用户名: 密码: 验证码:
长链支化聚乳酸和增韧改性聚乳酸共混物的制备、结构表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(PLA)是一类热塑性脂肪族聚酯材料,具有生物降解性,生物相容性,较均衡的力学性能和可加工性等优点,被认为是最有潜力替代石油基聚合物的生物质材料。然而,聚乳酸也有些与生俱来的缺点,包括熔体强度低、结晶速度慢、韧性差等,严重限制了其应用范围。本论文工作中,针对聚乳酸的缺点,对其进行长链支化和共混增韧改性研究,提升了相关性能,为拓展其应用领域提供解决方案。同时,详细深入研究拓扑链结构改性,外加流动场,增韧改性剂与聚乳酸材料的各项性能之间关系,认识和理解其中的科学本质。主要内容包括以下四个部分:
     1.通过线性聚乳酸和三官能度单体三羟甲氧基丙烷三丙烯酸酯(TMPTA)共混,然后进行伽马射线辐射,引发自由基反应,在体系中引入长链支化结构,制备高熔体强度聚乳酸材料。黏度、储能模量、损耗角和Cole-Cole图等流变学特性显示长链支化聚乳酸(LCB PLA)的熔体强度获得了提高。同时,研究了长链支化结构的引入对拉伸流变性质的影响,长链支化聚乳酸样品展现出应变硬化的特性。发泡实验的研究表明,熔体强度的提升有利于提高聚乳酸的发泡能力。
     2.采用配备多角度光散射检测器的体积排除色谱(SEC-MALLS)和流变学参数分析法研究LCB PLA的拓扑链结构。SEC-MALLS测试表明,伽马射线辐射法制备的长链支化聚乳酸不仅有较高的重均分子量而且是由短的线性链组分和长支化链组分组成的二元链结构。通过热流变行为和活化能研究,长链支化聚乳酸的二元链结构特征被进一步确认。零剪切黏度与重均分子量的依赖关系(η0-MW图)表明长链支化聚乳酸是树枝状的拓扑结构。伽马射线辐射的剂量率显著低于电子束辐射的特点可以解释两种辐射条件导致不同链结构的原因。
     3.采用旋转流变仪和偏光显微镜研究长链支化结构在聚乳酸剪切诱导等温结晶过程中对成核密度提高和结晶形态演变的影响。剪切诱导等温结晶动力学结果表明,与静态条件相比,剪切作用显著地促进结晶过程且随着剪切时间的增加,结晶动力学加速明显。同一条件下,LCB PLA比线性PLA结晶速率更快。线性PLA和LCB PLA都存在着剪切时间对结晶动力学提高的饱和效应。原位偏光显微镜观察表明,相比于线性PLA,LCB PLA不仅具有在恒定剪切时间下更高的成核密度和较低的球晶生长速率,而且在足够长的剪切时间下形成了“shish-kebab"结构。LCB PLA在剪切作用下表现出的促进成核密度增加以及从球晶到"shish-kebab"结构的形态转变可归因于其拓宽且复杂的链段松弛行为。
     4.应用反应共混方法制备了具有生物相容和可降解性的高韧性聚乳酸和交联聚乙二醇二丙烯酸酯共混物。扭矩分析和FT-IR谱图证实聚乙二醇二丙烯酸酯(PEGDA)的原位交联反应是由丙烯酸酯基团按照自由基聚合机理进行的。差示扫描量热仪(DSC)和相差显微镜(PCOM)结果表明PEGDA原位聚合反应导致共混物呈现相分离的形貌结构,其中交联PEGDA为分散相,PLA为连续相。随着交联PEGDA含量提高,共混物熔体的黏度和弹性逐渐提高,当含量为15wt%时达到流变逾渗值。体系中引入交联PEGDA对PLA的结晶度影响很小,但力学性能获得很大的提升。分散相表面悬挂的PEG链段和两相间酯交换产物是获得有效界面相容性的主要原因。
Polylactide (PLA) is a type of aliphatic thermoplastic polyester and possesses a number of interesting properties including biodegradability, biocompatibility, sufficient mechanical properties, and processability, which make it become one of the most competitive and promising candidates to substitute some petroleum-based polymers in future applications. However, PLA shows some inherent drawbacks including poor melt strength, low crystallization kinetics and brittleness. In this thesis, a series of studies is presented in an attempt to overcome these drawbacks of PLA and extend its application. Meanwhile, the thesis provides further scientific insights into the roles of chain topological modification, external flow field and toughening modifier on the properties of PLA. Main content includes four aspects:
     1. An easy procedure was applied to prepare high melt strength polylactide (PLA), which involved gamma radiation induced free radical reactions to introduce long chain branched structure on linear PLA precursor with addition of a trifunctional monomer, trimethylolpropane triacrylate (TMPTA). Various rheological plots including viscosity curve, storage modulus, loss angle and Cole-Cole plot are used to distinguish the improved melt strength for LCB PLA samples. The effect of LCB structure on elongational rheological properties is further investigated. The LCB PLA samples demonstrate the enhancement of strain-hardening under elongational flow. The enhanced melt strength substantially improves the foaming performance of LCB PLA samples.
     2. The topological structures of LCB PLA were investigated by SEC-MALLS and rheological analysis. SEC-MALLS measurements show that LCB PLA exhibits not only the increased weight-average molecular mass but also a bimodal architecture with a short linear chain fraction and a LCB fraction. By the analysis of the thermorheological behaviors and determination of activation energies, the bimodal architecture is confirmed. A conclusion with respect to the tree-like topography for LCB PLA samples is drawn from the molecular mass dependences of zero-shear viscosity (ηo-Mw, plot). An explanation to these findings is provided under the consideration of the radiation dose rate for the gamma radiation.
     3. The effects of long chain branching on the nucleation density enhancements and morphological evolution for polylactide (PLA) materials during shear-induced isothermal crystallization process were thoroughly investigated by using rotational rheometer and polarized optical microscopy (POM). The results of shear-induced isothermal crystallization kinetics show that the crystallization process under shear is greatly enhanced compared to the quiescent conditions and the crystallization kinetics is accelerated with the increases in shear rate and/or shear time. LCB PLA crystallizes much faster than linear PLA under the same shear condition. A saturation effect of shear time on crystallization kinetics is observed for both linear PLA and LCB PLA. In-situ POM observations demonstrate that LCB PLA not only possesses higher nucleation density under the identical shear time and a constant lower value of spherulitic growth rate compared with that of linear PLA but also forms the shish-kebab structure after sheared for sufficient time. A saturation of nucleation density under shear can be reached for both linear PLA and LCB PLA. The enhancement of nucleation ability and the morphological evolution from the spherulitic to shish-kebab structures induced by shear flow can be ascribed to the broadened and complex relaxation behaviors of LCB PLA.
     4. Super-tough biocompatible and degradable binary blends of polylactide (PLA) and crosslinked poly(ethylene glycol) diacylate (CPEGDA) were fabricated by applying a novel and facile method involving reactive blending of PLA with PEGDA monomer with no addition of exogenous radical initiators. Torque analysis and FT-IR spectra suggest that crosslinking reaction of acylate groups occurs in melt blending process according to the free radical polymerization mechanism. Differential scanning calorimetry (DSC) and phase contrast optical microscopy (PCOM) results indicate the in-situ polymerization of PEGDA leads to a phase separated morphology with crosslinked PEGDA as the dispersion phase domains and PLA matrix as the continuous phase. The blends show increasing viscosity and elasticity with increasing crosslinked PEGDA content with a rheological percolation crosslinked PEGDA content of15wt%. Introduction of crosslinked PEGDA shows little effect on crystallinity of PLA in the blends. Mechanical properties of these blends are improved significantly. The effective interfacial compatibility is achieved by the dangling PEG chains and transesterification reactions at the interfaces between crosslinked PEGDA particles and PLA matrix.
引文
[1]Gross, R. A.; Kalra, B., Biodegradable polymers for the environment. Science 2002,297,803-807.
    [2]Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S., Poly-lactic acid:production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety 2010,9,552-571.
    [3]Williams, C. K.; Hillmyer, M. A., Polymers from renewable resources:A perspective for a special issue of polymer reviews. Polymer Reviews 2008,48, 1-10.
    [4]Lunt, J., Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability 1998,59,145-152.
    [5]Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Sodergard, A., From lactic acid to poly(lactic acid) (PLA):Characterization and analysis of PL A and its precursors. Biomacromolecules 2011,12,523-532.
    [6]K. Enomoto, M. A., A. Yamaguchi, US Patent 5310865,1995. T.; Kashima, T. K., M. Ajioka, A. Yamaguchi, US Patent 5428126,; 1995. F. Ichikawa, M. K., M. Ohta, Y. Yoshida, S. Obuchi, H. Itoh,; US Patent 5440008, M. O., Y. Yoshida, S. Obuchi, Y Yoshida, US; Patent 5440143.
    [7]Drumright, R. E.; Gruber, P. R.; Henton, D. E., Polylactic acid technology. Advanced Materials 2000,12,1841-1846.
    [8]Urayama, H.; Moon, S. I.; Kimura, Y, Micro structure and thermal properties of polylactides with different L-and D-unit sequences:Importance of the helical nature of the L-sequenced segments. Macromolecular Materials and Engineering 2003,288,137-143.
    [9]Sarasua, J.; Arraiza, A. L.; Balerdi, P.; Maiza, I., Crystallinity and mechanical properties of optically pure polylactides and their blends. Polymer Engineering & Science 2005,45,745-753.
    [10]Andersson, S. R.; Hakkarainen, M.; Inkinen, S.; Sodergard, A,; Albertsson, A. C., Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 2012,13,1212-1222.
    [11]Dorgan, J. R.; Lehermeier, H. J.; Palade, L. I.; Cicero, J. In Polylactides: properties and prospects of an environmentally benign plastic from renewable resources, Macromolecular Symposia,2001; Wiley Online Library:2001; pp 55-66.
    [12]Gupta, B.; Revagade, N.; Hilborn, J., Poly (lactic acid) fiber:an overview. Progress in polymer science 2007,32,455-482.
    [13]Lim, L. T.; Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Progress in polymer science 2008,33,820-852.
    [14]Vink, E. T. H.; Rabago, K. R.; Glassner, D. A.; Gruber, P. R., Applications of life cycle assessment to NatureWorkTM polylactide (PLA) production. Polymer Degradation and Stability 2003,80,403-419.
    [15]Dorgan, J. R.; Williams, J. S.; Lewis, D. N., Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. Journal of Rheology 1999,43, 1141-1155.
    [16]Cooper-White, J. J.; Mackay, M. E., Rheological properties of poly(lactides). Effect of molecular weight and temperature on the viscoelasticity of poly(1-lactic acid). Journal of Polymer Science Part B-Polymer Physics 1999,37,1803-1814.
    [17]Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Hait, S. B.; Knauss, D. M., Melt rheology of variable L-content poly(lactic acid). Journal of Rheology 2005,49, 607-619.
    [18]Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B., Poly(lactic acid) crystallization. Progress in polymer science 2012,37,1657-1677.
    [19]Liu, G.; Zhang, X.; Wang, D., Tailoring crystallization:towards high-performance poly(lactic acid). Adv Mater 2014.
    [20]Huang, J.; Lisowski, M. S.; Runt, J.; Hall, E. S.; Kean, R. T.; Buehler, N.; Lin, J., Crystallization and microstructure of poly (1-lactide-co-meso-lactide) copolymers. Macromolecules 1998,31,2593-2599.
    [21]Baratian, S.; Hall, E.; Lin, J.; Xu, R.; Runt, J., Crystallization and solid-state structure of random polylactide copolymers:poly (1-lactide-co-d-lactide) s. Macromolecules 2001,34,4857-4864.
    [22]Tonelli, A. E.; Flory, P. J., The configurational statistics of random poly (lactic acid) chains. I. Experimental results. Macromolecules 1969,2,225-227.
    [23]Grijpma, D.; Penning, J.; Pennings, A., Chain entanglement, mechanical properties and drawability of poly (lactide). Colloid and Polymer Science 1994, 272,1068-1081.
    [24]Liu, H.; Chen, N.; Fujinami, S.; Louzguine-Luzgin, D.; Nakajima, K.; Nishi, T., Quantitative nanomechanical investigation on deformation of poly(lactic acid). Macromolecules 2012,45,8770-8779.
    [25]Wu, D.; Zhang, Y.; Zhang, M.; Zhou, W., Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. European Polymer Journal 2008,44,2171-2183.
    [26]Simoes, C. L.; Viana, J. C.; Cunha, A. M., Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. Journal of Applied Polymer Science 2009,112,345-352.
    [27]Zhang, J.; Li, G.; Su, Y.; Qi, R.; Ye, D.; Yu, J.; Huang, S., High-viscosity polylactide prepared by in situ reaction of carboxyl-ended polyester and solid epoxy. Journal of Applied Polymer Science 2012,123,2996-3006.
    [28]Lu, J.; Qiu, Z.; Yang, W., Fully biodegradable blends of poly(1-lactide) and poly(ethylene succinate):Miscibility, crystallization, and mechanical properties. Polymer 2007,48,4196-4204.
    [29]Xu, Z.; Niu, Y.; Yang, L.; Xie, W.; Li, H.; Gan, Z.; Wang, Z., Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 2010,51,730-737.
    [30]Malmberg, A.; Liimatta, J.; Lehtinen, A.; Lofgren, B., Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 1999,32,6687-6696.
    [31]Malmberg, A.; Kokko, E.; Lehmus, P.; Lofgren, B.; Seppala, J. V., Long-chain branched polyethene polymerized by metallocene catalysts Et [Ind] 2ZrC12/MAO and Et [IndH4] 2ZrCl2/MAO. Macromolecules 1998,31,8448-8454.
    [32]Ramachandran, R.; Beaucage, G.; Kulkarni, A. S.; McFaddin, D.; Merrick-Mack, J.; Galiatsatos, V., Branch content of metallocene polyethylene. Macromolecules 2009,42,4746-4750.
    [33]Podzimek, S.; Vlcek, T.; Johann, C., Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers. Journal of Applied Polymer Science 2001,81,1588-1594.
    [34]Wood-Adams, P. M.; Dealy, J. M.; deGroot, A. W.; Redwine, O. D., Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 2000,33,7489-7499.
    [35]Wood-Adams, P.; Costeux, S., Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 2001,34, 6281-6290.
    [36]Carella, J. M.; Gotro, J. T.; Graessley, W. W., Thermorheological effects of long-chain branching in entangled polymer melts. Macromolecules 1986,19,659-667.
    [37]Stadler, F. J.; Kaschta, J.; Munstedt, H., Thermorheological behavior of various long-chain branched polyethylenes. Macromolecules 2008,41,1328-1333.
    [38]Keβiner, U.; Munstedt, H., Thermorheology as a method to analyze long-chain branched polyethylenes. Polymer 2010,51,507-513.
    [39]Tian, J.; Yu, W.; Zhou, C., The preparation and rheology characterization of long chain branching polypropylene. Polymer 2006,47,7962-7969.
    [40]Auhl, D.; Stadler, F. J.; Miinstedt, H., Comparison of molecular structure and rheological properties of electron-beam-and gamma-irradiated polypropylene. Macromolecules 2012,45,2057-2065.
    [41]Ahn, S.; Lee, H.; Lee, S.; Chang, T., Characterization of branched polymers by comprehensive two-dimensional liquid chromatography with triple detection. Macromolecules 2012,45,3550-3556.
    [42]Edam, R.; Meunier, D.; Mes, E.; Van Damme, F.; Schoenmakers, P., Branched-polymer separations using comprehensive two-dimensional molecular-topology fractionationx size-exclusion chromatography. Journal of Chromatography A 2008,1201,208-214.
    [43]Vilaplana, F.; Gilbert, R. G., Two-dimensional size/branch length distributions of a branched polymer. Macromolecules 2010,43,7321-7329.
    [44]Hutchings, L. R., Complex branched polymers for structure-property correlation studies:The case for temperature gradient interaction chromatography analysis. Macromolecules 2012,45,5621-5639.
    [45]Larson, R., Combinatorial rheology of branched polymer melts. Macromolecules 2001,34,4556-4571.
    [46]Raju, V.; Smith, G.; Marin, G.; Knox, J.; Graessley, W., Properties of amorphous and crystallizable hydrocarbon polymers. I. Melt rheology of fractions of linear polyethylene. Journal of Polymer Science:Polymer Physics Edition 1979,17, 1183-1195.
    [47]Rachapudy, H.; Smith, G.; Raju, V.; Graessley, W., Properties of amorphous and crystallizable hydrocarbon polymers. III. Studies of the hydrogenation of polybutadiene. Journal of Polymer Science:Polymer Physics Edition 1979,17, 1211-1222.
    [48]Wood-Adams, P. M.; Dealy, J. M., Using rheological data to determine the branching level in metallocene polyethylenes. Macromolecules 2000,33,7481-7488.
    [49]Munstedt, H., Rheological properties and molecular structure of polymer melts. Soft Matter 2011,7,2273-2283.
    [50]Kessner, U.; Kaschta, J.; Stadler, F. J.; Le Duff, C. S.; Drooghaag, X.; Munstedt, H., Thermorheological behavior of various short-and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 2010,43,7341-7350.
    [51]Nofar, M.; Zhu, W.; Park, C. B.; Randall, J., Crystallization kinetics of linear and long-chain-branched polylactide. Industrial& Engineering Chemistry Research 2011,50,13789-13798.
    [52]Liu, J.; Zhang, S.; Zhang, L.; Bai, Y., Crystallization behavior of long-chain branching polylactide. Industrial & engineering chemistry research 2012,51, 13670-13679.
    [53]Arvanitoyannis, I.; Nakayama, A.; Kawasaki, N.; Yamamoto, N., Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1. Synthesis, characterization and study of their biodegradability. Polymer 1995,36,2947-2956.
    [54]Ouchi, T.; Ichimura, S.; Ohya, Y, Synthesis of branched poly (lactide) using polyglycidol and thermal, mechanical properties of its solution-cast film. Polymer 2006,47,429-434.
    [55]Pitet, L. M.; Hait, S. B.; Lanyk, T. J.; Knauss, D. M., Linear and branched architectures from the polymerization of lactide with glycidol. Macromolecules 2007,40,2327-2334.
    [56]Kricheldorf, H. R.; Hachmann-Thiessen, H.; Schwarz, G., Telechelic and star-shaped poly (L-lactide) s by means of bismuth (III) acetate as initiator. Biomacromolecules 2004,5,492-496.
    [57]Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y, Rheology and crystallization of long-chain branched poly (1-lactide) s with controlled branch length. Industrial & engineering chemistry research 2012,51,10731-10741.
    [58]Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y, Blends of linear and long-chain branched poly (L-lactide) s with high melt strength and fast crystallization rate. Industrial & engineering chemistry research 2012,51, 10088-10099.
    [59]Corre, Y M.; Duchet, J.; Reignier, J.; Maazouz, A., Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheologica Acta 2011,50,613-629.
    [60]Mihai, M.; Huneault, M. A.; Favis, B. D., Rheology and extrusion foaming of chain-branched poly (lactic acid). Polymer engineering and science 2010,50, 629-642.
    [61]Liu, J. Y.; Lou, L. J.; Yu, W.; Liao, R. G.; Li, R. M.; Zhou, C. X., Long chain branching polylactide:Structures and properties. Polymer 2010,51,5186-5197.
    [62]Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y, Rheology and crystallization of long-chain branched poly(l-lactide)s with controlled branch length. Industrial & Engineering Chemistry Research 2012,51,10731-10741.
    [63]You, J.; Lou, L.; Yu, W.; Zhou, C, The preparation and crystallization of long chain branching polylactide made by melt radicals reaction. Journal of Applied Polymer Science 2013,129,1959-1970.
    [64]Takamura, M.; Sugimoto, M.; Kawaguchi, S.; Takahashi, T.; Koyama, K., Influence of extrusion temperature on molecular architecture and crystallization behavior of peroxide-induced slightly crosslinked poly (L-lactide) by reactive extrusion. Journal of Applied Polymer Science 2012,123,1468-1478.
    [65]Wang, Y B.; Yang, L.; Niu, Y H.; Wang, Z. G.; Zhang, J.; Yu, F. Y.; Zhang, H. B., Rheological and topological characterizations of electron beam irradiation prepared long-chain branched polylactic acid. Journal of Applied Polymer Science 2011,122,1857-1865.
    [66]汪永斌,牛艳华,杨靓,于逢源,张洪斌,王志刚,长链聚乳酸的多重松弛行为.高等学校化学学报2010,31,397-401.
    [67]Eder, G.; Janeschitzkriegl, H.; Liedauer, S., Crystallization processes in quiescent and moving polymer melts under heat-transfer conditions. Progress in Polymer Science 1990,15,629-714.
    [68]Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L., Unexpected shish-kebab structure in a sheared polyethylene melt. Physical Review Letters 2005,94.
    [69]Huo, H.; Jiang, S. C.; An, L. J.; Feng, J. C., Influence of shear on crystallization behavior of the beta phase in isotactic polypropylene with beta-nucleating agent. Macromolecules 2004,37,2478-2483.
    [70]Lotz, B., What can polymer crystal structure tell about polymer crystallization processes? European Physical Journal E 2000,3,185-194.
    [71]Mackley, M. R.; Keller, A., Flow induced crystallization of polyethylene melts. Polymer 1973,14,16-20.
    [72]Somani, R. H.; Hsiao, B. S.; Nogales, A.; Srinivas, S.; Tsou, A. H.; Sics, I.; Balta-Calleja, F. J.; Ezquerra, T. A., Structure development during shear flow-induced crystallization of i-PP:In-situ small-angle X-ray scattering study. Macromolecules 2000,33,9385-9394.
    [73]Zhmayev, E.; Cho, D.; Joo, Y. L., Modeling of melt electrospinning for semi-crystalline polymers. Polymer 2010,51,274-290.
    [74]Balzano, L.; Kukalyekar, N.; Rastogi, S.; Peters, G. W. M.; Chadwick, J. C., Crystallization and dissolution of flow-induced precursors. Physical Review Letters 2008,100,048302.
    [75]Koscher, E.; Fulchiron, R., Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer 2002,43,6931-6942.
    [76]Housmans, J.-W.; Steenbakkers, R. J. A.; Roozemond, P. C.; Peters, G. W. M.; Meijer, H. E. H., Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 2009,42,5728-5740.
    [77]Janeschitz-Kriegl, H.; Ratajski, E.; Stadlbauer, M., Flow as an effective promotor of nucleation in polymer melts:a quantitative evaluation. Rheologica Acta 2003, 42,355-364.
    [78]Meerveld, J.; Peters, G. W. M.; Hutter, M., Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheologica Acta 2004,44,119-134.
    [79]Seki, M.; Thurman, D. W.; Oberhauser, J. P.; Kornfield, J. A., Shear-mediated crystallization of isotactic polypropylene:The role of long chain-long chain overlap. Macromolecules 2002,35,2583-2594.
    [80]Fernandez-Ballester, L.; Thurman, D. W.; Zhou, W. J.; Kornfield, J. A., Effect of long chains on the threshold stresses for flow-induced crystallization in iPP: shish kebabs vs sausages. Macromolecules 2012,45,6557-6570.
    [81]Balzano, L.; Rastogi, S.; Peters, G., Self-nucleation of polymers with flow:The case of bimodal polyethylene. Macromolecules 2011,44,2926-2933.
    [82]Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L., Unexpected shish-kebab structure in a sheared polyethylene melt. Physical review letters 2005,94,117802.
    [83]Balzano, L.; Kukalyekar, N.; Rastogi, S.; Peters, G. W.; Chadwick, J. C., Crystallization and dissolution of flow-induced precursors. Physical review letters 2008,100,048302.
    [84]Agarwal, P. K.; Somani, R. H.; Weng, W.; Mehta, A.; Yang, L.; Ran, S.; Liu, L.; Hsiao, B. S., Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and-WAXD. Macromolecules 2003,36, 5226-5235.
    [85]Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J., Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes. Macromolecules 2006,39,5058-5071.
    [86]Bustos, F.; Cassagnau, P.; Fulchiron, R., Effect of molecular architecture on quiescent and shear-induced crystallization of polyethylene. Journal of Polymer Science Part B:Polymer Physics 2006,44,1597-1607.
    [87]Vega, J. F.; Hristova, D. G.; Peters, G. W. M., Flow-induced crystallization regimes and rheology of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry 2009,98,655-666.
    [88]Kitade, S.; Asuka, K.; Akiba, I.; Sanada, Y.; Sakurai, K.; Masunaga, H., Shear-induced pre-crystallization structures of long chain branched polypropylene under steady shear flow near the melting temperature. Polymer 2013,54,246-257.
    [89]Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y, Blends of linear and long-chain branched poly(1-lactide)s with high melt strength and fast crystallization rate. Industrial & Engineering Chemistry Research 2012,51, 10088-10099.
    [90]Phuphuak, Y.; Chirachanchai, S., Simple preparation of multi-branched poly(1-lactic acid) and its role as nucleating agent for poly(lactic acid). Polymer 2013, 54,572-582.
    [91]Tsuji, H.; Miyase, T.; Tezuka, Y.; Saha, S. K., Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(L-lactide)s. Biomacromolecules 2005,6,244-254.
    [92]Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B., Poly (lactic acid) Crystallization. Progress in Polymer Science 2012.
    [93]Fitz, B. D.; Jamiolkowski, D. D.; Andjelic, S., Tg depression in poly(1(-)-lactide) crystallized under partially constrained conditions. Macromolecules 2002,35, 5869-5872.
    [94]Mahendrasingam, A.; Blundell, D. J.; Parton, M.; Wright, A. K.; Rasburn, J.; Narayanan, T.; Fuller, W., Time resolved study of oriented crystallisation of poly(lactic acid) during rapid tensile deformation. Polymer 2005,46,6009-6015.
    [95]Li, X. J.; Li, Z. M.; Zhong, G. J.; Li, L. B., Steady-shear-induced isothermal crystallization of poly(L-lactide) (PLLA). Journal of Macromolecular Science Part B-Physics 2008,47,511-522.
    [96]Li, X. J.; Zhong, G. J.; Li, Z. M., Non-isothermal crystallization of poly(L-lactide) (plla) under quiescent and steady shear conditions. Chinese Journal of Polymer Science 2010,28,357-366.
    [97]Yamazaki, S.; Itoh, M.; Oka, T.; Kimura, K., Formation and morphology of "shish-like" fibril crystals of aliphatic polyesters from the sheared melt. European Polymer Journal 2010,46,58-68.
    [98]Huang, S. Y.; Li, H. F.; Jiang, S. C.; Chen, X. S.; An, L. J., Crystal structure and morphology influenced by shear effect of poly(L-lactide) and its melting behavior revealed by WAXD, DSC and in-situ POM. Polymer 2011,52,3478-3487.
    [99]Jing, F.; Hillmyer, M. A., A bifunctional monomer derived from lactide for toughening polylactide. Journal of the American Chemical Society 2008,130, 13826-13827.
    [100]Theryo, G.; Jing, F.; Pitet, L. M.; Hillmyer, M. A., Tough polylactide graft copolymers. Macromolecules 2010,43,7394-7397.
    [101]Castillo, J. A.; Borchmann, D. E.; Cheng, A. Y.; Wang, Y.; Hu, C.; Garcia, A. J.; Week, M., Well-defined poly(lactic acid)s containing poly(ethylene glycol) side-chains. Macromolecules 2012,45,62-69.
    [102]Lee, I.; Panthani, T. R.; Bates, F. S., Sustainable poly(lactide-b-butadiene) multiblock copolymers with enhanced mechanical properties. Macromolecules 2013,46,7387-7398.
    [103]Bitinis, N.; Verdejo, R.; Bras, J.; Fortunati, E.; Kenny, J. M.; Torre, L.; Lopez-Manchado, M. A., Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology. Carbohydrate Polymers 2013,96,611-620.
    [104]Bitinis, N.; Fortunati, E.; Verdejo, R.; Bras, J.; Kenny, J. M.; Torre, L.; Lopez-Manchado, M. A., Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II:properties evaluation. Carbohydrate Polymers 2013, 96,621-627.
    [105]Bitinis, N.; Sanz, A.; Nogales, A.; Verdejo, R.; Lopez-Manchado, M. A.; Ezquerra, T. A., Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter 2012,8,8990-8997.
    [106]Chang, K.; Robertson, M. L.; Hillmyer, M. A., Phase inversion in polylactide/soybean oil blends compatibilized by poly(isoprene-b-lactide) block copolymers. ACS Applied Materials & Interfaces 2009,1,2390-2399.
    [107]Robertson, M. L.; Paxton, J. M.; Hillmyer, M. A., Tough blends of polylactide and castor oil. ACS Applied Materials & Interfaces 2011,3,3402-3410.
    [108]Scott, C. E.; Macosko, C. W., Morphology development during reactive and non-reactive blending of an ethylene-propylene rubber with two thermoplastic matrices. Polymer 1994,35,5422-5433.
    [109]Sailer, C.; Handge, U., Reactive blending of polyamide 6 and styrene-acrylonitrile copolymer:Influence of blend composition and compatibilizer concentration on morphology and rheology. Macromolecules 2008,41,4258-4267.
    [110]Pernot, H.; Baumert, M.; Court, F.; Leibler, L., Design and properties of co-continuous nanostructured polymers by reactive blending. Nature Materials 2002,1,54-58.
    [111]Xu,H. J.;Zhang, Y. Q.; Yang, J. J.; Ye, L.; Wu, Q. H.;Qu, B. J.; Wang, Q.; Wang, Z. G., Simultaneous enhancements of toughness and tensile strength for thermoplastic/elastomer blends through interfacial photocrosslinking with UV radiation. Polymer Chemistry 2013,4,3028-3038.
    [112]Jiang, W.; Liu, C. H.; Wang, Z. G.; An, L. J.; Liang, H. J.; Jiang, B. Z.; Wang, X. H.; Zhang, H. X., Brittle-tough transition in PP/EPDM blends:Effects of interparticle distance and temperature. Polymer 1998,39,3285-3288.
    [113]Oyama, H. T., Super-tough poly(lactic acid) materials:Reactive blending with ethylene copolymer. Polymer 2009,50,747-751.
    [114]Bhardwaj, R.; Mohanty, A. K., Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 2007,8, 2476-2484.
    [115]Liu, H.; Chen, F.; Liu, B.; Estep, G.; Zhang, J., Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 2010,43,6058-6066.
    [116]Liu, H.; Song, W.; Chen, F.; Guo, L.; Zhang, J., Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011,44,1513-1522.
    [117]Liu, H.; Guo, X.; Song, W.; Zhang, J., Effects of metal ion type on ionomer-assisted reactive toughening of poly (lactic acid). Industrial & Engineering Chemistry Research 2013,52,4787-4793.
    [118]Xiong, Z.; Yang, Y.; Feng, J.; Zhang, X.; Zhang, C.; Tang, Z.; Zhu, J., Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers 2013,92,810-816.
    [119]Xiong, Z.; Zhang, L.; Ma, S.; Yang, Y.; Zhang, C.; Tang, Z.; Zhu, J., Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers 2013,94,235-243.
    [120]Xiong, Z.; Li, C.; Ma, S.; Feng, J.; Yang, Y.; Zhang, R.; Zhu, J., The properties of poly (lactic acid)/starch blends with a functionalized plant oil:Tung oil anhydride. Carbohydrate Polymers 2013,95,77-84.
    [121]Jariyasakoolroj, P.; Chirachanchai, S., Silane modified starch for compatible reactive blend with poly (lactic acid). Carbohydrate Polymers 2014,106,255-263.
    [122]Wang, L.; Ma, W.; Gross, R.; McCarthy, S., Reactive compatibilization of biodegradable blends of poly (lactic acid) and poly (ε-caprolactone). Polymer Degradation and Stability 1998,59,161-168.
    [123]Bai, H.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M.; Fu, Q., Tailoring impact toughness of poly(L-lactide)/poly(epsilon-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Applied Materials & Interfaces 2012,4,897-905.
    [124]Xu, Z.; Zhang, Y.; Wang, Z.; Sun, N.; Li, H., Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly (ε-caprolactone) filled with acid-oxidized multiwalled carbon nano tubes. ACS Applied Materials & Interfaces 2011,3,4858-4864.
    [125]Ojijo, V.; Sinha Ray, S.; Sadiku, R., Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipa.te]. ACS Applied Materials & Interfaces 2012,4,6690-6701.
    [126]Ojijo, V.; Ray, S. S.; Sadiku, R., Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Applied Materials & Interfaces 2013,5,4266-4276.
    [127]Kang, H.; Qiao, B.; Wang, R.; Wang, Z.; Zhang, L.; Ma, J.; Coates, P., Employing a novel bioelastomer to toughen polylactide. Polymer 2013,54,2450-2458.
    [128]Li, Y.; Shimizu, H., Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromolecular bioscience 2007, 7,921-928.
    [129]Gramlich, W. M.; Robertson, M. L.; Hillmyer, M. A., Reactive Compatibilization of Poly(1-lactide) and Conjugated Soybean Oil. Macromolecules 2010,43,2313-2321.
    [130]Xu, Y. Q.; Qu, J. P., Mechanical and rheological properties of epoxidized soybean oil plasticized poly (lactic acid). Journal of Applied Polymer Science 2009,112, 3185-3191.
    [131]Sinclair, R., The case for polylactic acid as a commodity packaging plastic. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry 1996, 33,585-597.
    [132]Ljungberg, N.; Wesslen, B., The effects of plasticizers on the dynamic mechanical and thermal properties of poly (lactic acid). Journal of Applied Polymer Science 2002,86,1227-1234.
    [133]Labrecque, L. V.; Kumar, R. A.; Dave, V.; Gross, R. A.; McCarthy, S. P., Citrate esters as plasticizers for poly(lactic acid). Journal of Applied Polymer Science 1997,66,1507-1513.
    [134]Sheth, M.; Kumar, R. A.; Dave, V.; Gross, R. A.; McCarthy, S. P., Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). Journal of Applied Polymer Science 1997,66,1495-1505.
    [135]Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E., Thermal and mechanical properties of plasticized poly(L-lactic acid). Journal of Applied Polymer Science 2003,90,1731-1738.
    [136]Hu, Y.; Hu, Y. S.; Topolkaraev, V.; Hiltner, A.; Baer, E., Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 2003,44,5681-5689.
    [137]Hu, Y.; Rogunova, M.; Topolkaraev, V.; Hiltner, A.; Baer, E., Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer 2003,44,5701-5710.
    [138]Hu, Y.; Hu, Y. S.; Topolkaraev, V.; Hiltner, A.; Baer, E., Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity. Polymer 2003,44,5711-5720.
    [139]Martino, V. P.; Jimenez, A.; Ruseckaite, R. A., Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science 2009,112,2010-2018.
    [140]Gui, Z.; Xu, Y; Gao, Y.; Lu, C.; Cheng, S., Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters 2012,71,63-65.
    [141]Gui, Z.; Xu, Y.; Cheng, S.; Gao, Y.; Lu, C., Preparation and characterization of polylactide/poly (polyethylene glycol-co-citric acid) blends. Polymer bulletin 2013,70,325-342.
    [1]Palade, L. I.; Lehermeier, H.J.; Dorgan, J. R., Melt rheology of high L-content poly(lactic acid). Macromolecules 2001,34,1384-1390.
    [2]Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Hait, S. B.; Knauss, D. M., Melt rheology of variable L-content poly(lactic acid). Journal ofRheology 2005,49,607-619.
    [3]Tian, J.; Yu, W.; Zhou, C., Crystallization kinetics of linear and long-chain branched polypropylene. Journal of Macromolecular Science, Part B 2006,45, 969-985.
    [4]Lim, L. T.; Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Progress in Polymer Science 2008,33,820-852.
    [5]Weng, W.; Hu, W.; Dekmezian, A. H.; Ruff, C. J., Long chain branched isotactic polypropylene. Macromolecules 2002,35,3838-3843.
    [6]Fetters, L. J.; Kiss, A. D.; Pearson, D. S.; Quack, G. F.; Vitus, F. J., Rheological behavior of star-shaped polymers. Macromolecules 1993,26,647-654.
    [7]Wood-Adams, P. M.; Dealy, J. M.; deGroot, A. W.; Redwine,O. D., Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 2000,33,7489-7499.
    [8]Kapnistos, M.; Vlassopoulos, D.; Roovers, J.; Leal, L. G., Linear rheology of architecturally complex macromolecules:comb polymers with linear backbones. Macromolecules 2005,38,7852-7862.
    [9]Munstedt, H., Rheological properties and molecular structure of polymer melts. Soft Matter 2011,7,2273-2283.
    [10]Zhao, W.; Huang, Y.; Liao, X.; Yang, Q., The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties. Polymer 2013,54,1455-1462.
    [11]Tian, J.; Yu, W.; Zhou, C., Crystallization behaviors of linear and long chain branched polypropylene. Journal of Applied Polymer Science 2007,104,3592-3600.
    [12]Agarwal, P. K.; Somani, R. H.; Weng, W.; Mehta, A.; Yang, L.; Ran, S.; Liu, L.; Hsiao, B. S., Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and-WAXD. Macromolecules 2003,36, 5226-5235.
    [13]Shin, B. Y.; Han, D. H.; Narayan, R., Rheological and thermal properties of the pla modified by electron beam irradiation in the presence of functional monomer. Journal of Polymers and the Environment 2010,18,558-566.
    [14]Wang, Y. B.; Yang, L.; Niu, Y. H.; Wang, Z. G.; Zhang, J.; Yu, F. Y.; Zhang, H. B., Rheological and topological characterizations of electron beam irradiation prepared long-chain branched polylactic acid. Journal of Applied Polymer Science 2011,122,1857-1865.
    [15]Othman, N.; Acosta-Ramirez, A.; Mehrkhodavandi, P.; Dorgan, J. R.; Hatzikiriakos, S. G., Solution and melt viscoelastic properties of controlled microstructure poly(lactide). Journal of Rheology 2011,55,987-1005.
    [16]Babanalbandi, A.; Hill, D. J. T.; Odonnell, J. H.; Pomery, P. J.; Whittaker, A., An electron spin resonance study on gamma-irradiated poly(L-lactic acid) and poly(D,L-lactic acid). Polymer Degradation and Stability 1995,50,297-304.
    [17]Babanalbandi, A.; Hill, D. J. T.; Whittaker, A. K., Volatile products and new polymer structures formed on 60Co γ-radiolysis of poly(lactic acid) and poly(glycolic acid). Polymer Degradation and Stability 1997,58,203-214.
    [18]Nugroho, P.; Mitomo, H.; Yoshii, F.; Kume, T., Degradation of poly(L-lactic acid) by gamma-irradiation. Polymer Degradation and Stability 2001,72,337-343.
    [19]Garcia-Franco, C. A.; Srinivas, S.; Lohse, D. J.; Brant, P., Similarities between gelation and long chain branching viscoelastic behavior. Macromolecules 2001, 34,3115-3117.
    [20]Li, S.; Xiao, M.; Wei, D.; Xiao, H.; Hu, F.; Zheng, A., The melt grafting preparation and Theological characterization of long chain branching polypropylene. Polymer 2009,50,6121-6128.
    [21]Stange, J.; Uhl, C.; Munstedt, H., Rheological behavior of blends from a linear and a long-chain branched polypropylene. Journal of Rheology 2005,49,1059.
    [22]Gabriel, C.; Miinstedt, H., Strain hardening of various polyolefins in uniaxial elongational flow. Journal of Rheology 2003,47,619.
    [23]Han, C. D.; Lamonte, R. R., Studies on melt spinning. I. Effect of molecular structure and molecular weight distribution on elongational viscosity. Journal of Rheology 1972,16,447.
    [24]Mihai, M.; Huneault, M. A.; Favis, B. D., Rheology and extrusion foaming of chain-branched poly (lactic acid). Polymer engineering and science 2010,50, 629-642.
    [25]Auhl, D.; Stange, J.; Munstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K., Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 2004,37,9465-9472.
    [26]Gabriel, C.; Kaschta, J.; Munstedt, H., Influence of molecular structure on rheological properties of polyethylenes. Rheologica Acta 1998,37,7-20.
    [27]Langouche, F.; Debbaut, B., Rheological characterisation of a high-density polyethylene with a multi-mode differential viscoelastic model and numerical simulation of transient elongational recovery experiments. Rheologica Acta 1999, 38,48-64.
    [28]Liu, J. Y.; Lou, L. J.; Yu, W.; Liao, R. G.; Li, R. M.; Zhou, C. X., Long chain branching polylactide:Structures and properties. Polymer 2010,51,5186-5197.
    [29]Malmberg, A.; Gabriel, C.; Steffl, T.; Munstedt, H.; Lofgren, B., Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules 2002,35,1038-1048.
    [30]Krause, B.; Voigt, D.; Haupler, L.; Auhl, D.; Munstedt, H., Characterization of electron beam irradiated polypropylene:influence of irradiation temperature on molecular and rheo logical properties. Journal of Applied Polymer Science 2006, 100,2770-2780.
    [31]Wang, L.; Wan, D.; Qiu, J.; Tang, T., Effects of long chain branches on the crystallization and foaming behaviors of polypropylene-g-poly(ethylene-co-1-butene) graft copolymers with well-defined molecular structures. Polymer 2012, 53,4737-4757.
    [1]Auhl, D.; Stadler, F. J.; Munstedt, H., Comparison of molecular structure and rheological properties of electron-beam-and gamma-irradiated polypropylene. Macromolecules 2012,45,2057-2065.
    [2]Nugroho, P.; Mitomo, H.; Yoshii, F.; Kume, T., Degradation of poly(L-lactic acid) by gamma-irradiation. Polymer Degradation and Stability 2001,72,337-343.
    [3]Wang, Y. B.; Yang, L.; Niu, Y. H.; Wang, Z. G.; Zhang, J.; Yu, F. Y.; Zhang, H. B., Rheological and topological characterizations of electron beam irradiation prepared long-chain branched polylactic acid. Journal of Applied Polymer Science 2011,122,1857-1865.
    [4]汪永斌,牛艳华,杨靓,于逢源,张洪斌,王志刚,长链聚乳酸的多重松弛行为.高等学校化学学报2010,31,397-401.
    [5]Gabriela, C.; Munstedt, H., Strain hardening of various polyolefins in uniaxial elongational flow. Journal of Rheology 2003,47,619-630.
    [6]Auhl, D.; Stange, J.; Munstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K., Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 2004,37,9465-9472.
    [7]Stange, J.; Wachter, S.; Munstedt, H.; Kaspar, H., Linear rheological properties of the semifluorinated copolymer tetrafluoroethylene-hexafluoropropylene-vinylidenfluoride (thv) with controlled amounts of long-chain branching. Macromolecules 2007,40,2409-2416.
    [8]Levine, A. J.; Milner, S. T., Star polymers and the failure of time-temperature superposition. Macromolecules 1998,31,8623-8637.
    [9]Vega, J. F.; Santamaria, A.; Munoz-Escalona, A.; Lafuente, P., Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 1998,31,3639-3647.
    [10]Kessner, U.; Kaschta, J.; Stadler, F. J.; Le Duff, C. c. S.; Drooghaag, X.; Miinstedt, H., Thermorheological behavior of various short-and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 2010,43,7341-7350.
    [11]KeBner, U.; Munstedt, H., Thermorheology as a method to analyze long-chain branched polyethylenes. Polymer 2010,51,507-513.
    [12]Wood-Adams, P.; Costeux, S., Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 2001,34, 6281-6290.
    [13]Carella, J. M.; Gotro, J. T.; Graessley, W. W., Thermorheological effects of long-chain branching in entangled polymer melts. Macromolecules 1986,19,659-667.
    [14]Podzimek, S.; Vlcek, T.; Johann, C., Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers. Journal of Applied Polymer Science 2001,81,1588-1594.
    [15]Burchard, W., Solution Properties of Branched Macromolecules Branched Polymers II. Roovers, J., Ed. Springer Berlin/Heidelberg:1999; Vol.143, pp 113-194.
    [16]Stadler, F. J.; Piel, C.; Klimke, K.; Kaschta, J.; Parkinson, M.; Wilhelm, M.; Kaminsky, W.; Munstedt, H., Influence of type and content of various comonomers on long-chain branching of ethene/a-olefin copolymers. Macromolecules 2006,39,1474-1482.
    [17]Stadler, F. J.; Kaschta, J.; Munstedt, H.; Becker, F.; Buback, M., Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheologica Acta 2009,48,479-490.
    [18]Frater, D. J.; Mays, J. W.; Jackson, C., Synthesis and dilute solution properties of divinylbenzene-linked polystyrene stars with mixed arm lengths:Evidence for coupled stars. Journal of Polymer Science Part B-Polymer Physics 1997,35,141-151.
    [19]Ferry, J. D., Viscoelastic Properties of Polymers.3rd edition ed.; Wiley:New York,1980.
    [20]Stadler, F. J.; Kaschta, J.; Munstedt, H., Thermorheological behavior of various long-chain branched polyethylenes. Macromolecules 2008,41,1328-1333.
    [21]Cooper-White, J. J.; Mackay, M. E., Rheological properties of poly(lactides). Effect of molecular weight and temperature on the viscoelasticity of poly(1-lactic acid). Journal of Polymer Science Part B-Polymer Physics 1999,37,1803-1814.
    [22]Kessner, U.; Kaschta, J.; Munstedt, H., Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. Journal of Rheology 2009,53,1001-1016.
    [23]Resch, J. A.; Stadler, F. J.; Kaschta, J.; Munstedt, H., Temperature dependence of the linear steady-state shear compliance of linear and long-chain branched polyethylenes. Macromolecules 2009,42,5676-5683.
    [24]Larson, R. G., Combinatorial rheology of branched polymer melts. Macromolecules 2001,34,4556-4571.
    [25]Kapnistos, M.; Vlassopoulos, D.; Roovers, J.; Leal, L. G., Linear rheology of architecturally complex macromolecules:comb polymers with linear backbones. Macromolecules 2005,38,7852-7862.
    [26]Stadler, F.; Piel, C.; Kaschta, J.; Rulhoff, S.; Kaminsky, W.; Munstedt, H., Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersity. Rheologica Acta 2006,45,755-764.
    [27]Munstedt, H., Rheological properties and molecular structure of polymer melts. Soft Matter 2011,7,2273-2283.
    [28]Malmberg, A.; Liimatta, J.; Lehtinen, A.; Lofgren, B., Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 1999,32,6687-6696.
    [29]Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Hait, S. B.; Knauss, D. M., Melt rheology of variable L-content poly(lactic acid). Journal of Rheology 2005,49,607-619.
    [30]Othman, N.; Acosta-Ramirez, A.; Mehrkhodavandi, P.; Dorgan, J. R.; Hatzikiriakos, S. G., Solution and melt viscoelastic properties of controlled microstructure poly(lactide). Journal of Rheology 2011,55,987-1005.
    [31]Babanalbandi, A.; Hill, D. J. T.; Odonnell, J. H.; Pomery, P. J.; Whittaker, A., An electron spin resonance study on gamma-irradiated poly(L-lactic acid) and poly(D,L-lactic acid). Polymer Degradation and Stability 1995,50,297-304.
    [1]Eder, G.; Janeschitzkriegl, H.; Liedauer, S., Crystallization processes in quiescent and moving polymer melts under heat-transfer conditions. Progress in Polymer Science 1990,15,629-714.
    [2]Goschel, U.; Swartjes, F. H. M.; Peters, G. W. M.; Meijer, H. E. H., Crystallization in isotactic polypropylene melts during contraction flow:time-resolved synchrotron WAXD studies. Polymer 2000,41,1541-1550.
    [3]Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L., Unexpected shish-kebab structure in a sheared polyethylene melt. Physical Review Letters 2005,94.
    [4]Huo, H.; Jiang, S. C.; An, L. J.; Feng, J. C., Influence of shear on crystallization behavior of the beta phase in isotactic polypropylene with beta-nucleating agent. Macromolecules 2004,37,2478-2483.
    [5]Kalay, G.; Be vis, M. J., Processing and physical property relationships in injection-molded isotactic polypropylene.2. Morphology and crystallinity. Journal of Polymer Science Part B-Polymer Physics 1997,35,265-291.
    [6]Lotz, B., What can polymer crystal structure tell about polymer crystallization processes? European Physical Journal E 2000,3,185-194.
    [7]Mackley, M. R.; Keller, A., Flow induced crystallization of polyethylene melts. Polymer 1973,14,16-20.
    [8]Pantani, R.; Balzano, L.; Peters, G. W. M., Flow-induced morphology of iPP solidified in a shear device. Macromolecular Materials and Engineering 2012, 297,60-67.
    [9]Somani, R. H.; Hsiao, B. S.; Nogales, A.; Srinivas, S.; Tsou, A. H.; Sics, I.; Balta-Calleja, F. J.; Ezquerra, T. A., Structure development during shear flow-induced crystallization of i-PP:In-situ small-angle X-ray scattering study. Macromolecules 2000,33,9385-9394.
    [10]Varga, J.; KargerKocsis, J., Rules of supermolecular structure formation in sheared isotactic polypropylene melts. Journal of Polymer Science Part B-Polymer Physics 1996,34,657-670.
    [11]Zhmayev, E.; Cho, D.; Joo, Y. L., Modeling of melt electrospinning for semi-crystalline polymers. Polymer 2010,51,274-290.
    [12]Balzano, L.; Kukalyekar, N.; Rastogi, S.; Peters, G. W. M.; Chadwick, J. C., Crystallization and dissolution of flow-induced precursors. Physical Review Letters 2008,100,048302.
    [13]Koscher, E.; Fulchiron, R., Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer 2002,43,6931-6942.
    [14]Housmans, J.-W.; Steenbakkers, R. J. A.; Roozemond, P. C.; Peters, G. W. M.; Meijer, H. E. H., Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 2009,42,5728-5740.
    [15]Janeschitz-Kriegl, H.; Ratajski, E.; Stadlbauer, M., Flow as an effective promotor of nucleation in polymer melts:a quantitative evaluation. Rheologica Acta 2003, 42,355-364.
    [16]Liu, J. Y.; Lou, L. J.; Yu, W.; Liao, R. G.; Li, R. M.; Zhou, C. X., Long chain branching polylactide:Structures and properties. Polymer 2010,51,5186-5197.
    [17]Corre, Y. M.; Duchet, J.; Reignier, J.; Maazouz, A., Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheologica Acta 2011,50,613-629.
    [18]Dorgan, J. R.; Williams, J. S.; Lewis, D. N., Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. Journal of Rheology 1999,43,1141-1155.
    [19]Othman, N.; Acosta-Ramirez, A.; Mehrkhodavandi, P.; Dorgan, J. R.; Hatzikiriakos, S. G., Solution and melt viscoelastic properties of controlled microstructure poly(lactide). Journal of Rheology 2011,55,987-1005.
    [20]Ouchi, T.; Ichimura, S.; Ohya, Y., Synthesis of branched poly(lactide) using polyglycidol and thermal, mechanical properties of its solution-cast film. Polymer 2006,47,429-434.
    [21]Nofar, M.; Zhu, W.; Park, C. B.; Randall,J., Crystallization kinetics of linear and long-chain-branched polylactide. Industrial & Engineering Chemistry Research 2011,50,13789-13798.
    [22]Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y, Blends of linear and long-chain branched poly(1-lactide)s with high melt strength and fast crystallization rate. Industrial & Engineering Chemistry Research 2012,51, 10088-10099.
    [23]Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y, Rheology and crystallization of long-chain branched poly(1-lactide)s with controlled branch length. Industrial & Engineering Chemistry Research 2012,51,10731-10741.
    [24]Phuphuak, Y.; Chirachanchai, S., Simple preparation of multi-branched poly(1-lactic acid) and its role as nucleating agent for poly(lactic acid). Polymer 2013, 54,572-582.
    [25]Tsuji, H.; Miyase, T.; Tezuka, Y.; Saha, S. K., Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(L-lactide)s. Biomacromolecules 2005,6,244-254.
    [26]Zhang, Y.; Xu, H.; Yang, J.; Chen, S.; Ding, Y.; Wang, Z., Significantly accelerated spherulitic growth rates for semicrystalline polymers through the layer-by-layer film method. The Journal of Physical Chemistry C 2013,117, 5882-5893.
    [27]Wang, Y B.; Yang, L.; Niu, Y H.; Wang, Z. G.; Zhang, J.; Yu, F. Y.; Zhang, H. B., Rheological and topological characterizations of electron beam irradiation prepared long-chain branched polylactic acid. Journal of Applied Polymer Science 2011,122,1857-1865.
    [28]Macosko, C. W., Rheology, Principles, Measurements and Applications. Wiley-VCH:New York,1994.
    [29]Meerveld, J.; Peters, G. W. M.; Hutter, M., Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheologica Acta 2004,44,119-134.
    [30]Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J., Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes. Macromolecules 2006,39,5058-5071.
    [31]McLeish, T. C. B., Tube theory of entangled polymer dynamics. Advances in Physics 2002,51,1379-1527.
    [32]Verbeeten, W. M. H.; Peters, G. W. M.; Baaijens, F. P. T, Differential constitutive equations for polymer melts:The extended Pom-Pom model (vol 45, pg 823, 2001). Journal of Rheology 2001,45,1489-1489.
    [33]Verbeeten, W. M. H.; Peters, G. W. M.; Baaijens, F. P. T., Differential constitutive equations for polymer melts:The extended Pom-Pom model. Journal of Rheology 2001,45,823-843.
    [34]Vega, J. F.; Hristova, D. G.; Peters, G. W. M., Flow-induced crystallization regimes and rheology of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry 2009,98,655-666.
    [35]Khanna, Y. P., Rheological mechanism and overview of nucleated crystallization kinetics. Macromolecules 1993,26,3639-3643.
    [36]Boutahar, K.; Carrot, C.; Guillet, J., Crystallization of polyolefins from rheological measurementsrelation between the transformed fraction and the dynamic moduli. Macromolecules 1998,31,1921-1929.
    [37]Pogodina, N. V.; Winter, H. H.; Srinivas, S., Strain effects on physical gelation of crystallizing isotactic polypropylene. Journal of Polymer Science Part B-Polymer Physics 1999,37,3512-3519.
    [38]Yuryev, Y.; Wood-Adams, P., Rheological properties of crystallizing polylactide: Detection of induction time and modeling the evolving structure and properties. Journal of Polymer Science Part B:Polymer Physics 2010,48,812-822.
    [39]Ma, Z.; Steenbakkers, R. J. A.; Giboz, J.; Peters, G. W. M., Using rheometry to determine nucleation density in a colored system containing a nucleating agent. Rheologica Acta 2010,50,909-915.
    [40]Zhong, Y.; Fang, H.; Zhang, Y.; Wang, Z.; Yang, J.; Wang, Z., Rheologically determined critical shear rates for shear-induced nucleation rate enhancements of poly(lactic acid). ACS Sustainable Chemistry & Engineering 2013,663-672.
    [41]Shen, B.; Liang, Y.; Kornfield, J. A.; Han, C. C., Mechanism for shish formation under shear flow:an interpretation from an in situ morphological study. Macromolecules 2013,46,1528-1542.
    [42]Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F., Critical strain for shish-kebab formation. Macromolecules 2010,43, 602-605.
    [43]Mykhaylyk, O. O.; Chambon, P.; Graham, R S.; Fairclough, J. P. A.; Olmsted, P. D.; Ryan, A. J., The specific work of flow as a criterion for orientation in polymer crystallization. Macromolecules 2008,41,1901-1904.
    [44]Mykhaylyk, O. O.; Chambon, P.; Impradice, C.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J., Control of structural morphology in shear-induced crystallization of polymers. Macromolecules 2010,43,2389-2405.
    [45]Abuzaina, F. M.; Fitz, B. D.; Andjelic, S.; Jamiolkowski, D. D., Time resolved study of shear-induced crystallization of poly(p-dioxanone) polymers under low-shear, nucleation-enhancing shear conditions by small angle light scattering and optical microscopy. Polymer 2002,43,4699-4708.
    [1]Yu, L.; Dean, K.; Li, L., Polymer blends and composites from renewable resources. Progress in Polymer Science 2006,31,576-602.
    [2]Lim, L. T.; Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Progress in Polymer Science 2008,33,820-852.
    [3]Tonelli, A. E.; Flory, P. J., The configurational statistics of random poly (lactic acid) chains. I. Experimental results. Macromolecules 1969,2,225-227.
    [4]Grijpma, D.; Penning, J.; Pennings, A., Chain entanglement, mechanical properties and drawability of poly (lactide). Colloid and Polymer Science 1994, 272,1068-1081.
    [5]Joziasse, C. A.; Veenstra, H.; Grijpma, D. W.; Pennings, A. J., On the chain stiffness of poly (lactide) s. Macromolecular Chemistry and Physics 1996,197, 2219-2229.
    [6]Liu, H.; Zhang, J., Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B:Polymer Physics 2011,49,1051-1083.
    [7]Scott, C. E.; Macosko, C. W., Morphology development during reactive and non-reactive blending of an ethylene-propylene rubber with two thermoplastic matrices. Polymer 1994,35,5422-5433.
    [8]Sailer, C.; Handge, U., Reactive blending of polyamide 6 and styrene-acrylonitrile copolymer:Influence of blend composition and compatibilizer concentration on morphology and rheology. Macromolecules 2008,41,4258-4267.
    [9]Pernot, H.; Baumert, M.; Court, F.; Leibler, L., Design and properties of co-continuous na.nostructured polymers by reactive blending. Nature Materials 2002, 1,54-58.
    [10]Xu, H. J.; Zhang, Y. Q.; Yang, J. J.; Ye, L.; Wu, Q. H.; Qu, B.J.; Wang, Q.; Wang, Z. G., Simultaneous enhancements of toughness and tensile strength for thermoplastic/elastomer blends through interfacial photocrosslinking with UV radiation. Polymer Chemistry 2013,4,3028-3038.
    [11]Jiang, W.; Liu, C. H.; Wang, Z. G.; An, L. J.; Liang, H. J.; Jiang, B. Z.; Wang, X. H.; Zhang, H. X., Brittle-tough transition in PP/EPDM blends:Effects of interparticle distance and temperature. Polymer 1998,39,3285-3288.
    [12]Hu, Y.; Rogunova, M.; Topolkaraev, V.; Hiltner, A.; Baer, E., Aging of poly (lactide)/poly (ethylene glycol) blends. Part 1. Poly (lactide) with low stereoregularity. Polymer 2003,44,5701-5710.
    [13]Lai, W. C.; Liau, W. B.; Lin, T. T., The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer 2004,45,3073-3080.
    [14]Hu, Y.; Hu, Y.; Topolkaraev, V.; Hiltner, A.; Baer, E., Aging of poly (lactide)/poly (ethylene glycol) blends. Part 2. Poly (lactide) with high stereoregularity. Polymer 2003,44,5711-5720.
    [15]Zhang, Y.; Xu, H.; Yang, J.; Chen, S.; Ding, Y.; Wang, Z., Significantly accelerated spherulitic growth rates for semicrystalline polymers through the layer-by-layer film method. The Journal of Physical Chemistry C 2013,117, 5882-5893.
    [16]Zhang, Y.; Wang, Z.; Jiang, F.; Bai, J.; Wang, Z., Effect of miscibility on spherulitic growth rate for double-layer polymer films. Soft Matter 2013,9,5771-5778.
    [17]Zhang, Y.; Fang, H.; Wang, Z.; Tang, M.; Wang, Z., Disclosing the formation of ring-banded spherulites for semicrystalline polymers through the double-layer film method. Cryst EngComm 2014,16,1026-1037.
    [18]Hassouna, F.; Raquez, J.-M.; Addiego, F.; Dubois, P.; Toniazzo, V.; Ruch, D., New approach on the development of plasticized polylactide (PLA):Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. European Polymer Journal 2011,47,2134-2144.
    [19]Park, B. S.; Song, J. C.; Park, D. H.; Yoon, K. B., PLA/chain-extended PEG blends with improved ductility. Journal of Applied Polymer Science 2012,123, 2360-2367.
    [20]Liu, G. C.; He, Y S.; Zeng, J. B.; Xu, Y.; Wang, Y. Z., In situ formed crosslinked polyurethane toughened polylactide. Polymer Chemistry 2014,5,2530-2540.
    [21]Choi, K. M.; Choi, M. C.; Han, D. H.; Park, T. S.; Ha, C. S., Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. European Polymer Journal 2013,49,2356-2364.
    [22]Garlotta, D., A literature review of poly (lactic acid). Journal of Polymers and the Environment 2001,9,63-84.
    [23]Lin, H.; Kai, T.; Freeman, B. D.; Kalakkunnath, S.; Kalika, D. S., The effect of cross-linking on gas permeability in cross-linked poly (ethylene glycol diacrylate). Macromolecules 2005,38,8381-8393.
    [24]Lin, H.; Freeman, B. D., Gas permeation and diffusion in cross-linked poly (ethylene glycol diacrylate). Macromolecules 2006,39,3568-3580.
    [25]Lee, S. H.; Lee, W. G.; Chung, B. G.; Park, J. H.; Khademhosseini, A., Rapid formation of acrylated micro structures by microwave-induced thermal crosslinking. Macromolecular Rapid Communications 2009,30,1382-1386.
    [26]Liu, C.; Lin, S.; Zhou, C.; Yu, W., Influence of catalyst on transesterification between poly (lactic acid) and polycarbonate under flow field. Polymer 2013,54, 310-319.
    [27]Coltelli, M.-B.; Toncelli, C.; Ciardelli, F.; Bronco, S., Compatible blends of biorelated polyesters through catalytic transesterification in the melt. Polymer Degradation and Stability 2011,96,982-990.
    [28]Winter, H. H.; Chambon, F., Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology 1986,30,367-382.
    [29]Chambon, F.; Winter, H. H., Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. Journal of Rheology 1987, 31,683-697.
    [30]Li, W.; Zhang, Y.; Yang, J.; Zhang, J.; Niu, Y.; Wang, Z., Thermal annealing induced enhancements of electrical conductivities and mechanism for multiwalled carbon nanotubes filled poly (ethylene-co-hexene) composites. ACS Applied Materials & Interfaces 2012,4,6468-6478.
    [31]Izuka, A.; Winter, H. H.; Hashimoto, T., Self-similar relaxation behavior at the gel point of a blend of a cross-linking poly(ε-caprolactone) diol with a poly(styrene-co-acrylonitrile). Macromolecules 1997,30,6158-6165.
    [32]Bai, H.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M.; Fu, Q., Tailoring impact toughness of poly(L-lactide)/poly(epsilon-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Applied Materials & Interfaces 2012,4,897-905.
    [33]Liu, H.; Chen, F.; Liu, B.; Estep, G.; Zhang, J., Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 2010,43,6058-6066.
    [34]Bhardwaj, R.; Mohanty, A. K., Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 2007,8, 2476-2484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700