用户名: 密码: 验证码:
基于聚芳醚的气体分离膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对聚合物气体分离膜研究的深入进展,透过性和选择性之间的矛盾关系逐渐被人们意识到。单纯从改变聚合物链自由体积的角度出发,提高聚合物膜的气体分离性能,很难同时提高其透过性和选择性,透过性的提高,通常是以牺牲选择性为代价的。本论文工作主要是围绕如何提高气体分离膜整体性能展开。首先,通过分子设计引入分别可以增大自由体积和促进传递的基团,改善聚芳醚的气体分离性能,期望达到透过性和选择性的最有平衡;其次,采用二氧化钛纳米粒子和多壁碳纳米管为分散相制备混合基质膜,综合无机分散相和聚合物基体的优势,进一步提高气体分离性能;最后,以含氟聚醚醚酮为制膜材料,采用干湿相转化法制备具有致密皮层和多孔支撑层的非对称膜,与均质膜相比,非对称膜具有更好的透过性,而致密皮层的存在保持了良好的选择性。
Energy and environmental issues have become two major problems that thepeople all over the world have to face—it is also an important issue during theeconomic and social development of our country, especially the crisis of globalwarming caused by CO2and other greenhouse gases. So it is imminent that reducingenvironmental pollution, improving energy efficiency and shifting the way ofproduction and life. Compared to the traditional method—cryogenic and pressureswing adsorption process for gas separation, membrane technology has been subjectto widespread attention, owing to no phase change, low energy consumption, simpleequipment, convenient and flexible operation, etc. Gas membrane separationtechnology has been used in air separation for oxygen and nitrogen enrichment,hydrogen recovery, CO2separation and adsorption, natural gas dehydration,olefins-paraffin separation, etc. Commercialized gas separation membrane materialsare silicone rubber, cellulose, polysulfone and polyimide. Compared togeneral-purpose plastics, poly(aryl ether) could be adapted in high temperature andpressure environment and may be used for separation and adsorption CO2, SO2, H2Sand other acidic gases because of its outstanding chemical stability, thermal stabilityand mechanical properties, and resistance to plasticizing properties and resistance toacid.
     Taking the design idea of this thesis as the starting point, the trifluoromethyl(-CF3) and amino (-NH2) were introduced into polyethersulfone to improve the gasseparation performance. The three series of polyethersulfone containingtrifluoromethyl and amino were gotten by changing the type and proportion of thefluorine-containing bisphenol and amino polyether sulfone. Chemical structure ofpolymers was characterized by IR and NMR. DSC and TGA results indicated that each polymer in three series had a high glass transition temperature and good thermalstability. These polymers exhibited higher tensile strength and Young's modulus butlower elongation at break. The high electron density of the fluorine atom made thebulk density of polymer chains decreased, so that the fractional of free volume of thepolymer increased. The fractional of free volume decreased with the introducing ofamino group and the decreasing of trifluoromethyl, and then the permeabilitycoefficients of N2and O2decreased. Lewis acid-base interaction between-NH2andCO2molecules in the polymer could improve the solubility coefficient of CO2,thereby increasing the CO2transmission rate through the membrane. The promotionof-NH2to CO2permeation offset the CO2permeation rate decreasing caused by thereduced free volume, so that the permeability coefficient P(CO2) reduced slightly,even increased with increasing of the amino segment ratio. However there was nosuch a interaction between-NH2and O2, N2and other non-polar gases, so the impacton gas separation was limited. Because the ideal separation factor is ratio ofpermeability coefficients of the fast gas and the slow gas, the gas separation factor ofCO2to other gases were improved.
     Preparation of the mixed matrix membrane (MMM) and the asymmetricmembrane has been an effective way to improve the gas separation performance. Asintroducing of the mixed inorganic particles into the polymer matrix, the MMMpossesses the advantages of both the polymer matrix and the inorganic particles. Dueto the diversity of inorganic particles, we have more choices in improvement of theperformance of gas separation membranes, and the permeability and separation factorcould be improved simultaneously. In this thesis, the titanium dioxide nanoparticlewas used as inorganic dispersed phase to improve the gas separation performance ofmembranes. The interaction between inorganic particles and the polymer chains willreduce the entanglement between polymer chains and hinder the movement of thepolymer segments, so that the bulk density decreases, the diffusion coefficient ofMMM will increase, thus the gas permeation rate will be improved; on the other hand,the interaction between the hydroxyl groups on TiO2nanoparticles and CO2moleculescould promote the transfer of CO2. Scanning electron micrographs of MMM observed that TiO2nanoparticles dispersed even in the polymer matrix, it could be attributed tothe good affinity between hydrophilic TiO2nanoparticles and a water soluble solventNMP. The hydrogen bonds between the hydroxyl groups on TiO2nanoparticles and-NH2groups were beneficial to TiO2dispersion. EDX test results for AmFPES-TiO2mixed matrix membranes obtained a signal of element Ti; three peaks reflectingdifferent TiO2crystal types appeared in XRD test results. Since the introduction ofTiO2nanoparticles to the MMMs led to decreasing of tensile strength and breakingelongation of mixed matrix membranes compared with the dense films. The gasseparation performance analysis showed that the introduction of TiO2nanoparticlesreduced bulk density of the polymer chains and the gas permeation coefficientincreased obviously. The interaction between hydroxyl groups on TiO2nanoparticlesand CO2molecules improved the permeability coefficient while improved CO2separation factor with respect to other gases.
     We selected Am-6FDA-PES-20and Am-6FDA-PES-60as polymer matrix,acidification modified multi-walled carbon nanotubes as dispersed phase, andprepared AmFPES-MWNT mixed matrix membranes by solution blending method.The acidulated MWCNTs were characterized by IR spectroscopy, and we couldobserve enhancement of carboxyl characteristic absorption peak indicating that thecarboxyl content increased after acid treatment. The microstructure of the mixedmatrix membranes were characterized by scanning electron micrograph. At lowaddition amounts, MWNT-COOH dispersed well in the polymer matrix and contactedclosely with the substrate. When the addition amount of increased to5wt%, a largeamount of carbon nanotube clusters appeared. The gas separation performanceanalysis for AmFPES-MWNT mixed matrix membranes, showed that as theMWNT-COOH was added into the mixed matrix membrane, the gas permeabilitycoefficients improved significantly. This is because carbon nanotubes withsize-controllable one-dimensional hollow structure provid a good channel fordiffusion of gas molecules.
     Preparation of asymmetric membrane by dry-wet phase inversion is an importantway to improve the gas separation performance of membrane materials. Asymmetric membranes generally consisted of a dense skin and a porous support layer thatproviding the separation performance and supporting respectively. The gaspermeability of the asymmetric membrane could be improved by the porous structureof the support layer. In this thesis, we used3FPEEK to prepare asymmetricmembranes, dichloromethane as solvent and alcohol as additive. The cross-sectionmorphology of asymmetric membranes was characterized by SEM. When the additiveof n-butanol was at a low amount, the support layer was a sponge-like structure. Themacroporous layer appeared at a lower amount when isobutanol, t-butanol andisopropanol were used as non-solvent addition. The surface morphology androughness of asymmetric membranes were characterized by AFM. The porosity ofasymmetric membranes obtained by gravimetric method showed that in the case ofthe same type of alcohol additive, the porosity increases with increasing of additiveamount. Compared with the dense3FPEEK membrane, the tensile strength andYoung's modulus of asymmetric membranes with a porous support layer decreased,but the elongation at break increased obviously, the maximum could increase from8.13%to49.93%. Mechanical properties of asymmetric membranes prepared in thisthesis could meet the strength requirement in the gas separation process. Since theporous support layer promoted a substantial increase in gas permeation rate ofasymmetric membranes comparing with the dense film and it could be attributed tothe porosity increase. The presence of dense skin of asymmetric membranesmaintained a good separation performance, CO2/O2separation factor significantlyincreased.
引文
[1]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004.
    [2]王从厚,赵宝泉.膜法富氧-助燃篇.膜信息荟萃[M].大连:中国科学院大连化学物理研究所,1993,4
    [3]王从厚,蒋国良编.膜法提氢技术汇编.膜信息荟萃[M].大连:中国科学院大连化学物理研究所,1994,7
    [4]王学松著.膜分离技术及其应用[M].北京:科学出版社,1994
    [5] Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of theart [J]. Industrial&Engineering Chemistry Research,2009,48(10):4638-4663.
    [6]刘末娥等.膜分离技术[M].北京:化学工业出版社,2001.
    [7] Ockwig N W, Nenoff T M. Membranes for hydrogen separation [J]. ChemicalReviews,2007,107(10):4078-4110.
    [8] Spillman R W. Economics of gas separation membranes [J]. Chemical engineeringprogress,1989,85(1):41-62.
    [9]党延斋.气体分离膜技术在我国石油化工业氢气回收中应用情况的调研与分析[J].膜科学与技术,2005,25(B09):1-4.
    [10] Ho W S Winston, Kamalesh K Sirkar. Membrane handbook [M]. Springer,1992,78-94.
    [11] Pabby, Anil K., Syed SH Rizvi, and Ana Maria Sastre Requena, Handbook ofmembrane separations: chemical, pharmaceutical, food, and biotechnologicalapplications [M]. CRC press,2008.
    [12] Shen J, Wu L, Zhang L, et al. Selective permeation of CO2through a compositemembrane with a separation layer of2-N, N-dimethyl aminoethyl methacrylateand acrylic acid copolymer [J]. Desalination,2006,193(1):327-334.
    [13] Baker R W. Future directions of membrane gas separation technology [J].Industrial&Engineering Chemistry Research,2002,41(6):1393-1411.
    [14] Van Zyl A J, Kerres J A, Cui W, et al. Application of new sulfonated ionomermembranes in the separation of pentene and pentane by facilitated transport [J].Journal of membrane science,1997,137(1):173-185.
    [15] Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: areview [J]. Industrial&engineering chemistry research,1998,37(7):2571-2581.
    [16] Baker R W, Da Costa A R, Daniels R, et al. Membrane-augmentedpolypropylene manufacturing: U.S. Patent6,271,319[P].2001-8-7.
    [17] Robeson L M. Correlation of separation factor versus permeability for polymericmembranes [J]. Journal of Membrane Science,1991,62(2):165-185.
    [18] Robeson L M. The upper bound revisited [J]. Journal of Membrane Science,2008,320(1):390-400.
    [19]李悦生,丁孟贤,徐纪平.聚酰亚胺气体分离膜的进展[M].高分子通报,1991,(3):138.
    [20] Kim T H, Koros W J, Husk G R, et al. Relationship between gas separationproperties and chemical structure in a series of aromatic polyimides [J]. Journalof Membrane Science,1988,37(1):45-62.
    [21] Stern S A, Mi Y, Yamamoto H, et al. Structure/permeability relationships ofpolyimide membranes. Applications to the separation of gas mixtures [J]. Journalof Polymer Science Part B: Polymer Physics,1989,27(9):1887-1909.
    [22] Cho Y J, Park H B. High performance polyimide with high internal free volumeelements [J]. Macromolecular rapid communications,2011,32(7):579-586.
    [23]谭正德,赵小柱.聚芳醚砜膜的研究[J].湖南工程学院学报:自然科学版,2003,13(1):84-87.
    [24] Wang Z, Chen T, Xu J. Gas transport properties of a series of cardopolyarylethers [J]. Journal of applied polymer science,2002,83(4):791-801.
    [25] Hirose M, Ito H, Kamiyama Y. Effect of skin layer surface structures on the fluxbehaviour of RO membranes [J]. Journal of Membrane Science,1996,121(2):209-215.
    [26] Pinnau I, Toy L G. Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)[J]. Journal of Membrane Science,1996,116(2):199-209.
    [27] Nagai K, Masuda T, Nakagawa T, et al. Poly [1-(trimethylsilyl)-1-propyne] andrelated polymers: synthesis, properties and functions [J]. Progress in PolymerScience,2001,26(5):721-798.
    [28] Pinnau I, Casillas C G, Morisato A, et al. Hydrocarbon/hydrogen mixed gaspermeation in poly(1-trimethylsilyl-1-propyne)(PTMSP), poly(1-phenyl-1-propyne)(PPP), and PTMSP/PPP blends [J]. Journal of Polymer Science Part B:Polymer Physics,1996,34(15):2613-2621.
    [29] Hu Y, Shiotsuki M, Sanda F, et al. Synthesis and properties of indan-basedpolyacetylenes that feature the highest gas permeability among all the existingpolymers [J]. Macromolecules,2008,41(22):8525-8532.
    [30]周琪,张俐娜.气体分离膜研究进展[J].化学通报,2001,1:18-25.
    [31] Budd P M, Ghanem B S, Makhseed S, et al. Polymers of intrinsic microporosity(PIMs): robust, solution-processable, organic nanoporous materials [J]. Chemicalcommunications,2004(2):230-231.
    [32] McKeown N B, Budd P M, Msayib K J, et al. Polymers of intrinsicmicroporosity (PIMs): bridging the void between microporous and polymericmaterials [J]. Chemistry-A European Journal,2005,11(9):2610-2620.
    [33] Budd P M, Msayib K J, Tattershall C E, et al. Gas separation membranes frompolymers of intrinsic microporosity [J]. Journal of Membrane Science,2005,251(1):263-269.
    [34] Budd P M, McKeown N B, Ghanem B S, et al. Gas permeation parameters andother physicochemical properties of a polymer of intrinsic microporosity:Polybenzodioxane PIM-1[J]. Journal of Membrane Science,2008,325(2):851-860.
    [35] Ghanem B S, McKeown N B, Budd P M, et al. Synthesis, characterization, andgas permeation properties of a novel group of polymers with intrinsicmicroporosity: PIM-polyimides [J]. Macromolecules,2009,42(20):7881-7888.
    [36] Emmler T, Heinrich K, Fritsch D, et al. Free volume investigation of polymers ofintrinsic microporosity (PIMs): PIM-1and PIM1copolymers incorporatingethanoanthracene units [J]. Macromolecules,2010,43(14):6075-6084.
    [37] Du N, Robertson G P, Pinnau I, et al. Polymers of Intrinsic Microporosity withDinaphthyl and Thianthrene Segments [J]. Macromolecules,2010,43(20):8580-8587.
    [38] Du N, Robertson G P, Song J, et al. Polymers of Intrinsic MicroporosityContaining Trifluoromethyl and Phenylsulfone Groups as Materials forMembrane Gas Separation [J]. Macromolecules,2008,41(24):9656-9662.
    [39] Du N, Park H B, Robertson G P, et al. Polymer nanosieve membranes forCO2-capture applications [J]. Nature materials,2011,10(5):372-375.
    [40] Johnson B M, Baker R W, Matson S L, et al. Liquid membranes for theproduction of oxygen-enriched air: II. Facilitated-transport membranes [J].Journal of membrane science,1987,31(1):31-67.
    [41] Figoli A, Sager W F C, Mulder M H V. Facilitated oxygen transport in liquidmembranes: review and new concepts [J]. Journal of Membrane Science,2001,181(1):97-110.
    [42] Nishide H, Kawakami H, Suzuki T, et al. Effect of polymer matrix on the oxygendiffusion via a cobalt porphyrin fixed in a membrane [J]. Macromolecules,1991,24(23):6306-6309.
    [43] Suzuki T, Yasuda H, Nishide H, et al. Electrochemical measurement offacilitated oxygen transport through a polymer membrane containingcobaltporphyrin as a fixed carrier [J]. Journal of membrane science,1996,112(2):155-160.
    [44] Nishide H, Kawakami H, Sasame Y, et al. Facilitated transport of molecularoxygen in cobaltporphyrin/poly (1‐trimethylsilyl‐1‐propyne) membrane [J].Journal of Polymer Science Part A: Polymer Chemistry,1992,30(1):77-82.
    [45]黄兴溢,唐建国,王瑶.由银盐促进烯烃输送的聚合物复合膜[J].化学通报,2005,68(1).
    [46] Sungpet A, Way J D, Koval C A, et al. Silver doped Nafion-poly (pyrrole)membranes for facilitated permeation of liquid-phase olefins [J]. Journal ofMembrane Science,2001,189(2):271-279.
    [47] Choi S, Kim J H, Kang Y S. Wide-angle X-ray scattering studies on thestructural properties of polymer electrolytes containing silver ions [J].Macromolecules,2001,34(26):9087-9092.
    [48] Hong S U, Jin J H, Won J, et al. Polymer–salt complexes containing silver ionsand their application to facilitated olefin transport membranes [J]. AdvancedMaterials,2000,12(13):968-971.
    [49] Merkel T C, Blanc R, Zeid J, et al. Separation of Olefin/Paraffin Mixtures withCarrier Facilitated Membrane Final Report [R]. Membrane Technology andResearch, Inc., Menlo Park, CA,2007.
    [50] Jose B, Ryu J H, Kim Y J, et al. Effect of plasticizers on the formation of silvernanoparticles in polymer electrolyte membranes for olefin/paraffin separation[J].Chemistry of materials,2002,14(5):2134-2139.
    [51] Hun Park H, Won J, Oh S G, et al. Effect of nonionic-n-octylβ-d-glucopyranoside surfactant on the stability improvement of silver polymerelectrolyte membranes for olefin/paraffin separation [J]. Journal of membranescience,2003,217(1):285-293.
    [52] Yampolskii Y. Polymeric Gas Separation Membranes [J]. Macromolecules2012,45(8):3298-3311.
    [53] Merkel T C, Freeman B D, Spontak R J, et al. Ultrapermeable, reverse-selectivenanocomposite membranes [J]. Science,2002,296(5567):519-522.
    [54] Moaddeb M, Koros W J. Gas transport properties of thin polymeric membranesin the presence of silicon dioxide particles [J]. Journal of membrane science,1997,125(1):143-163.
    [55] Hibshman C, Cornelius C J, Marand E. The gas separation effects of annealingpolyimide–organosilicate hybrid membranes [J]. Journal of membrane science,2003,211(1):25-40.
    [56] Higuchi A, Agatsuma T, Uemiya S, et al. Preparation and gas permeation ofimmobilized fullerene membranes [J]. Journal of applied polymer science,2000,77(3):529-537.
    [57] Merkel T C, He Z, Pinnau I, et al. Sorption and transport in poly (2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) containingnanoscale fumed silica [J]. Macromolecules,2003,36(22):8406-8414.
    [58] Winberg P, DeSitter K, Dotremont C, et al. Free volume and interstitialmesopores in silica filled poly (1-trimethylsilyl-1-propyne) nanocomposites [J].Macromolecules,2005,38(9):3776-3782.
    [59] Cong H, Hu X, Radosz M, et al. Brominated poly (2,6-diphenyl-1,4-phenyleneoxide) and its silica nanocomposite membranes for gas separation [J]. Industrial&engineering chemistry research,2007,46(8):2567-2575.
    [60] Cong H, Zhang J, Radosz M, et al. Carbon nanotube composite membranes ofbrominated poly (2,6-diphenyl-1,4-phenylene oxide) for gas separation [J].Journal of Membrane Science,2007,294(1):178-185.
    [61] Moore T T, Koros W J. Non-ideal effects in organic–inorganic materials for gasseparation membranes [J]. Journal of Molecular Structure,2005,739(1):87-98.
    [62] Kwon S M, Kim H S, Kim D Y, et al. Polystyrene composites containingcrosslinked polystyrene‐multiwalled carbon nanotube balls [J]. Journal ofapplied polymer science,2008,110(6):3737-3744.
    [63] Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbonmolecular sieves: I. Preparation and experimental results [J]. Journal ofMembrane Science,2003,211(2):311-334.
    [64] Golemme G, Jansen J C, Muoio D, et al. Membrane Gas Separation [M]. Wiley:Chichester, U.K.,2010; pp113124.
    [65] en D, Kal p lar H, Yilmaz L. Development of polycarbonate based zeolite4Afilled mixed matrix gas separation membranes [J]. Journal of Membrane Science,2007,303(1):194-203.
    [66] Merkel T C, Freeman B D, Spontak R J, et al. Ultrapermeable, reverse-selectivenanocomposite membranes [J]. Science,2002,296(5567):519-522.
    [67] Merkel T C, He Z, Pinnau I, et al. Sorption and transport in poly (2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) containingnanoscale fumed silica [J]. Macromolecules,2003,36(22):8406-8414.
    [68] Hu Q, Marand E, Dhingra S, et al. Poly (amide-imide)/TiO2nano-composite gasseparation membranes: Fabrication and characterization [J]. Journal ofMembrane Science,1997,135(1):65-79.
    [69] Yave W, Peinemann K V, Shishatskiy S, et al. Synthesis, characterization, andmembrane properties of poly (1-trimethylgermyl-1-propyne) and itsnanocomposite with TiO2[J]. Macromolecules,2007,40(25):8991-8998.
    [70] Kwon S M, Kim H S, Kim D Y, et al. Polystyrene composites containingcrosslinked polystyrene‐multiwalled carbon nanotube balls[J]. Journal ofapplied polymer science,2008,110(6):3737-3744.
    [71] Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbonmolecular sieves: I. Preparation and experimental results[J]. Journal ofMembrane Science,2003,211(2):311-334.
    [72] Duval J M, Folkers B, Mulder M H V, et al. Adsorbent filled membranes for gasseparation. Part1. Improvement of the gas separation properties of polymericmembranes by incorporation of microporous adsorbents [J]. Journal ofMembrane Science,1993,80(1):189-198.
    [73] Jia M, Peinemann K V, Behling R D. Molecular sieving effect of thezeolite-filled silicone rubber membranes in gas permeation [J]. Journal ofmembrane science,1991,57(2):289-292.
    [74] Paul D R, Kemp D R. The diffusion time lag in polymer membranes containingadsorptive fillers [C]//Journal of Polymer Science: Polymer Symposia. WileySubscription Services, Inc., A Wiley Company,1973,41(1):79-93.
    [75] Jiang L Y, Chung T S, Kulprathipanja S. Fabrication of mixed matrix hollowfibers with intimate polymer–zeolite interface for gas separation [J]. AIChEjournal,2006,52(8):2898-2908.
    [76] Mahajan R, Burns R, Schaeffer M, et al. Challenges in forming successful mixedmatrix membranes with rigid polymeric materials [J]. Journal of AppliedPolymer Science,2002,86(4):881-890.
    [77] Kulprathipanja S, Li N N, Neuzil R W. Separation of fluids by means of mixedmatrix membranes: U.S. Patent4,740,219[P].1988-4-26.
    [78] Mahajan R, Koros W J. Factors controlling successful formation of mixed-matrixgas separation materials [J]. Industrial&Engineering Chemistry Research,2000,39(8):2692-2696.
    [79] Keskin S, Sholl D S. Assessment of a Metal Organic Framework Membrane forGas Separations Using Atomically Detailed Calculations: CO2, CH4, N2, H2Mixtures in MOF-5[J]. Industrial&Engineering Chemistry Research,2008,48(2):914-922.
    [80] Perez E V, Balkus Jr K J, Ferraris J P, et al. Mixed-matrix membranes containingMOF-5for gas separations [J]. Journal of Membrane Science,2009,328(1):165-173.
    [81] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [82] Kaneko T, Li Y, Nishigaki S, et al. Azafullerene encapsulated single-walledcarbon nanotubes with n-type electrical transport property [J]. Journal of theAmerican Chemical Society,2008,130(9):2714-2715.
    [83] Peng H. Aligned carbon nanotube/polymer composite films with robustflexibility, high transparency, and excellent conductivity [J]. Journal of theAmerican Chemical Society,2008,130(1):42-43.
    [84] Chen H, Johnson J K, Sholl D S. Transport diffusion of gases is rapid in flexiblecarbon nanotubes [J]. The Journal of Physical Chemistry B,2006,110(5):1971-1975.
    [85] Kim S, Pechar T W, Marand E. Poly (imide siloxane) and carbon nanotubemixed matrix membranes for gas separation [J]. Desalination,2006,192(1):330-339.
    [86] Kim S, Chen L, Johnson J K, et al. Polysulfone and functionalized carbonnanotube mixed matrix membranes for gas separation: theory and experiment [J].Journal of Membrane Science,2007,294(1):147-158.
    [87] Ismail A F, Rahim N H, Mustafa A, et al. Gas separation performance ofpolyethersulfone/multi-walled carbon nanotubes mixed matrix membranes [J].Separation and Purification Technology,2011,80(1):20-31.
    [88] Lin H Q, Matteucci S, Freeman B D, et al. Novel membrane materials for CO2removal from mixtures with H2[C]//ABSTRACTS OF PAPERS OF THEAMERICAN CHEMICAL SOCIETY.115516TH ST, NW, WASHINGTON,DC20036USA: AMER CHEMICAL SOC,2005,230: U1669-U1669.
    [89] Hosseini S S, Li Y, Chung T S, et al. Enhanced gas separation performance ofnanocomposite membranes using MgO nanoparticles [J]. Journal of MembraneScience,2007,302(1):207-217.
    [90] Kong Y, Du H, Yang J, et al. Study on polyimide/TiO2nanocompositemembranes for gas separation [J]. Desalination,2002,146(1):49-55.
    [91] Chen Y, Wang R, Zhou J, et al. Membrane formation temperature-dependent gastransport through thermo-sensitive polyurethane containing in situ-generatedTiO2nanoparticles [J]. Polymer,2011,52(8):1856-1867.
    [1] Liu B, Dai Y, Robertson G P, et al. A comparative structure–property study ofmethylphenylated and fluoromethylphenylated poly (aryl ethers) and their gaspermeabilities and permselectivities [J]. Polymer,2005,46(25):11279-11287.
    [2] Qiao Z, Wang Z, Zhao S, et al. High adsorption performance polymers modifiedby small molecules containing functional groups for CO2separation [J]. RSCAdvances,2013,3(1):50-54.
    [3] Stoltenberg D, Seidel-Morgenstern A. An attempt to alter the gas separation ofmesoporous glass membranes by amine modification [J]. Microporous andmesoporous materials,2012,154:148-152.
    [4] Cai Y, Wang Z, Yi C, et al. Gas transport property of polyallylamine–poly (vinylalcohol)/polysulfone composite membranes [J]. Journal of Membrane Science,2008,310(1):184-196.
    [5] Matsuyama H, Terada A, Nakagawara T, et al. Facilitated transport of CO2throughpolyethylenimine/poly (vinyl alcohol) blend membrane [J]. Journal of MembraneScience,1999,163(2):221-227.
    [6]任建楠.磺化聚芳醚砜/二氧化硅杂化质子交换膜的制备及性能研究[D].吉林大学博士论文,2013.
    [7]王贵宾.含氟聚芳醚酮的研究[D].吉林大学博士论文,2000.
    [8] Liu B, Wang G, Hu W, et al. Poly (aryl ether ketone) s with (3-methyl) phenyl and(3-trifluoromethyl) phenyl side groups [J]. Journal of polymer science part A:polymer chemistry,2002,40(20):3392-3398.
    [1] Merkel T C, Freeman B D, Spontak R J, et al. Ultrapermeable, reverse-selectivenanocomposite membranes [J]. Science,2002,296(5567):519-522.
    [2] Moaddeb M, Koros W J. Gas transport properties of thin polymeric membranes inthe presence of silicon dioxide particles [J]. Journal of membrane science,1997,125(1):143-163.
    [3] Hibshman C, Cornelius C J, Marand E. The gas separation effects of annealingpolyimide–organosilicate hybrid membranes [J]. Journal of membrane science,2003,211(1):25-40.
    [4] Higuchi A, Agatsuma T, Uemiya S, et al. Preparation and gas permeation ofimmobilized fullerene membranes [J]. Journal of applied polymer science,2000,77(3):529-537.
    [5] Merkel T C, He Z, Pinnau I, et al. Sorption and transport in poly (2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) containingnanoscale fumed silica [J]. Macromolecules,2003,36(22):8406-8414.
    [6] Winberg P, DeSitter K, Dotremont C, et al. Free volume and interstitial mesoporesin silica filled poly (1-trimethylsilyl-1-propyne) nanocomposites [J].Macromolecules,2005,38(9):3776-3782.
    [7] Ma X, Swaidan R, Belmabkhout Y, et al. Synthesis and gas transport properties ofhydroxyl-functionalized polyimides with intrinsic microporosity [J].Macromolecules,2012,45(9):3841-3849.
    [8] S.H. Kim, S.Y. Kwak, B.H. Sohn, T.H. Park, Design of TiO2nanoparticleselfassembled aromatic polyamide thin-film-composition (TFC) membrane as anapproach to solve biofouling problem [J] J. Membr. Sci.211(2003)157–165.
    [9] Abedini R, Mousavi S M, Aminzadeh R. A novel cellulose acetate (CA) membraneusing TiO2nanoparticles: Preparation, characterization and permeation study [J].Desalination,2011,277(1):40-45.
    [10] Cong H, Hu X, Radosz M, et al. Brominated poly (2,6-diphenyl-1,4-phenyleneoxide) and its silica nanocomposite membranes for gas separation [J]. Industrial&engineering chemistry research,2007,46(8):2567-2575.
    [11] Ma X, Swaidan R, Belmabkhout Y, et al. Synthesis and gas transport propertiesof hydroxyl-functionalized polyimides with intrinsic microporosity [J].Macromolecules,2012,45(9):3841-3849.
    [12] Robeson L M. Correlation of separation factor versus permeability for polymericmembranes [J]. Journal of Membrane Science,1991,62(2):165-185.
    [13] Robeson L M. The upper bound revisited [J]. Journal of Membrane Science,2008,320(1):390-400.
    [1]周亮,刘吉平,李晓合.碳纳米管的纯化[J].化学通报,2004,67(2):96-103.
    [2]郭晓燕,彭倚天,胡元中,王慧.基于碳纳米管的LB膜制备技术[J]. Nanotechnology and Precision Engineering.2008,6,(5).
    [3]王静荣,谢华清.溶液共混法制备聚氨酯/碳纳米管复合材料及其性能[J].玻璃钢/复合材料,2009(6):35-38.
    [1] Liu B, Wang G, Hu W, et al. Poly (aryl ether ketone) s with (3‐methyl) phenyl and(3‐trifluoromethyl) phenyl side groups [J]. Journal of polymer science part A:polymer chemistry,2002,40(20):3392-3398.
    [2] Radovanovic P, Thiel S W, Hwang S T. Formation of asymmetric polysulfonemembranes by immersion precipitation. Part II. The effects of casting solution andgelation bath compositions on membrane structure and skin formation [J]. Journalof membrane science,1992,65(3):231-246.
    [3] Smolders C A, Reuvers A J, Boom R M, et al. Microstructures in phase-inversionmembranes. Part1. Formation of macrovoids [J]. Journal of Membrane Science,1992,73(2):259-275.
    [4] Jansen J C, Macchione M, Drioli E. High flux asymmetric gas separationmembranes of modified poly (ether ether ketone) prepared by the dry phaseinversion technique [J]. Journal of membrane science,2005,255(1):167-180.
    [5] Jansen J C, Buonomenna M G, Figoli A, et al. Asymmetric membranes ofmodified poly (ether ether ketone) with an ultra-thin skin for gas and vapourseparations [J]. Journal of membrane science,2006,272(1):188-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700