用户名: 密码: 验证码:
不同形态TiO_2材料的共掺杂改性及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过改进的溶胶–凝胶法分别合成出了氮、镧共掺杂纳米二氧化钛光催化材料,以Brij98(脂肪醇聚氧乙烯醚,C18H35(OC2H4)20OH)和CTAB(十六烷基三甲基溴化铵)作为复合模板剂合成出氮、镧共掺杂和氮、铈共掺杂介孔二氧化钛光催化剂复合材料以及用旋转涂膜法制备出介孔二氧化钛薄膜材料。运用X–射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FT–IR)、能量分散X–射线光谱(EDS)、紫外可见漫反射吸收光谱(UV–vis DRS)、X–射线光电子能谱(XPS)以及N2吸脱附等表征手段对所制备材料进行了详细的分析和研究。结果显示,合成样品的XRD谱图均呈现锐钛矿型晶体结构;TEM图片显示有较为明显的孔道结构;SEM可以看到薄膜材料表面非常光滑平整;FT–IR、EDS和XPS谱图分析都显示氮、镧、铈这些所掺杂的离子均能有效的掺杂进入二氧化钛中;UV–vis DRS分析结果说明通过进行掺杂改性的二氧化钛复合材料的光谱响应范围有效的向可见光转移,吸收峰发生了明显的红移,从而提高了其对可见光的利用率,扩大了其实际应用的范围。
     对所制得样品的光催化性能研究是通过以甲基橙、生活污水以及制浆造纸废水为目标降解物来进行的,并分别在紫外光和模拟可见光下对样品材料进行了研究。结果显示,共掺杂改性之后的二氧化钛纳米颗粒、介孔材料以及薄膜材料在紫外和可见光下都比纯二氧化钛具有更高的光催化活性。分别对共掺杂离子的摩尔比例、复合模板剂之间的比例关系、光照时间等因素进行了研究。在紫外光和模拟可见光照射下,N(0.020)La(0.012)TiO2纳米颗粒对甲基橙的降解率分别达到了100%和97.2%,而在紫外光照射下,对生活废水色度的去除率达到100%,CODcr(化学需氧量)去除率达到69.7%。在紫外光照射下,复合模板剂摩尔比例Brij 98:CTAB = 1:1时制备的介孔二氧化钛样品显示出了最好的光催化活性,制浆造纸废水CODcr去除率达到73%,色度去除率达到100%。在紫外条件下,介孔二氧化钛薄膜材料对甲基橙的光催化降解达到100%。
Using composite surfactant templates polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB) as structure–directing agents, N/La, and N/Ce co–doped mesoporous TiO2 complex photocatalysts and films were synthesized successfully by a modified sol–gel process using tetrabutyl titanate as the inorganic precursor, and urea, lanthanum nitrate and cerium nitrate as doping ion donors. The micromorphology of co–doped mesoporous TiO2 samples were characterized by X–ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), fourier transformed infrared spectroscopy (FT–IR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), energy–dispersive X–ray spectrometer (EDS), X–ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurements. The XRD results indicated that all the the prepared complex photocatalyst were anatase. The TEM showed that the samples had mesoporous structures. The SEM indicated that the mesoporous TiO2 films possessed smooth surface. The FT–IR, EDS and XPS results showed that nitrogen, lanthanum and cerium had have been effectively doped into the titania lattice. The UV–Vis analysis revealed a red shift in the absorbing band edge within the range of 400–500 nm, which enhanced the usage of sunlight for the modified TiO2.
     The photocatalytic activities of samples were measured by photodecomposition of methyl orange (MO) and papermaking wastewater in both UV and visible light. The percent degradation of methyl orange (MO) was ca. 97.2% for the optimum co–doping of N(0.020)La(0.012)TiO2 under simulated sunlight irradiation for 9 h. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the nitrogen and lanthanum co–doping. The mesoporous TiO2 sample with molar ratio of Brij98:CTAB=1:1 exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra–violet light irradiation. The chemical oxygen demand (CODcr) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h. The photocatalytic activities of mesoporous TiO2 flims were measured by photodecomposition of 2 mg·L-1 methyl orange, and the percent degradation was 100% after UV light irradiation 2 h.
引文
[1] Lee A C, Lin R H, Yang C Y, et al. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method [J]. Materials Chemistry and Physics, 2008, 109 (2–3): 275–280
    [2] Huang J H, Wang X H, Hou Y D, et al. Synthesis of functionalized mesoporous TiO2 molecular sieves and their application in photocatalysis [J]. Microporous and Mesoporous Materials, 2008, 110 (2–3): 543–552
    [3] Sudhagar P, Sathyamoorthy R, Chandramohan S, et al. Influence of porous morphology on optical dispersion properties of template free mesoporous titanium dioxide (TiO2) films [J]. Applied Surface Science, 2008, 254 (7): 1919–1928
    [4] Kim D S, Han S J, Kwak S Y, et al. Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size [J]. Journal of Colloid and Interface Science, 2007, 316 (1): 85–91
    [5] Burunkaya E, Kesmez ?, Kiraz N, et al. Sn4+ or Ce3+ doped TiO2 photocatalytic nanometric films on antireflective nano-SiO2 coated glass [J]. Materials Chemistry and Physics, 2010, 120 (2–3): 272–276
    [6] Guo H, Kemell M, Heikkil? M, et al. Noble metal–modified TiO2 thin film photocatalyst on porous steel fiber support [J]. Applied Catalysis B: Environ– mental, 2010, 95 (3–4): 358–364
    [7] Denkwitz Y, Makosch M, Geserick J, et al. Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts [J]. Applied Catalysis B: Environmental, 2009, 91 (1–2): 470–480
    [8] Chan C C, Chang C C, Hsu W C, et al. Photocatalytic activities of Pd–loaded mesoporous TiO2 thin films [J]. Chemical Engineering Journal, 2009,152 (2–3): 492–497
    [9] Yaghoubi H, Taghavinia N, Alamdari E K. Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties [J]. Surface and Coatings Technology, 2010, 204 (9–10): 1562–1568
    [10] Wang W, Gu B H, Liang L Y, et al. Synthesis of rutile (α–TiO2) nanocrystals with controlled size and shape by low temperature hydrolysis: effects of solvent composition [J]. The Journal of Physical Chemistry B, 2004, 108 (39):14789–14792
    [11] Demeestere K, Dewulf J, Ohno T, et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified- titanium dioxide [J]. Applied Catalysis B: Environmental, 2005, 61 (1–2): 140–149
    [12] Yamazaki S, Sugihara M, Yasunaga E, et al. Preparation and photocatalytic activity of Cu–deposited TiO2 film with high transparency [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209 (1): 74–78
    [13] Xu Q C, Wellia D V, Sk M A, et al. Transparent visible light activated C–N–F–codoped TiO2 films for self-cleaning applications [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210 (2–3): 181–187
    [14] Ortel E, Sokolov S, Kraehnert R. Influence of steel substrate roughness on morphology and mesostructure of TiO2 porous layers produced by template-assisted dip coating [J]. Microporous and Mesoporous Materials, 2010, 127 (1–2): 17–24
    [15] Burda C, Lou Y B, Chen X B, et al. Enhanced nitrogen doping in TiO2 nanoparticles [J]. Nano Letters, 2003, 3 (8): 1049–1051
    [16] Begum N S, Ahmed H M F. Synthesis of nanocrystalline TiO2 thin films by liquid phase depositiontechnique and its application for photocatalytic degradation studies [J]. Bulletin of Materials Science, 2008, 31 (1): 43–48
    [17] Anderson M A, Gieselmanna M J, Xu Q. Titania and alumina ceramic membranes [J]. Journal of Membrane Science, 1988, 39 (3): 243–258
    [18] Bosc F, Ayral A, Albouy P A, et al. Mesostructure of anatase thin films prepared by mesophase templating [J]. Chemistry of Materials, 2004, 16 (11): 2208–2214
    [19] Chen W, Geng Y, Sun X D, et al. Achievement of thick mesoporous TiO2 crystalline films by one–step dip–coating approach [J]. Microporous and Mesoporous Materials, 2008, 111 (1–3): 219–227
    [20] Addamo M, Augugliaro V, Paola A D, et al. Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor [J]. Thin Solid Films, 2008, 516 (12): 3802–3807
    [21] Ghamsari M S, Bahramian A R. High transparent sol–gel derived nanostructured TiO2 thin film [J]. Materials Letters, 2008, 62 (3): 361–364
    [22] Young J Y, Jin S C, Kim S, et al. Low–temperature coating of sol–gel anatase thin films [J]. Materials Letters, 2004, 58 (29): 3703–3706
    [23] Valtierra J M, Reyes C F, Ortiz J R. Preparation of rough anatase films and the evaluation of their photocatalytic efficiencies [J]. Applied Catalysis B: Environmental, 2007, 76 (3–4): 264–274
    [24] Wei X, Xie T F, Zhang Y, et al. The effect of Al3+ treatment on charge dynamics in dye-sensitized nanocrystalline TiO2 solar cells explored by photovoltage measurements [J]. Materials Chemistry and Physics, 2010, 122 (1): 259–261
    [25] Huang L H, Sun C, Liu Y L, et al. Pt/N–codoped TiO2 nanotubes and its photocatalytic activity under visible light [J]. Applied Surface Science, 2007, 253 (17): 7029–7035
    [26] Hu L Y, Song H W, Pan G H, Photoluminescence properties of samarium–doped TiO2 semiconductor anocrystalline powders [J]. Journal of Luminescence, 2007, 127 (2): 371–376
    [27] Li J J, Liu S Q, He Y Y, et al. Adsorption and degradation of the cationic dyes over Co doped amorphous mesoporous titania-silica catalyst under UV and visible light irradiation [J]. Microporous and Mesoporous Materials, 2008, 115 (3): 416–425
    [28] Shibata H, Ohkubo T, Kohno H, et al. Preparation and photocatalytic activity of titania particulate film with mesostructured silica as binder [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181 (2–3): 357–362
    [29] Sheng Q R, Yuan S, Zhang J L, et al. Synthesis of mesoporous titania with high photocatalytic activity by nanocrystalline particle assembly [J]. Microporous and Mesoporous Materials, 2006, 87 (3): 177–184
    [30] Choi H, Stathatos E, Dionysiou D D. Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications [J]. Applied Catalysis B: Environmental, 2006, 63 (1–2): 60–67
    [31] Kitano M, Funatsu K, Matsuoka M, et al. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation [J]. The Journal of Physical Chemistry B, 2006, 110 (50): 25266–25272
    [32] Zhang X T, Jin M, Liu Z Y, et al. Superhydrophobic TiO2 surfaces: Preparation, photocatalytic wettability conversion, and superhydrophobic–superhydrophilic patterning [J]. The Journal of Physical Chemistry C, 2007, 111(39): 14521–14529
    [33] Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion–implanted TiO2 catalysts: Fe ion–implanted TiO2 [J]. Catalysis Today, 2003, 84 (3–4): 191–196
    [34] Chang K W, Lim Z Y, Du F Y, etal. Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor [J]. Diamond & Related Materials, 2009, 18 (2–3): 448–451
    [35] Belver C, Bellod R, Fuerte A, et al. Nitrogen–containing TiO2 photocatalysts Part 1. Synthesis and solid characterization, Applied Catalysis B: Environmental 2006, 65 (3–4): 301–308
    [36] Demeestere K, Dewulf J, Ohno T, et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide [J]. Applied Catalysis B: Environmental, 2005, 61 (1–2): 140–149
    [37] Zhang Z H, Yuan Y, Shi G Y, et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation [J]. Environ–mental Science & Technology, 2007, 41 (17): 6259–6263
    [38] Fuertes M C, Colodrero S, Lozano G, et al. Sorption properties of mesoporous multilayer thin films [J]. The Journal of Physical Chemistry C, 2008, 112 (9): 3157–3163
    [39] Sun B, Reddya E P, Smirniotis P G, et al. TiO2–loaded Cr–modified molecular sieves for 4–chlorophenol photodegradation under visible light [J]. Journal of Catalysis, 2006, 237(2): 314–321
    [40] Wang Y Y, Zhou G W, Li T D, et al. Catalytic activity of mesoporous TiO2-xNx photocatalysts for the decomposition of methyl orange under solar simulated light [J]. Catalysis Communications, 2009, 10 (4): 412–415
    [41] Sun H Q, Bai Y, Cheng Y P, et al. Preparation and characterization of visible–light–driven carbon–sulfur–codoped TiO2 photocatalysts [J]. Industrial & Engineering Chemistry Research, 2006, 45 (14): 4971–4976
    [42] Segawa H, Fukuyoshi J, Tateishi K, et al. Anatase TiO2 film from sol–gel process added polyvinylpyrrolidone [J]. Journal of Materials Science, 2003, 22 (9): 687–690
    [43] Cong Y, Zhang J L, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano–TiO2 co–doped with nitrogen and iron (III) [J]. The Journal of Physical Chemistry C, 2007, 111 (28): 10618–10623
    [44] Morikawa T, Irokawa Y, Ohwaki T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation [J]. Applied Catalysis, A: General, 2006, 314 (1): 123–127
    [45] Tsuru T, Kanno T, Yoshioka T, et al. A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes [J]. Catalysis Today, 2003, 82 (1–4): 41–48
    [46] Watanabe T, Hayashi H, Imai H. Low–temperature preparation of dyesensitized solar cells through crystal growth of anatase titania in aqueous solutions [J]. SolarEnergy Materials & Solar Cells, 2006, 90 (5): 640–648
    [47]孙红旗,程友萍,金万勤,等.镧、碳共掺杂TiO2的制备及其可见光催化性能[J].化工学报,2006, 57 (7): 1570–1574
    [48]李越湘,王添辉,彭绍琴,等. Eu3+、Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报,2004, 20 (12): 1438–1439
    [49]李红,赵高凌,刘琴华,等.硅掺杂和硅钒共掺杂对TiO2光催化性能的影[J].硅酸盐学报,2005, 33 (6): 784–788
    [50] Fujishima A, Honda K. Electrochemical photocatalysis of water at a semi–conductor electrode [J]. Nature (London), 1972, 238: 37–38
    [51] Anpo M,. Applications of titanium oxide photocatalysts and unique second- generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale [J]. Studies in Surface Science and Catalysis, 2000, 130: 157–166
    [52] Dempsey J L, Esswein A J, Manke D R, et al. Molecular chemistry of consequence to renewable energy [J]. Inorganic Chemistry, 2005, 44 (2): 6879–6892
    [53]王程,龚文琪,李艳.矿物负载纳米TiO2光催化材料的制备及其在偶氮染料废水处理中的应用[J].材料科学与工程学报, 2008, 26 (1): 129–133
    [54]孙剑辉,王晓蕾.掺杂纳米TiO2在难降解废水处理中的研究进展[J].工业水处理,2006, 26 (5): 1–4
    [55] Sun W L, Qu Y Z, Yu Q, et al. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash [J]. Journal of Hazardous Materials, 2008, 154 (1–3): 595–601
    [56] Amat A M, Arques A, L?pez F, et al. Solar photo–catalysis to remove paper mill wastewater pollutants [J]. Solar Energy, 2005, 79 (4): 393–401
    [57] Yuan R S, Guan R B, Liu P, et al. Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293 (1–3): 80–86
    [58] Wu Z H. Photocatalytic degradation of waste water on thin films of TiO2 [J]. Journal of Natural Gas Chemistry, 2001, 10 (1): 82–87
    [59] Kitano M, Matsuoka M, Ueshima M, et al. Recent developments in titanium oxide–based photocatalysts [J]. Applied Catalysis, A: General, 2007, 325 (1): 1–14
    [60] Sahoo D K, Gupta R. Evaluation of ligninolytic microorganisms for efficient decolorization of a small pulp and paper mill effluent [J]. Process Biochemistry, 2005, 40 (5): 1573–1578
    [61] Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2 films and membranes forthe development of efficient wastewater treatment and reuse systems [J]. Desalination, 2007, 202 (1–3): 199–206
    [62] Shao G S, Zhang X J, Zhong Y Y. Preparation and photocatalytic activity of hierarchically mesoporous–macroporous TiO2-xNx [J]. Applied Catalysis B: Environmental, 2008, 82 (3–4): 208–218
    [63] Flox C, Cabot P L, Centellas F, et al. Solar photoelectro–Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode [J]. Applied Catalysis B: Environmental, 2007, 75 (1–2): 17–28
    [64] Chen D M, Jiang Z Y, Geng J Q, et al. A facile method to synthesize nitrogen and fluorine co–doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6 [J]. Journal of Nanoparticle Research, 2009, 11 (2): 303–313
    [65] Sun B, Reddy E P, Smirniotis P G. TiO2–loaded Cr–modified molecular sieves for 4–chlorophenol photodegradation under visible light [J]. Journal of Catalysis, 2006, 237 (2): 314–321
    [66] Ohshiro S, Chiyoda O, Maekawa K, et al. Design of Cr–oxide photocatalyst loaded on zeolites and mesoporous silica as a visible–light–sensitive photocatalyst [J]. Comptes Rendus Chimie, 2006, 9 (5): 846–850
    [67] Irokawa Y, Marikawa T, Aoki K, et al. Photodegradation of toluene over TiO2-xNx under visible light irradiation [J]. Physical Chemistry Chemical Physics, 2006, 8 (9): 1116–1121
    [68] Hao H Y, Zhang J L. The study of Iron (III) and nitrogen co–doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity [J]. Microporous and Mesoporous Materials, 2009, 121 (1–3): 52–57
    [69] Morikawa T, Irokawa Y, Ohwaki T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation [J]. Applied Catalysis, A: General, 2006, 314 (1): 123–127
    [70] Fang J, Bi X Z, Si D J, et al. Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides [J]. Applied Surface Science, 2007, 253 (22): 8952–-8961
    [71] Li F B, Li X Z, Hou F M, et al. Enhanced photocatalytic activity of Ce3+–TiO2 for 2–mercaptobenzothiazole degradation in aqueous suspension for odor control [J]. Applied Catalysis, A: General, 2005, 285 (1–2): 181–189
    [72] Wang Y Y, Zhou G W, Li T D, et al. Catalytic activity of mesoporous TiO2-xNx photocatalysts for the decomposition of methyl orange under solar simulated light [J]. Catalysis Communications, 2009, 10 (4): 412–415
    [73] Huang D G, Liao S J, Zhou W B, et al. Synthesis of samarium– andnitrogen–co–doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4–chlorophenol [J]. Journal of Physics and Chemistry of Solids, 2009, 70 (5): 852–859
    [74] Chen X B, Lou Y B, Samia A C S, et al. Formation of oxynitride as the photocatalytic enhancing site in nitrogen–doped titania nanocatalysts: comparison to a commercial nanopowder [J]. Advanced Functional Materials, 2005, 15 (1): 41–49
    [75] Zhou L, Deng J, Zhao Y B, et al. Preparation and characterization of N–I co–doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible–light irradiation [J]. Materials Chemistry and Physics, 2009, 117 (2–3): 522–527
    [76] Ohko Y, Tatsuma T, Fujishima A. Characterization of TiO2 photocatalysis in the gas phase as a photoelectrochemical system: Behavior of salt–modified systems [J]. Journal of Physical Chemistry B, 2001, 105 (41): 10016–10021
    [77] Asahi R, Morikawa T, Ohwaki T, et al. Visible–light photocatalysis in nitrogen–doped titanium oxides [J]. Science, 2001, 293 (5528): 269–271
    [78] Yuan S, Sheng Q R, Zhang J L, et al. Synthesis of La3+ doped mesoporous titania with highly crystallized walls [J]. Microporous and Mesoporous Materials, 2005, 79 (1–3): 93–99
    [79] Wei C H, Tang X H, Liang J R, et al. Preparation, characterization and photocatalytic activities of boron and cerium–codoped TiO2 [J]. Journal of Environmental Sciences, 2007, 19 (1): 90–96
    [80] Liu C, Tang X H, Mo C H, et al. Characterization and activity of visible–light–driven TiO2 photocatalyst codoped with nitrogen and cerium [J]. Journal of Solid State Chemistry, 2008, 181 (4): 913–919
    [81] Choi W Y, Termin A, Hoffmann M R. The role of metal–ion dopants in quantum–sized TiO2: Correlation between photoreactivity and charge–carrier Recombination Dynamics [J]. The Journal of Physical Chemistry, 1994, 98 (51): 13669–13679
    [82] Wawrzyniak B, Morawski A W. Solar–light–induced photocatalytic decompo–sition of two azo dyes on new TiO2 photocatalyst containing nitrogen [J]. Applied Catalysis, B: Environmental, 2006, 62 (1–2): 150–158
    [83] Sudhagar P, Sathyamoorthy R, Chandramohan S, Influence of porous morphology on optical dispersion properties of template free mesoporous titanium dioxide (TiO2) films [J]. Applied Surface Science, 2008, 254 (7): 1919–1928
    [84] Kalyanasundaram K, Graetzel M. Applications of functionalized transition metalcomplexes in photonic and optoelectronic devices [J]. Coordination Chemistry Reviews, 1998, 177 (1): 347–414
    [85] Yuan R S, Guan R B, Liu P, et al. Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293 (1–3): 80–86
    [86] GB 11914–89,水质化学需氧量的测定重铬酸盐法[S].北京:中国标准出版社,1989
    [87] Grandcolas M, Du M K L, Bosc F, et al. Porogen template assisted TiO2 rutile coupled nanomaterials for improved visible and solar light photocatalytic applications [J]. Catalysis Letters, 2008, 123 (1–2): 65–71
    [88] Li J X, Xu J H, Dai W L, et al. One–pot synthesis of twist–like helix W, N–codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol [J]. Applied Catalysis, B: Environmental, 2008, 82 (3–4): 233–243
    [89] Liu Y, Sun D Z, Cheng L, Li Y P. Preparation and characterization of Fe2O3–CeO2–TiO2/γ–A12O3 catalyst for degradation dye wastewater [J]. Journal of Environmental Sciences, 2006, 18 (6): 1189–1192
    [90] Shibata H, Ogura T, Mukai T, et al. Direct synthesis of mesoporous titania particles having a crystalline wall [J]. Journal of the American Chemical Society, 2005, 127(47): 16396–16397
    [91] Chen X B, Lou Y B, Samia A C S, et al. Formation of oxynitride as the photocatalytic enhancing site in nitrogen–doped titania nanocatalysts: comparison to a commercial nanopowder [J]. Advanced Functional Materials, 2005, 15 (1): 41–49
    [92] Peng T Y, Zhao D, Dai K, et al. Synthesis of tianium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity [J]. The Journal of Physical Chemistry B, 2005, 109 (11): 4947–4952
    [93]徐会颖,周国伟,孟庆海,等.光催化降解造纸废水的影响因素及反应机理[J].工业水处理,2008, 28 (6): 12–15
    [94] Mitra A, Bhaumik A, Paul B K. Synthesis and characterization of mesoporous titanium dioxide using self-assembly of sodium dodecyl sulfate and benzyl alcohol systems as templates [J]. Microporous and Mesoporous Materials, 2008, 109 (1–3): 66–72
    [95] Houmard M, Riassetto D, Roussel F, et al. Morphology and natural wettability properties of sol–gel derived TiO2–SiO2 composite thin films [J]. Applied Surface Science, 2007, 254 (5): 1405–1414
    [96] Wessels K, Maekawa M, Rathousky J, et al. Highly porous TiO2 films from anodically deposited titanate hybrids and their photoelectrochemical and photocatalytic activity [J]. Microporous and Mesoporous Materials, 2008, 111 (1–3): 55–61
    [97] Tschirch J, Bahnemann D, Wark M, et al. A comparative study into the photocatalytic properties of thin mesoporous layers of TiO2 with controlled mesoporosity [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194 (2–3): 181–188
    [98] Qiao W T, Zhou G W, Zhang X T, et al. Preparation and photocatalytic activity of highly ordered mesoporous TiO2–SBA–15 [J]. Materials Science & Engineering, B: Advanced Functional Solid-State Materials, 2009, 29 (4): 1498–1502
    [99] Zhou L J, Yan S S, Tian B Z, et al. Preparation of TiO2–SiO2 film with high photocatalytic activity on PET substrate [J]. Materials Letters, 2006, 60 (3): 396–399
    [100] Kuznetsova I N, Blaskov V, Stambolova I, et al. TiO2 pure phase brookite with preferred orientation, synthesized as a spin–coated film [J]. Materials Letters 2005, 59 (29–30): 3820–3823
    [101] Crisan M, Bra?ileanu A, Ra?ileanu M, et al. Sol–gel S–doped TiO2 materials for environmental protection [J]. Journal of Non–Crystalline Solids, 2008, 354 (2–9): 705–711
    [102] Liu K S, Zhang M L, Shi K Y, et al. Large–pore mesoporous nanocrystalline titania thin films synthesized through evaporation–induced self–assembly [J]. Materials Letters, 2005, 59 (26): 3308–3310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700