用户名: 密码: 验证码:
功能纳米复合材料的制备及其在核废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,核工业在发达国家以及发展中国家渐渐复苏,欧美各个国家近年来都在极力发展核能。我国同样将在未来的几十年内建设数个大型核能发电机组。虽然核能被称为清洁能源,但是潜在的核污染威胁仍然存在。自1974年核工业兴起以来,目前为止全世界已经发生了多起核安全事故,如:1979年的三里岛核事故、1986年的切尔诺贝利核事故及2011年在日本发生的福岛核事故。这些事故的发生不仅威胁到人类的生存和日常生活,而且对我们赖以生存的环境也造成了极大的危害。暴露的核元素往往会通过水循环对水体产生较大的污染。因此寻求一种行之有效的核废物处理方法已经成为亟待解决的问题。使用有效的吸附剂来处理核污染废水是一种应用广泛的处理方法,因而高效吸附材料的研制成就为目前人们研究的热门方向。在众多吸附剂中,无机纳米材料凭借其比表面大、结构稳定、吸附效率高等优势受到了广泛关注。其中,钛酸盐纳米材料由于具有独特的物理和化学特性而备受研究者重视。钛酸盐体系材料能通过对水溶液中阳离的吸附、离子交换等过程处理水中重金属离子,因而被广泛的应用于重金属废水的治理中。
     本文中,我们制备了一系列的钛酸盐纳米材料以及钛酸盐纳米复合材料。通过利用XRD、SEM、TEM、BET等表征手段对这些钛酸盐体系吸附剂进行了系统表征,重点研究和评价了钛酸盐体系吸附剂对溶液中放射性元素的吸附能力。本文的具体工作内容如下:
     (1)本论文通过水热方法,以钛纳米粉末为原材料制备了一维钛酸盐纳米管,通过XRD、TEM、BET等测试手段对所得的纳米材料进行了基本表征。结果表明钛酸盐纳米管均一稳定,并且具有良好的形貌。并且钛酸盐纳米管有着较高的比表面积、较少的微孔,是一种性能优异的吸附材料。通过钛酸盐纳米管对放射性溶液的吸附性能的研究,发现它能短时间内高效的吸附水中的铀酰离子,并且通过吸附等温曲线求得钛酸盐纳米管对铀酰离子的饱和吸附量为1.6meq/g。同时研究了钛酸盐纳米管的吸附机理,详细过程为:首先铀酰离子通过离子交换进入钛酸盐内部,之后便牢牢卡在变形的骨架结构中。这种稳定的骨架结构会保证铀酰离子不会脱落,从而避免对水体的二次污染。
     (2)为了解决钛酸盐纳米材料尺寸微小,难以回收的问题,我们以黑曲霉菌丝为基体、通过共混培养法制备了大尺寸的黑曲霉-钛酸盐纳米管复合材料。复合材料拥有与生物菌体相近的尺寸,并且钛酸盐纳米管均匀的分散在菌丝的表面,并没有团聚现象。除此之外还证明了钛酸盐纳米管与菌丝之间存在较强的化学键,而并非普通物理吸附。对水中的钡离子的吸附实验可以证明黑曲霉-钛酸盐纳米管复合材料有着优异的吸附性能,其饱和吸附量能达到120mg/g (1.75meq/g)。实验结果证明了黑曲霉-钛酸盐纳米复合材料不但拥有钛酸盐纳米管的高吸附能力的优点,同时具有天然微生物的大尺寸易回收的优点,是一种集高吸附能力、低成本、可回收性强等特点于一身的优异吸附剂。
     (3)通过分部合成方法制备了具有磁性的、易回收的Fe3O4-钛酸盐纳米复合材料,并对所得到的样品进行了基本表征,表明Fe3O4-钛酸盐纳米管复合材料具有核壳材料的基本形貌,并且保持了Fe3O4的磁学性质。同时研究了Fe3O4-钛酸盐纳米复合材料对钡离子的吸附,实验表明Fe3O4-钛酸盐纳米复合材料能在短时间内高效的吸附水中的钡离子,并通过吸附等温曲线可得到Fe3O4-钛酸盐纳米复合材料对钡离子的饱和吸附量为118.4mg/g(1.73meq/g)。证明Fe3O4-钛酸盐纳米复合材料是一种性能优异并可回收的吸附剂。
In recent years, the nuclear industry is experiencing a reawakening in both developedcountry and developing country. Europe and the United States are trying to develop nuclearpower in recent years. China also will build a few nuclear power generator sets in the comingdecades. Although, nuclear power was regarded as efficient and clean energy, the issue of nuclearsafety also can not be ignored. There has been several nuclear accidents happened since the riseof nuclear industry in1974: the three mile island nuclear accident in1979, the Chernobyl nuclearaccident in1986and the Fukushima nuclear accident in2011. All these accident has caused greatimpact to the environment. The radionuclide would be released into river or sea, bringingsubstantial pollution. Finding an effective method to treat nuclear waste has become an urgentproblem to be solved. People widely use effective adsorbent to handle nuclear waste waterpollution. Functional and efficient adsorption material has been a theme of people’s research.Inorganic adsorbents, especially titanate nanomaterials, exhibit excellent performance (highspecific surface area,high adsorption capacity and high stability) have received widespreadattention. Titanate material system can be used in heavy metal wastewater treatment because oftheir high adsorption capacity and high ion-exchange capacity.
     In this paper, we prepared new adsorbents including titanate nanotubes and titanatecomposites. Kinds of characterization methods (XRD, SEM, TEM, BET) were used to study thephysical structural of the adsorbents. Adsorption capacities of three adsorbents were studied bythe experiments. In this paper, the specific contents are as follows:
     (1) Titanate nanotubes were prepared with Ti nanopowders by hydrothermal method, andcharacterized by XRD, SEM, TEM and BET. The results shows that titanate nanotubes havegood appearance, uniformly and stably. And the titanate nanotubes have higher specific surfacearea and no pores, can be good adsorption materials. The performance of adsorption shows titanate nanobubes can remove uranyl ions efficiently. The saturated adsorption capacity can becalculated to be1.6meq/g. The adsorption mechanism of ion exchange is discussed in this paper.And the uranyl ions could be stuck in the middle of the titanate nanotubes due to deformation ofthe structure, thus to avoid the possibility of secondary pollution.
     (2) Aspergillus-titanate nanotubes composites were synthesized by the blending methodwith titanate nanotubes and aspergillus hypha in water environment in order to solve the problemof titanate nanomaterials’ tiny size and difficult recycling. Composites have macroscopic size assame as aspergillus, and titanate nanotubes evenly distributed on the surface of aspergillus hypha.interaction between titanate nanotubes and aspergillus hyphae are not physical adsorption. Theperformance of adsorption shows aspergillus-titanate nanotubes composites can remove bariumions efficiently. The saturated adsorption capacity can be calculated to be120mg/g (1.75meq/g).In the end the novel aspergillus–titanate bio-nanocomposites are green, reclaimable and highlyefficient radioactive adsorbents with the merits of both microorganisms and titanatenanomaterials.
     (3) Fe3O4-titanate nano composites which are magnetic and easy recycling weresynthesized by several steps. Characterization results show that the Fe3O4-titanate nanocomposites have a basic morphology of core-shell materials and inherit the magnetic propertiesof Fe3O4. The performance of adsorption shows Fe3O4-titanate nano composites can removebarium ions efficiently. The saturated adsorption capacity can be calculated to be118.4mg/g(1.73meq/g). The Fe3O4-titanate nano composite can be regarded as a new type of radioactivewater purification materials which are highly efficient and reclaimable.
引文
[1] Baum A, Gatchel R J, Schaeffer M A. Emotional, behavioral, and physiologicaleffects of chronic stress at Three Mile Island [J]. Journal of consulting and clinicalpsychology,1983,51(4):565.
    [2] Howard J. Chernobyl Nuclear Disaster [J]. Encyclopedia of Quantitative RiskAnalysis and Assessment,2008,
    [3] Tronko M D, Bogdanova T I, Komissarenko I V, et al. Thyroid carcinoma inchildren and adolescents in Ukraine after the Chernobyl nuclear accident [J]. Cancer,1999,86(1):149-56.
    [4] Shibata Y, Yamashita S, Masyakin V B, et al.15years after Chernobyl: newevidence of thyroid cancer [J]. The Lancet,2001,358(9297):1965-6.
    [5] Kalra R, Henderson Jr G V. Effects of the Chernobyl nuclear accident on utilityshare prices [J]. Quaterly journal of business and economics,1993,32(2):52-77.
    [6] Manolopoulou M, Vagena E, Stoulos S, et al. Radioiodine and radiocesium inThessaloniki, Northern Greece due to the Fukushima nuclear accident [J]. Journal ofenvironmental radioactivity,2011,102(8):796-7.
    [7] Yasunari T J, Stohl A, Hayano R S, et al. Cesium-137deposition andcontamination of Japanese soils due to the Fukushima nuclear accident [J].Proceedings of the National Academy of Sciences,2011,108(49):19530-4.
    [8] Cardis E, Vrijheid M, Blettner M, et al. The15-Country Collaborative Study ofCancer Risk among Radiation Workers in the Nuclear Industry: estimates ofradiation-related cancer risks [J]. Radiation research,2007,167(4):396-416.
    [9] Cardis E, Gilbert E, Carpenter L, et al. Effects of low doses and low dose rates ofexternal ionizing radiation: cancer mortality among nuclear industry workers in threecountries [J]. Radiation research,1995,142(2):117-32.
    [10]Edwards R. Mutation rate doubled in Chernobyl's children [J]. New Scientist,1996,
    [11]Huang C-P, Ostovic F. Removal of cadmium (II) by activated carbon adsorption[J]. Journal of the Environmental Engineering Division,1978,104(5):863-78.
    [12]Belgacem A, Rebiai R, Hadoun H, et al. The removal of uranium (VI) fromaqueous solutions onto activated carbon developed from grinded used tire [J].Environmental Science and Pollution Research,2014,21(1):684-94.
    [13]Kütahyal C, Eral M. Selective adsorption of uranium from aqueous solutionsusing activated carbon prepared from charcoal by chemical activation [J]. Separationand purification technology,2004,40(2):109-14.
    [14]Kocaoba S, Orhan Y, Akyüz T. Kinetics and equilibrium studies of heavy metalions removalby use of natural zeolite [J]. Desalination,2007,214(1):1-10.
    [15]Mousavi H Z, Asghari A. Removal of heavy metal ions in wastewater by Semnannatural zeolite [J]. Asian Journal Of Chemistry,2009,21(4):2881-6.
    [16]Han R, Zou W, Wang Y, et al. Removal of uranium (VI) from aqueous solutionsby manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect[J]. Journal of environmental radioactivity,2007,93(3):127-43.
    [17]Sharma P, Tomar R. Synthesis and application of an analogue of mesolite for theremoval of uranium (VI), thorium (IV), and europium (III) from aqueous waste [J].Microporous and Mesoporous Materials,2008,116(1):641-52.
    [18]Smi iklas I, Dimovi S, Ple a I. Removal of Cs1+, Sr2+and Co2+from aqueoussolutions by adsorption on natural clinoptilolite [J]. Applied Clay Science,2007,35(1):139-44.
    [19]Lu N, Mason C F. Sorption-desorption behavior of strontium-85ontomontmorillonite and silica colloids [J]. Applied Geochemistry,2001,16(14):1653-62.
    [20]Guibal E, Saucedo I, Jansson-Charrier M, et al. Uranium and vanadium sorptionby chitosan and derivatives [J]. Water Science and Technology,1994,30(9):183-90.
    [21]Ngwenya N, Chirwa E. Biological removal of cationic fission products fromnuclear wastewater [J]. Water Science&Technology,2011,63(1):
    [22]Vogel M, Günther A, Rossberg A, et al. Biosorption of U (VI) by the green algaeChlorella vulgaris in dependence of pH value and cell activity [J]. Science of the totalenvironment,2010,409(2):384-95.
    [23]Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungusMucor rouxii [J]. Water Research,2003,37(18):4486-96.
    [24]Guibal E, Roulph C, Le Cloirec P. Uranium biosorption by a filamentous fungusMucor miehei pH effect on mechanisms and performances of uptake [J]. WaterResearch,1992,26(8):1139-45.
    [25]Gleiter H. Nanostructured materials. Hansen N, et al; proceedings of theProceedings of The Second Rise International Symposium on Metalurgy andMaterials Sciencep Roskilde, F,1981[C].
    [26]Gleiter H. Nanostructured materials [J]. Advanced Materials,1992,4(7-8):474-81.
    [27]Gleiter H. Nanostructured materials: basic concepts and microstructure [J]. Actamaterialia,2000,48(1):1-29.
    [28]朱世东,周根树,蔡锐, et al.纳米材料国内外研究进展Ⅰ——纳米材料的结构,特异效应与性能[J].热处理技术与装备,2010,31(3):1-5.
    [29]董里. CdS壳层对Mn离子掺杂的ZnS纳米溶胶发光性质的影响[D];中国海洋大学,2007.
    [30]Hicks J F, Templeton A C, Chen S, et al. The monolayer thickness dependence ofquantized double-layer capacitances of monolayer-protected gold clusters [J].Analytical chemistry,1999,71(17):3703-11.
    [31]Li F, Ding Y, Gao P, et al. Single‐Crystal Hexagonal Disks and Rings of ZnO:Low-Temperature, Large-Scale Synthesis and Growth Mechanism [J]. AngewandteChemie International Edition,2004,43(39):5238-42.
    [32]Yan L, Yu R, Chen J, et al. Template-free hydrothermal synthesis of CeO2nano-octahedrons and nanorods: investigation of the morphology evolution [J].Crystal Growth and Design,2008,8(5):1474-7.
    [33]Han J-K, Song H-Y, Saito F, et al. Synthesis of high purity nano-sizedhydroxyapatite powder by microwave-hydrothermal method [J]. Materials chemistryand physics,2006,99(2):235-9.
    [34]Jiang H, Zhao T, Yan C, et al. Hydrothermal synthesis of novel Mn3O4nano-octahedrons with enhanced supercapacitors performances [J]. Nanoscale,2010,2(10):2195-8.
    [35]Lu P, Teranishi T, Asakura K, et al. Polymer-protected Ni/Pd bimetallicnano-clusters: preparation, characterization and catalysis for hydrogenation ofnitrobenzene [J]. The Journal of Physical Chemistry B,1999,103(44):9673-82.
    [36]Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes tocounter electrodes of dye-sensitized solar cells [J]. Chemistry Letters,2003,32(1):28-9.
    [37]Koo H J, Kim Y J, Lee Y H, et al. Nano-embossed Hollow Spherical TiO2asBifunctional Material for High-Efficiency Dye-Sensitized Solar Cells [J]. AdvancedMaterials,2008,20(1):195-9.
    [38]Salata O V. Applications of nanoparticles in biology and medicine [J]. Journal ofnanobiotechnology,2004,2(1):3.
    [39]Yang Y-K, Cho H J, Lee J, et al. A rhodamine hydroxamic acid-basedfluorescent probe for hypochlorous acid and its applications to biological imagings [J].Organic letters,2009,11(4):859-61.
    [40]Sun X, Zheng C, Zhang F, et al. Size-controlled synthesis of magnetite (Fe3O4)nanoparticles coated with glucose and gluconic acid from a single Fe (III) precursorby a sucrose bifunctional hydrothermal method [J]. The Journal of Physical ChemistryC,2009,113(36):16002-8.
    [41]Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack [J]. Journal of catalysis,1990,122(1):178-92.
    [42]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azodyes in aqueous solution: kinetic and mechanistic investigations: A review [J].Applied Catalysis B: Environmental,2004,49(1):1-14.
    [43]Shan W, Liu F, He H, et al. Novel cerium–tungsten mixed oxide catalyst for theselective catalytic reduction of NOx with NH3[J]. Chemical Communications,2011,47(28):8046-8.
    [44]Sharma Y, Srivastava V, Singh V, et al. Nano-adsorbents for the removal ofmetallic pollutants from water and wastewater [J]. Environmental technology,2009,30(6):583-609.
    [45]Zeng H, Singh A, Basak S, et al. Nanoscale size effects on uranium (VI)adsorption to hematite [J]. Environmental science&technology,2009,43(5):1373-8.
    [46]刘峰,杨枝,刘和连, et al. Fe3O4纳米磁性微粒对钴和锶的吸附[J].核化学与放射化学,2008,30(1):56-60.
    [47]Leont'eva G. Structural modification of manganese (III, IV) oxides in synthesis ofsorbents selective to strontium [J]. Russian journal of applied chemistry,1997,70(10):1535-8.
    [48]Han W, Lu M X, Wang H, et al. A Novel Nano-Water-Purifying Material [J].Advanced Materials Research,2007,29(367-70).
    [49]立德,季美,牟.纳米材料学[M].辽宁科学技术出版社,1994.
    [50]Hu Q, Marand E, Dhingra S, et al. Poly (amide-imide)/TiO2nano-composite gasseparation membranes: Fabrication and characterization [J]. Journal of MembraneScience,1997,135(1):65-79.
    [51]Zan L, Fa W, Wang S. Novel photodegradable low-density polyethylene-TiO2nanocomposite film [J]. Environmental science&technology,2006,40(5):1681-5.
    [52]Chiang C-L, Ma C-C M. Synthesis, characterization and thermal properties ofnovel epoxy containing silicon and phosphorus nanocomposites by sol–gel method [J].European polymer journal,2002,38(11):2219-24.
    [53]Xiao M, Sun L, Liu J, et al. Synthesis and properties of polystyrene/graphitenanocomposites [J]. Polymer,2002,43(8):2245-8.
    [54]Li Z, Chung S W, Nam J M, et al. Living templates for the hierarchical assemblyof gold nanoparticles [J]. Angewandte Chemie,2003,115(20):2408-11.
    [55]Bigall N C, Reitzig M, Naumann W, et al. Fungal Templates for Noble-MetalNanoparticles and Their Application in Catalysis [J]. Angewandte ChemieInternational Edition,2008,47(41):7876-9.
    [56]Berry V, Rangaswamy S, Saraf R. Highly selective, electrically conductivemonolayer of nanoparticles on live bacteria [J]. Nano Letters,2004,4(5):939-42.
    [57]Berry V, Gole A, Kundu S, et al. Deposition of CTAB-terminated nanorods onbacteria to form highly conducting hybrid systems [J]. Journal of the AmericanChemical Society,2005,127(50):17600-1.
    [58]Bhaduri S, Bhaduri S, Zhou E. Auto ignition synthesis and consolidation ofAl2O3–ZrO2nano/nano composite powders [J]. Journal of materials research,1998,13(01):156-65.
    [59]Fei C, Zhang Y, Yang Z, et al. Synthesis and magnetic properties of hardmagnetic (CoFe2O4)-soft magnetic (Fe3O4) nano-composite ceramics by SPStechnology [J]. Journal of magnetism and magnetic materials,2011,323(13):1811-6.
    [60]Chen Y W, Prange J D, Dühnen S, et al. Atomic layer-deposited tunnel oxidestabilizes silicon photoanodes for water oxidation [J]. Nature materials,2011,10(7):539-44.
    [61]Seo W S, Lee J H, Sun X, et al. FeCo/graphitic-shell nanocrystals as advancedmagnetic-resonance-imaging and near-infrared agents [J]. Nature materials,2006,5(12):971-6.
    [62]Bodnarchuk M I, Kovalenko M V, Pichler S, et al. Large-area orderedsuperlattices from magnetic wustite/cobalt ferrite core/shell nanocrystals by doctorblade casting [J]. ACS nano,2009,4(1):423-31.
    [63]Zhu Y, Stubbs L P, Ho F, et al. Magnetic nanocomposites: a new perspective incatalysis [J]. ChemCatChem,2010,2(4):365-74.
    [64]Zhang S, Niu H, Cai Y, et al. Arsenite and arsenate adsorption on coprecipitatedbimetal oxide magnetic nanomaterials: MnFe2O4and CoFe2O4[J]. ChemicalEngineering Journal,2010,158(3):599-607.
    [65]Xuan S, Hao L, Jiang W, et al. A facile method to fabricate carbon-encapsulatedFe3O4core/shell composites [J]. Nanotechnology,2007,18(3):035602.
    [66]Gao C, Wang Y, Xiang L, et al. Tribochemical Properties of Fe3O4Nanoparticleswith Hexagonal Morphology in Lubricating Oil [J]. Journal of The Chinese CeramicSociety,2013,41(10):1339-46.
    [67]Beydoun D, Amal R. Implications of heat treatment on the properties of amagnetic iron oxide–titanium dioxide photocatalyst [J]. Materials Science andEngineering: B,2002,94(1):71-81.
    [68]Kurinobu S, Tsurusaki K, Natui Y, et al. Decomposition of pollutants inwastewater using magnetic photocatalyst particles [J]. Journal of magnetism andmagnetic materials,2007,310(2): e1025-e7.
    [69]Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst bydirect deposition of nanosized TiO2crystals onto a magnetic core [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2002,148(1):303-13.
    [70]Beydoun D, Amal R, Low G, et al. Occurrence and prevention ofphotodissolution at the phase junction of magnetite and titanium dioxide [J]. Journalof Molecular Catalysis A: Chemical,2002,180(1):193-200.
    [71]Gad-Allah T A, Kato S, Satokawa S, et al. Role of core diameter and silicacontent in photocatalytic activity of TiO2/SiO2/Fe3O4composite [J]. Solid StateSciences,2007,9(8):737-43.
    [72]Wu D, Zheng P, Chang P R, et al. Preparation and characterization of magneticrectorite/iron oxide nanocomposites and its application for the removal of the dyes [J].Chemical Engineering Journal,2011,174(1):489-94.
    [73]Ozmen M, Can K, Arslan G, et al. Adsorption of Cu (II) from aqueous solutionby using modified Fe3O4magnetic nanoparticles [J]. Desalination,2010,254(1):162-9.
    [74]Jiang R, Fu Y Q, Zhu H Y, et al. Removal of methyl orange from aqueoussolutions by magnetic maghemite/chitosan nanocomposite films: adsorption kineticsand equilibrium [J]. Journal of Applied Polymer Science,2012,125(S2): E540-E9.
    [75]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube[J]. Langmuir,1998,14(12):3160-3.
    [76]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arraysprepared by anodic oxidation [J]. Journal of materials research,2001,16(12):3331-4.
    [77]Du G, Chen Q, Che R, et al. Preparation and structure analysis of titanium oxidenanotubes [J]. Applied physics letters,2001,79(22):3702-4.
    [78]Oh S-H, Finones R R, Daraio C, et al. Growth of nano-scale hydroxyapatite usingchemically treated titanium oxide nanotubes [J]. Biomaterials,2005,26(24):4938-43.
    [79]Michailowski A, Almawlawi D, Cheng G, et al. Highly regular anatasenanotubule arrays fabricated in porous anodic templates [J]. Chemical physics letters,2001,349(1):1-5.
    [80]Hoyer P. Formation of a titanium dioxide nanotube array [J]. Langmuir,1996,12(6):1411-3.
    [81]Varghese O K, Gong D, Paulose M, et al. Hydrogen sensing using titaniananotubes [J]. Sensors and Actuators B: Chemical,2003,93(1):338-44.
    [82]Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemicalprocessing [J]. Advanced Materials,1999,11(15):1307-11.
    [83]陈代荣,孟祥建.偏钛酸作前驱体水热合成TiO2微粉[J].无机材料学报,1997,12(1):110-4.
    [84]Yang D, Liu H, Zheng Z, et al. Titanate-based adsorbents for radioactive ionsentrapment from water [J]. Nanoscale,2013,5(6):2232-42.
    [85]Sun X, Li Y. Synthesis and Characterization of Ion‐Exchangeable TitanateNanotubes [J]. Chemistry-A European Journal,2003,9(10):2229-38.
    [86]Wang W, Varghese O K, Paulose M, et al. A study on the growth and structure oftitania nanotubes [J]. Journal of materials research,2004,19(2):417-22.
    [87]Morgado Jr E, De Abreu M A, Pravia O R, et al. A study on the structure andthermal stability of titanate nanotubes as a function of sodium content [J]. Solid StateSciences,2006,8(8):888-900.
    [88]Wang Y, Hu G, Duan X, et al. Microstructure and formation mechanism oftitanium dioxide nanotubes [J]. Chemical physics letters,2002,365(5):427-31.
    [89]Yao B, Chan Y, Zhang X, et al. Formation mechanism of TiO2nanotubes [J].Applied physics letters,2003,82(2):281-3.
    [90]Qamar M, Yoon C, Oh H, et al. Preparation and photocatalytic activity ofnanotubes obtained from titanium dioxide [J]. Catalysis Today,2008,131(1):3-14.
    [91]Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermalconditions on the mesoporous structure of TiO2nanotubes [J]. Journal of MaterialsChemistry,2004,14(22):3370-7.
    [92]Yang J, Jin Z, Wang X, et al. Study on composition, structure and formationprocess of nanotube Na2Ti2O4(OH)2[J]. Dalton Transactions,2003,20):3898-901.
    [93]Vassileva E, Proinova I, Hadjiivanov K. Solid-phase extraction of heavy metalions on a high surface area titanium dioxide (anatase)[J]. Analyst,1996,121(5):607-12.
    [94]Amadelli R, Maldotti A, Sostero S, et al. Photodeposition of uranium oxides ontoTiO2from aqueous uranyl solutions [J]. J Chem Soc, Faraday Trans,1991,87(19):3267-73.
    [95]Yang D J, Zheng Z F, Zhu H Y, et al. Titanate nanofibers as intelligentabsorbents for the removal of radioactive ions from water [J]. Advanced Materials,2008,20(14):2777-81.
    [96]Yang D, Zheng Z, Liu H, et al. Layered titanate nanofibers as efficient adsorbentsfor removal of toxic radioactive and heavy metal ions from water [J]. The Journal ofPhysical Chemistry C,2008,112(42):16275-80.
    [97]Yang D, Zheng Z, Yuan Y, et al. Sorption induced structural deformation ofsodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra (II)ions from water [J]. Physical Chemistry Chemical Physics,2010,12(6):1271-7.
    [98]Yang D, Sarina S, Zhu H, et al. Capture of radioactive cesium and iodide ionsfrom water by using titanate nanofibers and nanotubes [J]. Angewandte ChemieInternational Edition,2011,50(45):10594-8.
    [99]韩玉,丁珂,孙翠华, et al.钛酸钠纳米片对水溶液中放射性离子的吸附研究[J].青岛大学学报:自然科学版,2013,26(3):43-8.
    [100] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-8.
    [101] Chopra N G, Luyken R, Cherrey K, et al. Boron nitride nanotubes [J]. Science,1995,269(5226):966-7.
    [102] Ghadiri M R, Granja J R, Milligan R A, et al. Self-assembling organicnanotubes based on a cyclic peptide architecture [J]. Nature,1993,366(6453):324-7.
    [103]蒋玉龙,王智宇,唐培松, et al.量子尺寸纳米TiO2的水热制备及光催化性能[J].浙江大学学报:工学版,2005,39(3):440-4.
    [104] Chen Q, Du G, Zhang S, et al. The structure of trititanate nanotubes [J]. ActaCrystallographica Section B: Structural Science,2002,58(4):587-93.
    [105] Ma R, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates [J]. Chemicalphysics letters,2003,380(5):577-82.
    [106] Li N, Zhang L, Chen Y, et al. Highly efficient, irreversible and selective ionexchange property of layered titanate nanostructures [J]. Advanced FunctionalMaterials,2012,22(4):835-41.
    [107] Liu W, Wang T, Borthwick A G, et al. Adsorption of Pb2+, Cd2+, Cu2+and Cr3+onto titanate nanotubes: Competition and effect of inorganic ions [J]. Science of thetotal environment,2013,456(171-80.
    [108] Chen Q, Zhou W, Du G H, et al. Trititanate nanotubes made via a single alkalitreatment [J]. Advanced Materials,2002,14(17):1208-11.
    [109] Xiong L, Yang Y, Mai J, et al. Adsorption behavior of methylene blue ontotitanate nanotubes [J]. Chemical Engineering Journal,2010,156(2):313-20.
    [110] Wang Y M, Liu H. Preparation and Characterizations of Na2Ti3O7, H2Ti3O7andTiO2Nanobelts [J]. Advanced Materials Research,2011,306(1233-7).
    [111] Macgregor R. Recovery of U3O8by underground leaching [J]. CAN MININGMET BULL,1966,59(649):583-7.
    [112] Fisher J. Bacterial leaching of Elliot Lake uranium ore [J].1966,
    [113] Akthar M N, Sastry K S, Mohan P M. Biosorption of silver ions by processedAspergillus niger biomass [J]. Biotechnology Letters,1995,17(5):551-6.
    [114] Norris P, Kelly D P. Biohydrometallurgy: proceedings of the internationalsymposium, Warwick1987[M]. Science and Technology Letters,1988.
    [115] Lovley D R, Phillips E J, Gorby Y A, et al. Microbial reduction of uranium [J].Nature,1991,350(6317):413-6.
    [116] Soler-Illia G D A, Louis A, Sanchez C. Synthesis and characterization ofmesostructured titania-based materials through evaporation-induced self-assembly [J].Chemistry of Materials,2002,14(2):750-9.
    [117] Zhang J, Zou H, Qing Q, et al. Effect of chemical oxidation on the structure ofsingle-walled carbon nanotubes [J]. The Journal of Physical Chemistry B,2003,107(16):3712-8.
    [118] Lee S, Jeon C, Park Y. Fabrication of TiO2tubules by template synthesis andhydrolysis with water vapor [J]. Chemistry of Materials,2004,16(22):4292-5.
    [119] Cooper C, Jiang J Q, Ouki S. Preliminary evaluation of polymeric Fe-andAl-modified clays as adsorbents for heavy metal removal in water treatment [J].Journal of Chemical Technology and Biotechnology,2002,77(5):546-51.
    [120] Saha U, Taniguchi S, Sakurai K. Simultaneous adsorption of cadmium, zinc,and lead on hydroxyaluminum-and hydroxyaluminosilicate-montmorillonitecomplexes [J]. Soil Science Society of America Journal,2002,66(1):117-28.
    [121] Li W, Yang J, Wu Z, et al. A Versatile Kinetics-Controlled Coating Method ToConstruct Uniform Porous TiO2Shells for Multifunctional Core–Shell Structures [J].Journal of the American Chemical Society,2012,134(29):11864-7.
    [122] Li W, Zhao D. Extension of the St ber Method to Construct Mesoporous SiO2and TiO2Shells for Uniform Multifunctional Core–Shell Structures [J]. AdvancedMaterials,2013,25(1):142-9.
    [123] Liu J, Che R, Chen H, et al. Microwave absorption enhancement ofmultifunctional composite microspheres with spinel Fe3O4cores and anatase TiO2shells [J]. Small,2012,8(8):1214-21.
    [124] Zhu C-L, Zhang M-L, Qiao Y-J, et al. Fe3O4/TiO2core/shell nanotubes:synthesis and magnetic and electromagnetic wave absorption characteristics [J]. TheJournal of Physical Chemistry C,2010,114(39):16229-35.
    [125] Xing S, Zhao D, Yang W, et al. Fabrication of magnetic core–shellnanocomposites with superior performance for water treatment [J]. Journal ofMaterials Chemistry A,2013,1(5):1694-700.
    [126] Hu H, Wang Z, Pan L. Synthesis of monodisperse Fe3O4@silica core–shellmicrospheres and their application for removal of heavy metal ions from water [J].Journal of Alloys and Compounds,2010,492(1):656-61.
    [127] Wang J, Zheng S, Shao Y, et al. Amino-functionalized Fe3O4@SiO2core–shellmagnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal [J].Journal of colloid and interface science,2010,349(1):293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700