland EW,Poojary DM,Reaves CM,Weinberg WH,Wu XD,Science 1998,279:837
    [8]Wang J,Yoo YK,Gao C,Takeuchi I,Sun XD,Chang H,Xiang XD,Schultz PG,Science 1998,279:1712
    [9]Senkan SM,Nature 1998,394:350
    [10]Taylor SJ,Morken JP,Science 1998,280:267
    [11]Reddington E,Sapienza A,Gurau B,Viswanathan R,Sarangapani S,Smotkin ES,Mallouk TE,Science 1998,280:1735
    [12]Holzwarth A,Schmidt HW,Maier WF,Angew.Chem.,Int.Ed.1998,37:2644
    [13]Cong PJ,Doolen RD,Fan Q,Giaquinta DM,Guan SH,McFarland EW,Poojary DM,Self K,Turner HW,Weinberg WH,Angew.Chem.,Int.Ed.1999,38:484
    [14]Chang H,Gao C,Takeuchi I,Yoo YK,Wang J,Schultz PG,Xiang XD,Sharma RP,Downes M,Venkatesan T,Appl.Phys.Lett.1998,72:2185
    [15]Takeuchi I,Chang H,Gao C,Schultz PG,Xiang XD,Sharma RP,Downes MJ,Venkatesan T,Appl.Phys.Lett.1998,73:894
    [16]Chang H,Takeuchi I,Xiang XD,Appl.Phys.Lett.1999,74:1165
    [17]Van Dover RB,Schneemeyer LF,Fleming RM,Nature 1998,392:162
    [18]Akporiaye DE,Dahl IM,Karlsson A,Wendelbo R,Angew.Chem.,Int.Ed.1998,37:609
    [19]Klein J,Lehmann CW,Schmidt HW,Maier WF,Angew.Chem.,Int.Ed.1998,37:3369
    [20]Yoo YK,Duewer F,Yang H,Yi D,Li JW,Xiang XD,Nature 2000,406:704
    [21]Xiang XD,Annu.Rev.Mater.Sci.1999,29:149
    [22]Jandeleit B,Schaefer DJ,Powers TS,Turner HW,Weinberg WH,Angew.Chem.,Int.Ed.1999.38:2495
    [23]高琛,张新夷,严东生,中国科学院院刊,1999,14(5):343
    [24]高琛,项晓东,吴自勤,物理,1999,28(11):675
    [25]王正,余智,游效曾,无机化学学报,2000,16(2):167
    [26]王华,刘中民,化学进展,2003,15(4):256
    [27]Koinuma H,Takeuchi I,Nat.Mater.2004,3:429
    [28]Xiang XD,Takeuchi I,Combinatorial Materials Synthesis(Dekker,New York,2003)
    [29]Gao C,Hu B,Yakeuchi I,Chang KS,Xiang XD,Wang G,Meas.Sci.Technol.2005,16:248
    [30]K.-S.Sohn,B.I.Kim,N.Shin,J.Electrochem.Soc.151(12)(2004)H243-248
    [31]Dahn JR,Trussler S,Hatchard TD,Bonakdarpour A,Mueller-Neuhaus JR,Hewitt KC,Fleischauer M,Chem.Mater.2002,14(8):3519
    [32]Koinuma H,Koida T,Ohnishi T,Komiyama D,Lippmaa M,Kawasaki M,Appl.Phys.A.1999,69:S29
    [33]Ohnishi T,Komiyama D,Koida T,Ohashi S,Stauter C,Koinuma H,Ohtomo A,Lippmaa M,Nakagawa N,Kawasaki M,Kikuchi T,Omote K,Appl.Phys.Lett.2001,79(4):536
    [34]Ohtani M,Fukumura T,Kawasaki M,Omote K,Kikuchi T,Harada J,Ohtomo A,Lippmaa M,Ohnishi T,Komiyama D,Takahashi R,Matsumoto Y,Koinuma H,Appl.Phys.Lett.2001,79(22):3594
    [35]Matsumoto Y,Murakami M,Shono T,Hasegawa T,Fukumura T,Kawasaki M,Ahmet P,Chikyow T,Koshihara S,Koinuma H,Science,2001,291:854
    [36]Takahashi R,Kubota H,Murakami M,Yamamoto Y,Matsumoto Y,Koinuma H,J.Comb.Chem.2004,6:50
    [37]Chang KS,Aronova MA,Lin CL,Murakami M,Yu MH,Hattrick-Simpers J,Famodu OO,Lee SY,Ramesh R,Wuttig M,Takeuchi I,Gao C,Bendersky LA,Appl.Phys.Lett.2004,84:3091
    [38]Murakami M,Chang KS,Aronova MA,Lin CL,Yu MH,Hattrick-Simpers J,Wuttig M,Yakeuchi I,Gao C,Hu B,Lofland SE,Knauss LA,Bendersky LA,Appl.Phys.Lett.87,112901(2005)
    [39]Zheng H,Wang J,Lofland SE,Ma Z,Mohaddes-Ardabili L,Zhao T,Salamana-Riba L,Shinde SR,Ogale SB,Bai F,Viehland D,Jia Y,Schlom DG,Wuttig M,Roytburd A,Ramesh R,Science,2004,303:661
    [40]Koida T,Komiyama D,Koinuma H,Ohtani M,Lippmaa M,Kawasaki M,Appl.Phys.Lett.2002,80:565
    [41]Sun XD,Wang KA,Yoo YK,Wallace-Freedman WG,Gao C,Xiang XD,Schultz PG,Adv.Mater.1997,9:1046
    [42]高琛,黄孙祥,陈雷,刘磁辉,刘小楠,鲍骏,无机材料学报,2004,19(4):714
    [43] Mott M, Evans JRG, Mater. Sci. Eng. A. 1999,271:344
    
    [44] Chen L, Bao J. Gao C, J. Comb. Chem. 2004, 6(5):699
    
    [45] Klein J, Lehmann CW, Schmidt HW, Maier WF, Angew. Chem. Int. Ed. 1998, 37:3369
    
    [46] Kingsley JJ, Pederson LR, Mat. Res. Soc. Symp. Proc. 1993,296:361
    
    [47] ZL Luo, B Geng, J Bao, C Gao, J. Comb. Chem. Vol. 2005,7(6):942
    
    [48] Hoffmann C, Wolf A, SchUth F, Angew. Chem., Int. Ed. 1999,38:2800
    
    [49] Yamada Y, Ueda A, Zhao Z, Maekawa T, Suzuki K, Takada T, Kobayashi T, Catal. Today,2001,67:379
    
    [50] Chen G, Delafuente DA , Sarangapani S, Mallouk TE, Catal. Today, 2001, 67:341
    [51] Buyevskaya OV, Wolf D, Baerns M. Catal. Today, 2000,62:91
    [52] Orschel M, Klein J, Schmidt HW, Maier WF, Angew. Chem., Int. Ed. 1999,38:2791
    [53] Cong P, Dehestani A, Doolen RD, Giaquinta DM, Guan S, Markov V, Poojary D, Self K,Turner HW, Weinberg WH, Proc. Natl. Acad. Sci. USA, 1999,96:11077
    [54] Liu Y, Cong P, Dehestani A, Doolen RD, Giaquinta DM, Guan S, Markov V, Poojary D, Self K, Turner HW, Weinberg WH, Catal. Today, 2000,61:87
    [55] Luo ZL, Geng B, Bao J, et al., J. Combi. Chem. 7 (6): 942-946 2005
    [56] Zhao JC, Adv. Eng. Mater. 2001,3(3): 143
    [57] Zhao JC, J. Mater. Res. 2001,16(6): 1565
    [58] Isaacs ED, Marcus M, Aeppli G, Xiang XD, Sun XD, Schultz PG, Kao HK, Gargill GS,Haushalter R, Appl. Phys. Lett. 1998, 73(13): 1820
    [59] He BB, Anzelmo J, Lapuma P, Preckwinkel U, Smith K, 49th Annual Denver X-ray Conference, Dever, Colorado, USA, 2000
    [60] Chikyow T, Ahmet P, Nakajima K, Koida T, Takakura M, Yoshimoto M, Koinuma H, Appl. Surf. Sci. 2002, 189(3-4):284
    
    [61] Ding JJ, Jiu HF, Bao J, Lu JC, Gui WR, Zhang QJ, Gao C, J. Comb. Chem. 2005, 7(1):69
    [62] Wei T, Xiang XD, WallaceFreedman WG, Schultz PG, Appl. Phys. Lett. 1996, 68(24):3506
    [63] Gao C, Xiang XD, Rev. Sci. Instru. 1998, 69(11):3846
    [64] Yoo YK, Ohnishi T, Wang G, Duewer F, Xiang XD, Chu YS, Mancini DC, Li YQ,O'Handley RC, Intermetallics, 2001,9(7):541
    [65] Yoo YK, Xiang XD, J. Phys. -Condes. Matter. 2002, 14(2):R49
    [66] Gao C, Hu B, Zhang P, Huang MM, Liu WH, Takeuchi I, Appl. Phys. Lett. 2004,84(23):4647
    
    [67] Gao C, Duewer F, Lu YL, Xiang XD, Appl. Phys. Lett. 1998, 73(8):1146
    [68]柳学榕,胡泊,刘文汉,高琛,物理学报, 2003, 52(1):34
    [69]Gao C,Hu B,Li XF,Liu CH,Murakami M,Chang KS,Long CJ,Wuttig M,Takeuchi I,Appl.Phys.Lett.2005 87(15):1535
    [70]Takeuchi I,Famodu OO,Read JC,Aronova MA,Chang KS,Craciunescu C,Lofland SE,Wuttig M,Wellstood FC,Knauss L,Orozco A,Nat.Mater.2003,2(3):180
    [71]Cahill DG,Goodson K,Majumdar A,J.Heat Transf.-Trans.ASME.2002,124:223
    [72]Huxtable S,Cahill DG,Fauconnier V,White JO,Zhao JC,Nat.Mater.2004,3(5):298
    [73]Costescu RM,Wall MA,Cahill DG,Phys.Rev.B 2003,67:054302
    [74]Potyrailo RA,Takeuchi I,Meas.Sci.Technol.2005,16:1
    [75]Dillon J F,Jr.,J.Magn.Magn.Mater.,1983,1:31
    [76]Buschow K H J,Van Engen P G,Jongebreur R,J.Magn.Magn.Mater.1983,38:1
    [77]Chen D,J.Appl.Phys.1971,43:3625
    [78]Chen D,Aagard R L,J.Appl.Phys.1970,4:2530
    [79]Feldtkeller E.IEEE Trans.Magn.1972,MAG-8:481
    [80]Wang Y J.J.Magn.Magn.Mater.1990,84:39
    [81]Dai Dao Sheng,Fang Ruiyi,Long Ping,et al.J.Magn.Magn.Mater.1992,115:57
    [82]Shen D F,Matsushita S,Sukurai Y.IEEE.Trans.Magn.1981,MAG-17:2704
    [83]Heiman N,Kazama N,Kyser D F,et al.J.Appl.Phys.1978,49:366
    [84]Suzuki Y,Takayama S,Kirino F,et al.IEEE.Trans.Magn.1987,MAG-23:2275
    [85]S.Becker,M.Kratzer,H.Rohrmann,K.Roll,J.Magn.Magn.Mater.1996,155:376
    [86]Biao Zhou,Ya-Wen Zhang,Chun-Sheng Liao,Yue-Jun Yu,Chun-Hua Yan,Liang-Yao Chen and Song-You Wang,Appl.Phys.Lett.2003,8:82
    [87]Mateika D,Volkel E,Haisman J.J.Cryst.Growth.1990,102:994
    [88]Chow K K,Leonard W B,Comstock R L.IEEE.Trans.Magn.1968,MAG-4:416
    [89]Lin C J,Gorman G L,Appl.Phys.Lett.1992,61:1600
    [90]Hu J P,IEEE.Trans.Magn.1996,MAG-32:4069
    [91]Maret M,Cadeville M C,Poinsot R,et al.J.Magn Magn Mater.1997,166:45
    [92]Ming Li,Zhi-Hong Jiang,Zhi-Qiang Zou,et al.J.Magn Magn Mater.1998,176:331
    [1]Gao C,Xiang XD,Rev.Sci.Instru.,1998,69(11):3846
    [2]Qiu ZQ,Bader SD,Rev.Sci.Instru.,2000,3(71):1243
    [3]Enoch R D,Lambert R M,J Phys.E:Sci.Instrum.,1970,3(9):728
    [4]Zhao X R,Okazaki N,Konishi Y,Akahane K,Kuang Z,Ishibashi T,Sato K,Koinuma H,Hasegawa T,Appl.Surf Sci.,2004,223:73
    [5]Zhu X S,Zhao H B,Zhou P,Xia G Q,You H Y,Zhang R J,Li J,Wang S Y,Ni W M,Chen L Y,Rev.Sci.Instru.,2003,74:4718
    [6]P.Hansen,C.-P.Klages,J.Schuldt,and K.Witter,Physical Review B.,Vol.31,No.9,May 1985,5858-5864
    [1]Peter Hansen,Heinrich Heitmann,"Media for erasable magnetooptic recording," IEEE Trans.Magn.,Vol.25,P.4390,1989.
    [2]Stephen E.Russek,William E.Bailey,George Alers,and Dan L.Abraham,"Magnetic combinatorial thin-film libraries," IEEE Trans.Magn.,Vol.37,P.2156,2001.
    [3]F.Tsui,P.A.Ryan,"Combinatorial molecular beam epitaxy synthesis and characterization of magnetic alloys," Appl.Surf Sci.,Vol.189,P.333,2002.
    [4]Erik B.Svedberg,Rene J.M.van de Veerdonk,Kent J.Howard,and Lynnette D.Madsen,"Quantifiable combinatorial materials science approach applied to perpendicular magnetic recording media," J.Appl.Phys.,Vol.93,P.5519,2003.
    [5]Liang Yao Chen,William A.McGahan,Z.S.Shan,et al."Kerr effect of two-medium layered systems," J.Appl.Phys.,Vol.67,P.7547,1990.
    [6]Fang R Y,Peng C B,Ma T J,Long P,Liu J,Nin Y,Dai D S,"Studies on the relation between the eigenvalue and enhancement of Kerr effect for magneto-optical materials," J.Appl.Phys.,Vol.,74,P.6830,1993.
    [7]P.N.Argyres,"Theory of the Faraday and Kerr Effects in Ferromagnetics," Phys.Rev.,Vol.97,P.334,1955.
    [8]S.Tsunashima,S.Masui,T.Kobayashi,and S.Uchiyama,"Magneto-optic Kerr effect of amorphous Gd-Fe-Co films," J.Appl.Phys.,Vol.53,P.8175,1982.
    [9]Kibong Song,Hiroshi Ito,and Masahiko Naoe,"Dependence of Kerr rotation angle of Tb-Fe-Co/Al bilayers on layer thickness," IEEE Trans.Magn.,Vol.29,P.3367,1993.
    [10]Chubing Peng,W.M.Kim,Byung-ki Cheong,S.K.Lee,and S.G.Kim,"Optical and magneto-optical properties of NdTbFeCo thin films," J.Appl.Phys.,Vol.80,P.4498,1996.
    [11]A.Thavendrarajah etc.,IEEE Trans.Magn.,1989,25(5):4015
    [12]S.B.Luitjers etc.,IEEE Trans.Magn.,1990,26(1):9
    [13]P.Hansen,K.Witter,and W.Tolksdorf,"Magnetic and magneto-optic properties of bismuthand aluminum- substituted iron garnet films," J.Appl.Phys.,Vol.55,P.1052,1984.
    [14]M.Guillot,"Faraday rotation of bismuth substituted dysprosium iron garnets," IEEE Trans.Magn.,Vol.29,P.3396,1993.
    [15]M.Guillot,"Faraday rotation of bismuth substituted terbium iron garnets," IEEE Trans.Magn.,Vol.30,P.4419,1994.
    [16]Richard Alben,"Phase transitions in the anisotropic ferromagnetic ytterbium iron garnet,"Phys.Rev.B,Vol.2,P.2767,1970.
    [17]P.Hansen,C.-P.Klages,J.Schuldt,and K.Witter,Phys.Rev.B,Vol.31,No.9,May 1985, 5858-5864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700