用户名: 密码: 验证码:
VOCs去除光/热催化功能炭吸附材料的Sol-Gel法制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和社会的进步,由挥发性有机物VOCs (Volatile organic compounds)造成的室内空气污染已引起人们广泛关注。大部分室内挥发性有机物都是有毒的,环境保护组织已经证实室内空气质量的好坏是影响人类健康的重要因素之一。这些VOCs包括甲醛、苯、甲苯、低级醇、酮、含氯有机物等,主要来源于油漆,涂料,溶剂,防腐剂,空气清新剂和消毒剂。其中20余种能直接对人造成伤害甚至致癌,如甲醛、苯及苯系物和有机过氧化物等。
     目前,TiO2多相光催化在环境保护领域内的水和气相有机、无机污染物的光催化去除方面取得了较大进展,被认为是一种极具前途的环境污染深度净化技术。同时活性炭等吸附材料的吸附净化技术被普遍应用,但是由于各自的优缺点,将两者结合起来将是室内空气净化中最具前景的技术之一。而近些年人们越来越重视贵金属的热催化作用,贵金属在低温热催化氧化CO和VOCs等污染物方面具有很大潜力,而将吸附、光催化和贵金属的热催化结合,无疑在净化室内VOCs方面具有很大的新意。
     本文采用溶胶-凝胶法合成了稀土La掺杂TiO2催化剂,在自行设计的一套反应装置中,以甲苯为模拟污染物,系统的研究了掺杂量、热处理温度等参数对催化剂去除甲苯性能的影响,并在此基础上引入贵金属,考察了贵金属的掺杂量及反应温度等因素对催化剂降解甲苯的影响,而后将复合催化剂负载在ACF上,制备出Pt/LaTiO2/ACF复合催化剂,并考察了吸附、光催化和热催化的协同作用。并结合SEM、XRD和XPS等表征手段分析复合材料表面相貌和晶相结构。以GC-MS联用技术检测复合材料对甲苯去处中间产物的种类和分布。实验结果如下:
     1.以钛酸四丁酯和硝酸镧为原料,采用溶胶凝胶法,制备出稀土La掺杂TiO2光催化剂薄膜。研究表明:La掺杂可提高催化剂的可见光催化活性,2.8%La/TiO2-500℃在60min内即可完全去除6110.18mg·m-3的气相甲苯;掺入的La以La2O3的形式分布在TiO2表面,并形成Ti-O-La键;La掺杂可抑制TiO2锐钛矿相向金红石相转变、提高相转变温度、减小晶粒尺寸及增大催化剂比表面积;La/TiO2薄膜表面光滑、致密,La的引入能有效抑制TiO2膜气孔的产生;La掺杂可提高TiO2在可见光区的吸收,使催化剂吸收边向长波移动;La的f轨道的电子跃迁是催化剂可见光活性提高的重要原因。
     2.沉积在催化剂表面的Pt以吸附氧和单质的形式存在,以吸附氧形式为主。而通过光沉积Pt制备的Pt-La2O3/TiO2复合催化剂,催化剂表面羟基官能团OH-伸缩振动明显增强。Pt的掺入没有引起TiO2相结构的变化,Pt的掺入减小了晶粒尺寸并增大了催化剂的比表面积。圆形纳米Pt均匀地分布在La2O3/TiO2上,没有发生团聚现象,尺寸分布比较均一,大约为5nm-10nm。Pt的沉积增加了催化剂对可见光的吸收。通过光沉积Pt所制备的Pt-La2O3/TiO2催化剂比TiO2和La2O3/TiO2具有更高的可见光催化活性。
     3.在不同体系(LaTiO2, Pt/LaTiO2, Pt/LaTiO2/ACF)对初始浓度为13872.3 mg/m3的甲苯的降解发现,ACF的负载使Pt/LaTiO2/ACF相对于其它两种催化剂对于甲苯的吸附提高很大,Pt/LaTiO2/ACF可以在60min内完全降解初始浓度为13872.3 mg/m3的甲苯。吸附,光催化和热催化之间的有机结合大大增强了该负载型催化剂对甲苯的降解能力。TiO2/ACF和Pt/La0.28Ti10O2/ACF降解甲苯过程中产生的中间产物在种类和含量上具有较大差异。TiO2/ACF的中间产物共有9种,.中间产物以醇类、醚类、苯酚类、酸类、酮类等为主,同时含有少量的长链烷烃,中间产物种类比较宽泛,含量较大。Pt/La0.28Ti10O2/ACF的中间产物共有8种,全部为长链烷烃,可见甲苯在催化剂的作用下,甲苯中所含有的苯环被彻底打开,表明Pt/La0.28Ti10O2/ACF相对于TiO2/ACF的催化活性有很大很高。
With the developing of economics and society, indoor air pollution caused by VOCs (Volatile organic compounds) has caused widespread concern. Most indoor volatile organic compounds are toxic. Worldwide environment organizationss have confirmed that indoor air quality is an important factor that affecting human health., which includes formaldehyde, benzene, toluene, alcohols, ketones, chlorinated organics, mainly from paint, solvents, preservatives, deodorants and disinfectants. More than 20 species can damage or cause directly on human cancer, such as formaldehyde, benzene and benzene and other organic peroxides.
     At present, TiO2 Photocatalysis have made great progress in the field of water and gas phase and was considered as a promising environmental purification technology. At the same time absorbent material is widely applied, such as activated carbon. Considering both the advantages and shortcomings of photocatlysis and adsorption, combining them together for a high efficient composites will be a promising technologies. in recent years, the thermal catalytic of noble metal has been caused widely concern, which can destroy VOCs at low temperature and is very potential, combining adsorption, photocatalytic and thermal catalytic is great new idea for controlling indoor air quality.
     In this paper, rare earth La doped TiO2 catalyst were synthesized by sol-gel, toluene oxidation was reacted in self-designed device, studying the influence of noble metals doped and reaction temperature on the toluene photocatalytic degradation. Composite materials were characterized by SEM, XRD and XPS.GC-MS was used to analyze composite materials on the toluene place types and distribution of intermediate products. The following are the results:
     1. La doped TiO2 photocatalyst were prepared by sol-gel method. The activity of the photocatalyst was investigated through degradation of Toluene under artificial visible light. X-ray Photoelectron Spectroscopy(XPS), Uv-vis Diffuse Reflectance Spectra(DRS), X-ray Diffraction analysis(XRD), Scanning Electron Microscope(SEM) and N2 adsorption isotherm were used for catalyst characterization. The results showed that La doped TiO2 exhibited significant improvement of visible light activity. La doping could improve dispersion of TiO2, inhibit particle size agglomeration and retard phase transformation. Doped La can extend the light response of TiO2 to visible light region. Inaddition, narrower band gap formed by La-doping was beneficial to the high visible light photocatalytic activity.
     2. Pt deposited on the catalyst surface existed in the style of adsorbed oxygen and simple substance. As Pt deposition through light Pt-La2O3/TiO2 prepared composite catalyst, hydroxyl groups OH-stretching on the catalyst surface vibration significantly increased. Pt incorporation did not change phase structure of TiO2, Pt incorporation decreases grain size and increase the catalyst surface area. Pt uniformly distributed on the surface of nano-Pt La2O3/TiO2 and agglomeration did not happened, size distribution of catalyst were uniform, about 5nm-10nm. Pt can make catalyst absorb more visible light. Pt-La2O3/TiO2 performed much higher visible light photocatalytic activity than La2O3/TiO2 and TiO2.
     3. Through the results of toluene degradation In the different systems (LaTiO2, Pt/LaTiO2, Pt/LaTiO2/VACF), We can find ACF loading can make Pt/LaTiO2/ACF adsorbed much toluene compared to the others, Pt/LaTiO2/ACF can degraded the initial concentration of 13872.3 mg/m3 of toluene within 60min. Combining adsorption, photocatalytic and thermal catalytic can greatly enhance the catalyst activity. Degradation intermediates contents and species were different in the degradation process by TiO2/ACF and Pt/La0.28TiO2/ACF. As TiO2/ACF, nine species intermediates products existed, concluding alcohols, ethers, phenols, acids, ketones, etc, the same small amount of long-chain alkanes, intermediate species in broad, high content. Pt/La0.28Ti02/ACF has eitht intermediate products, all of them were long-chain alkanes, we can find that benzene ring can be opened completely in the toluene degradation process, Pt/La0.28TiO2/ACF performed higher catalytic activity compared to TiO2/ACF.
引文
[1]US EPA, Characterizing Air Emissions from indoor Sources,EPA/600/F-95/005,1995
    [2]Jianguo H, Jurgen M, Dieter F, et al. Detection of volatile organic peroxides in indoor air. Fresen. J. Anal. Chem.,2001, 371(7):961—965
    [3]Jutta B, Erich J, Turkan K, et al. Performance of two different types of passive samplers for the GC/ECD-FID determination of environmental VOC levels in air. Fresen. J. Anal. Chem.,1999,363(4):399—403
    [4]Cornejo J J, Munoz F G, Ma C Y, et al. Studies on the decontemination of air by plant.Ecotoxicology.,1999,8(4):311— 320
    [5]Brown V M, Crump D R. Diffusive sampling of volatile organic compounds in ambient air.Environ. Monit. Assess.,1998, 52(1-2):43—55
    [6]Cardenas L M, Brassington D J, Allan B J, et al. Intercomparison of Formaldehyde Measurements in Clean and Polluted Atmospheres J. Atmos Chem.,2000,37(1):53—80
    [7]AO C H, LEE S C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci.,2005,60 (1):103—109
    [8]ROSANA M A, WILSON F J. Photocatalysis Destruction of VOCs in the Gas-phase Using Titanium Dioxide.Appl. Catal B:Environ.,1997,14 (1—2):55—68
    [9]孙德智,环境工程中的高级氧化技术.北京:化学工业出版社,2002
    [10]陶跃武,赵梦月,陈士夫,等.空气中有害物质的光催化去除[J].催化学报.1997,18(4):345-347
    [11]Jirapat A, Puangrat K, Supapan S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. Journal of Hazardous Materials,2009,168 (1):253-261.
    [12]李辉,王金淑,李洪义,等.氮硫掺杂介孔TiO2薄膜结构及其光催化性能.无机材料学报,2009,24(5):909-914.
    [13]Colon G, Hidalgo M C, Mac'ias M, et al. Enhancement of TiO2/C photocatalytic activity by sulfate promotion.Applied Catalysis A:General,2004,259(2):235-243.
    [14]Xie Y, Zhao X J, Li Y Z. CTAB-assisted synthesis of mesoporous F-N-codoped TiO2 powders with high visible-light-driven catalytic activity and adsorption capacity. Journal of Solid State Chemistry,2008,181(8):1936-1942.
    [15]陈其凤,姜东,徐耀,等.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能.物理化学学报,2009,25(4):617-623.
    [16]Chan Chih-Chieh, Chang Chung-Chieh, Hsu Wen-Chia. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal,2009,152(2-3):492-497.
    [17]刘守新,陈孝云,李晓辉.N掺杂对TiO2形态结构及光催化活性的影响.无机化学学报,2008,24(2):253-259.
    [18]Jing L Q, Sun X J, Xin B F, et al. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem.,2004,177(10):3375-3382.
    [19]Wu X H, Ding X B, Qin W, et al. Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro- plasma oxidation method. J. Hazard. Mater. B,2006,137(1):192-197.
    [20]Yuan Sh, Sheng Q R, Zhang J L,et al. Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater.,2005,79(1-3):93-99.
    [21]Atribak I, Such-Basanez I, Bueno-Lopez A, et al. Catalytic activity of La-modified TiO2 for soot oxidation by O2. Catal.Commun.,2007,8(3):478-482.
    [22]Masashi I, Li J G, Norio K. Phase formation and luminescence properties in Eu3+-doped TiO2 nanoparticles prepared by thermal plasma pyrolysis of aqueous solutions.Thin Solid Films,2008,516(19):6640-6644.
    [23]Setiawati E, Kawano K. Stabilization of anatase'phase in the rare earth; Eu and Sm ion doped nanoparticle-TiO2. Journal of Alloys and Compounds,2008,451(1-2):293-296.
    [24]Hwang D W, Lee J S, Li W, et al. Electronic band structure and photocatalytic activity of Ln(2)Ti(2)O(7) (Ln= La,Pr, Nd). J. Phys. Chem. B,2003,107(21):4963-4970.
    [25]Zhang Y H, Zhang H S, Xu Y X,,et al. Europium doped nanocrystalline titanium dioxide:preparation.phase transformation and photocatalytic properties. J. Mater. Chem.,2003,13(1):2261-2265.
    [26]Liu H, Li X Z. An Alternative Approach to Ascertain the Rate-Determining Steps of TiO2 Photoelectrocatalytic Reaction by Electrochemical Impedance Spectroscopy. J. Phys. Chem. B,2003,107(34):8988-8996.
    [27]Wang C, Zhang X H, Liu H, et al. Reaction Kinetics of Photocatalytic Degradation of Sulfosalicylic Acid Using TiO2 Microspheres. J.Hazard.Mater.,2008, doi:10.1016/j.jhazmat.2008.07.064
    [28]Li X Z, Liu H. Photocatalytic Oxidation Using a New Catalyst-TiO2 Microsphere for Water and Wastewater Treatment. Environ. Sci. Technol.,2003,37(17):3989-3994.
    [29]Kamat P V. photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B,2002,106(32):7729-7744.
    [30]Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol., 2003,37(1):147-152.
    [31]Fang J, Bi X, Si D, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. Appl. Surf. Sci.,2007, 253(22):8952-8961.
    [32]姜承志,苏会东,卢旭东.稀土掺杂混晶TiO2薄膜的制备和性能.电镀与精饰,2008,30(5):7-100
    [33]魏伟,刘曙光.Ce4+掺杂混晶纳米TiO2粉体的制备及其性能表征.硅酸盐通报,2008,27(2):424-432
    [34]孙俊英,孟大维,刘卫平等.稀土离子(La3+,Eu3+)掺杂纳米TiO2的光催化性能.稀有金属,2008,(32)4:497-501
    [35]Fu, X. F., Clark, L. A., Zeltner, W. A., and Anderson, M. A. Effect of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene. J. Photochem.Photobiol.1996,97:181-186
    [36]Einaga,H.,Ibusuki,T.,Futamure,S.Improvement of Catalyst Durability by Deposition of Rh on TiO2 in Photooxidation of Aromatic Compounds.Environ. Sci. Technol.2004,38(1):285-289
    [37]J M Coronado.et al.Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts.Applied Catalysis B.Environmental,2001,29(4):327-335
    [38]Christian Lettmann,Knut Hildenbrand,Horst Kisch,et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst.Applied Catalysis Environmental,2001,32(4):215-227
    [39]J.L.Falconer,et al. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2. Journal of Catalysis.1998,179:171-178
    [40]Zhen Ma, Steven H. Overbury, Sheng Dai. Au/M_xC_y/TiO2 catalysts for CO oxidation Promotional effect of main-group,transition,and rare-earth metal oxide additives.Journal of Molecular Catalysis A:Chemical.2007.273 (1/2):186-197
    [41]LifengWang, Makoto Sakurai, Hideo Kameyama, Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature.Journal of Hazardous Materials,2009,167 (1-3):399-405
    [42]Liu H, Li X Z.An Alternative Approach to Ascertain the Rate-Determining Steps of TiO2 Photoelectrocatalytic Reaction by Electrochemical Impedance Spectroscopy. J. Phys. Chem. B.,2003,107(34):8988—8996
    [43]Wang C, Zhang X H, Liu H, et al. Reaction Kinetics of Photocatalytic Degradation of Sulfosalicylic Acid Using TiO2 Microspheres. J. Hazard. Mater.2008.doi:10.1016/j.jhazmat.2008.07.064
    [44]Li X Z, Liu H. Photocatalytic Oxidation Using a New Catalyst-TiO2 Microsphere for Water and Wastewater Treatment. Environ. Sci. Technol,2003,37:3989—3994
    [45]Andrew M, Stephen L H. An overview of semiconductor photocatalysis. J. Photochem. Photobio A:Chem.,1997,108 (1):1—3
    [46]Yoneyama H. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J. Phys. Chem.,1995,99 (21):9986—9991
    [47]Yoneyama H. Effect of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Eviron. Sci. Technol.,1996,30 (11):1275—1281
    [48]Takashi I. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. J. Mole. Catal., 1994,88 (1):93—102
    [49]Tsukasa T, Norihiko T, Yoneyama H. Effect of activated carbon contention TiO2 loaded activated carbon on photodegradation behaviors of dichloromethane. J. Photobio. Photochem. A:Chem.,1997,103 (3):153—157
    [50]Ollis D, ElAkabi Heds. The First Photo-catalysis International Conference[C]. New York:Elsevier,1993,583—585
    [51]Suzuki M. JP155125/96,1996
    [52]Chiyoda K. EP 0725036A1,1996
    [53]Yoneyama H, Okawa Y, Takenda N. Influence of carbon black as an adsorbent used in TiO2 photocatalyst films on photodegradation behaviors of propyzamide. J. Catal.,1998,177 (2):240—246
    [54]Srinivasan S, Yoneyama H. Photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide. J. Catal.,1994,149 (2):189—194
    [55]Monneyron P, Manero M H, Foussard J N, et al. Heterogeneous photocatalysis of butanol and methyl ethyl ketone: Characterization of catalyst and dynamic study. Chem. Eng. Sci.,2003,58:971—978
    [56]Teruaki H, Keiichi T. Photocatalytic degradation of benzene on zeolite-incorporated TiO2 film. J. Hazard. Mater. B.,2002, 93:331—337
    [57]Ichiura H, Kitaoka T, Tanaka H. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique. Chemosphere.,2003,50:79—83
    [58]蒋引珊,金为群,张军.TiO2/沸石复合物结构与光催化性.无机材料学报,2002,17(6):1301—1305
    [59]陈孝云,刘守新,陈曦.TiO2/wAC复合光催化剂的酸催化水解合成及表征.物理化学学报,2006,22(5)517—522
    [60]Cordero T, Chovelon J M, Duchamp C, et al. J. Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons.Appl. Catal. B:Environ,2007,73:227—235
    [61]Cordero T, Duchamp C, Chovelon J M, et al. Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation. J. Photochemistry and Photobiology A:Chem,2007,191(2/3):122—131
    [62]黄雯,杨家宽,范双艳.活性炭负载TiO2的甲苯光催化降解性能研究.工业催化,2007,15(10):55—59
    [63]孙和芳,张国栋,郑光宇.活性炭负载TiO2光催化降解甲醛.安徽工业大学学报,2007,24(1):39—42
    [64]耿晓云,任宝山,杨贵荣.牟兴瑞载体对二氧化钛光催化降解苯的影响.钛工业进展,2006,23(4):35—36
    [65]黄彪,陈学榕,江茂生.TiO2-活性炭复合材料吸附及光催化净化甲醛的研究.林产化学与工业,2005,25(3)38—42
    [66]刘守新,陈曦.酸催化水解法制备可见光响应N掺杂纳米TiO2催化剂.催化学报,2008,29(1):19—24
    [67]胡春,王怡中,汤鸿霄.表面键联型TiO2/SiO2固定化催化剂的结构及催化特性.催化学报,2001,22(2):185—188
    [68]杨骏,朱利伟,唐渝.超声微乳法合成TiO2-SiO2催化剂可见光光催化降解亚甲基蓝.化学研究与应用,2008,20(6):714-718
    [69]Zou L D, Luo Y Q Hooper M M, et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chem. Engin. Proce.,2006,45:959—964
    [70]于竹芹,李坚,金毓奎.活性炭纤维负载TiO2光催化降解甲醛研究.工业催化,2008,16(7):71—74
    [71]侯一宁,王安,王燕.二氧化钛-活性炭纤维混合材料净化室内甲醛污染.四川大学学报,2004,36(4):41—44
    [72]梁世强,穆筱梅,葛建芳.活性炭纤维负载纳米TiO2在光反应器中降解空气中微量甲醛的研究.精细化工,2006,23(5):44—47
    [73]胡俊生,徐文涛,黄宽.室内空气UV/TiO2/ACF多相光催化净化研究.辽宁化工,2008,37(7):453—456
    [74]胡将军,李英柳,彭卫华.吸附-光催化氧化净化甲醛废气的试验研究.化学与生物工程,2004,1:39—41
    [75]詹雪艳,宋丹丹.碳纳米管改性TiO2的光催化性能.化学研究与应用,2003,15(4): 471—474
    [76]Gao B, Peng C, George Z. Chen, et al. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Appl. Catal. B:Environ.,2008,85 (1-2):17—23
    [77]吴玉程,刘晓璐,叶敏.碳纳米管负载纳米TiO2复合材料的制备及其性能.物理化学学报,2008,24(1):97—102
    [78]Matos J. Laine J, Herrmann J M, et al. Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic Pollutants by UV-Irradiated Titania. Journal of Catalysis,2001,200(1):10—20
    [79]王勇,张军,杨青林.新型光催化材料的制备与催化性能研究.材料导报,2006,20:68—82
    [80]陆银兰,杨建忠.ACF负载纳米TiO2净化室内甲醛的应用研究.广西纺织科技,2004,33:35—37
    [81]Arana J. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl. Catal. B:Environ.,2003,44:161—172
    [82]Einage H, Futamura S, Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air:comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal. B: Environ,2002,38 (3):215—225
    [83]张前程,张凤宝,张国亮.苯在TiO2上的气相光催化氧化反应历程.催化学报,2004,25(1):39—43
    [84]Jardim W F, Alberici R M. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B: Environ,1997,14 (1):55—68
    [85]AugugliaroV, Coluccia S, LoddoV, et al. Structural changes of transparent TiO2 thin films with heat treatment.Appl. Catal. B:Environ,1999,20 (1):15—27
    [86]Rafael M R, Nelson C M. Relationship between the formation of surface species and catalyst deactivation during the gas phase photocatalytic oxidation of toluene. Catal. Today,1998,40 (4):353—365
    [87]Cao L X, Gao Z, Suib S L, et al. Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts:Studies of Deactivation and Regeneration. J. Catal.,2000,196 (2):253—261
    [88]刘守新,刘正峰.TiO2/ACF复合材料的Sol-Gel法制备及其对苯的去除性能.无机化学学报,2009,24(2):209—214
    [89]Arana J, Dona R J M, Cabo C G, et al. FTIR study of gas-phase alcohols photocatalytic degradation with TiO2 and AC-TiO2. Appl. Catal. B:Environ.,2004,53:221—232
    [90]Ameen M M, Raupp G B. Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air. J. Catal., 1999,184 (1):112—122
    [91]曾志雄,徐玉党.纳米材料TiO2光催化技术在空气净化中的应用.制冷与空调,2003,4(3):36—39
    [92]张彭义,梁夫艳,陈清.低浓度甲苯的气相光催化降解研究.环境科学,2003,24(6): 54—58
    [93]孙如宝,袭著革.室内挥发性有机污染物纳米光催化处理研究进展.解放军预防医学杂志,2005,23(6):457—459
    [94]L.A.Philips,Gregory B.Raupp. Kinetics of the Gas-solid Hetergeneous Photocatalytic Oxidation of TCE by near UV Illuminated Titannium dioxide. J. Mole. Catal.,1992,3(77):297—311
    [95]Ao C H, Lee S C. Environmental construction materials fixing titanium dioxide decomposing nitrogen oxide (NOx). Appl. Catal. B:Environ.,2003,44:191—205
    [96]Ao C H, Lee S C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. J. Photochem. Photobio. A:Chem.,2004,161:131—140
    [97]贺飞,唐怀军,赵文宽.纳米TiO2光催化负载技术研究.环境污染治理技术与设备,2001,2(2):47—58
    [98]Yuan R S, Guan R B, Shen W Z, et al. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. J. Colloid. Interf. Sci.,2005,282:87—91
    [99]李发堂,赵地顺.溶胶-凝胶法合成纳米TiO_2粉体的研究进展.材料导报,2006,20(2):64—66
    [100]Waldner G,Pourmodji M, Bauer M M, et al, Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere.,2003,50 (8):989—998
    [101]赵文宽,周磊,刘昌.液相沉积法制备光催化活性TiO2薄膜和纳米粉体.化学学报,2003,61(5):699—704
    [102]张万忠,乔学亮,陈建国.光催化纳米材料的制备与光催化活性.化学通报,2005,11:839—844
    [103]胡昌义,李靖华.化学气相沉积技术与材料制备.稀有金属,2001,25(5):364—367
    [104]范金山.微乳液法制备TiO2纳米粉体及其光催化性能研究.人工晶体学报,2006,35(2):347—-350
    [105]文桂林,高原,刘惠涛.制备方法对纳米TiO2光催化活性的影响.环境科学与技术,2006,29(9):19—21
    [106]任成军,钟本和,周大利.水热法制备高活性TiO2光催化剂的研究进展.稀有金属,2004,28(5):903—906
    [107]Durgakumari V, Subrahmanyam M, Suhba K V, et al. An easy and efficient use of TiO2 supported HZSM-5 and TiO2+ HZSM-5zeolite combinate in the photodegradation of aqueous phenol aad p-chlorophenol. Appl. Catal. A:General., 2002,234:155—165
    [108]Leung M K H, Tang S M, Lam R C W, et al. Parallel-plate solar photocatalytic reactor for air purification:semi-empirical correlation,modeling,and optimization. Solar Energy,2006,80(8):949—955
    [109]Vincent G, Marquaire G M, Zahraa O. Abatement of volatile organic compounds using an annular photocatalytic reactor: Study of gaseous acetone. J. Photochem and Photobio A:Chem.,2008,197:177—189
    [110]陈爱平,古宏晨,戴智铭.多层结构的光催化空气净化网及其制备方法.China Pat Appl, CN99116885.2
    [111]刘正峰.TiO2/ACF复合材料的溶胶-凝胶法制备及其对苯的去除性能研究.哈尔滨:东北林业大学硕士研究生毕业论文,2008.
    [112]李晓辉,刘守新.N、F共掺杂TiO2可见光响应光催化剂的酸催化水解法制备及表征.物理化学学报,2008,24(11):2019-2024.
    [113]Yamaki T, Umebayashi T, Sumita T,et al. Fluorine-doping in Titanium Dioxide by Ion Implantation Technique. Nucl. Instr. Meth. Phys. Res. B,2003,206(1):254-258.
    [114]Suzuki S, Ishii T, Sagawa T. X-Ray Photoemission Spectra of 4d and 3d Electrons in Lanthanum-and Cerium-Halides. J. Phys. Soc. Jpn.,1974,37(5):1334-1340.
    [115]Ao C H, Lee S C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level Appl. Catal. B:Environ.,2003,44(3):191-205.
    [116]Soler-Illia G, Louis A, Sanchez C. Synthesis and characterization of mesostruetured titania-based materials through evaporation-induced self-assembly. Chem. Mater.,2002,14(2):750-759.
    [117]尹荔松,谭敏,陈永平等.La掺杂对纳米TiO2薄膜晶体结构和光催化性能的影响.中南大学学报,2008,39(4):665-671.
    [118]方舒玫,欧延,林敬东,等.La2O3掺杂低温合成介孔锐钛矿相二氧化钛.中国稀土学报,2006,(S2):32-36.
    [119]Ebitani K, Hirano Y, Morikawa A. Rare-Earth Ions as Heterogeneous Photocatalysts for the Decomposition of Dinitrogen Monoxide. J. Catal.,1995,157(1):262-265.
    [120]Li F, Li X, Hou M. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-Ti02 suspension for odor control. Appl.Catal.B:Environ.,2004,48(3):185-194.
    [121]I. Atribak, I. Such-Basanez, A. Bueno-Lopez, A. Garcia Garcia, Comparison of the catalytic activity of MO2 (M=Ti, Zr, Ce) for soot oxidation under NOx/O2.Catal.Commun.,2007,8 (3):478-482.
    [122]Masashi Ikeda a,b, Ji-Guang Li a, Norio Kobayashi a,c, Phase formation and luminescence properties in Eu3+-doped TiO2 nanoparticles prepared by thermal plasma pyrolysis of aqueous solutions, Thin Solid Films,2008,516(19):6640-6644
    [123]E. Setiawati, K. Kawano. Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2 Journal of Alloys and Compounds,2008,451 (1-2):293-296
    [124]Ki-Chul Cho, Kyung-Chul Hwang, Taizo Sano,Koji Takeuchi, Sadao Matsuzawa. Photocatalytic performance of Pt-loaded TiO2 in the decomposition of gaseous ozone, Journal of Photochemistry and Photobiology A: Chemistry,2004,161 (2-3):155-161
    [125]C.H. Ao, S.C. Lee. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air leve.Appl. Catal. B:Environ.,2003,44 (3).191-205.
    [126]M.A. Peralta, M.A. Ulla, C.A. Querini, SO2 influence on the K/La2O3 soot combustion catalyst deactivation, Catalysis Today,2008,133-135 (8):461-466
    [127]Wang X C, Yu J C, Chen Y L, Wu L, Fu X Z. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.Environ Sci Technol,2006,40(7):2369-2374
    [128]Hou Y D, Wang X C, Wu L, Chen X F, Ding Z X, Wang X X, Fu X Z. ZrO2-Modified Mesoporous Nanocrystalline TiO2-xNx as Efficient Visible Light Photocatalysts. Chemosphere,2008,72(3):414-421
    [129]Xing-Gang Hou, Xue-Nan Gu, Yan Hu Enhanced Pt/TiO2 thin films prepared by electron beam irradiation, Nuclear Instruments and Methods in Physics Research B,2006,251 (2):429-434
    [130]M R Hoffmann, S T Martin, W Y Choi, et al. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev,1995,95(1):69-96.
    [131]D M Blake. NREL/TP-640-28297, National Renewal Energy Laboratory, Golden, Co.,2002.
    [132]C H AO, S C LEE. Indoor air purification by photocatalyst TiO2 iramo-bilizedon an activated carbon filter installed in an air cleaner. Chem. Eng. Sci.,2005,60(1):103~109.
    [133]J M Herrmann. Heterogeneous photocatalysis:an emerging discipline involving multiphase systems. Catalysis Today,1995,24(1-2):157-164.
    [134]T Torimoto, Y Okawal. Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane. Journal of Photochemistry and Photobiology A:Chemistry,1997,103(1-2):219-226.
    [135]J Matos, J Laine, J M Herrmann. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B:Environmental,1998,18(3-4):281-291.
    [136]C Lettmann. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B:Environmental,2001,32(4):215~227.
    [137]J Matos, J Laine, J M Herrmann. Association of activated carbons of different with titania in the photocatalytic purification of water. Carbon,1999,37(11):1870~1872.
    [138]J Arana, J M Dona-Rodnguez, E Tello Rendon. TiO2 activation by using activated carbon as a support Part Ⅰ. Surface characterisation and decantability study. Applied Catalysis B:Environmental,2003,44(2):161-172.
    [139]J Arana, J M Dona-Rodnguez, E Tello Rendon. TiO2 activation by using activated carbon as a support-Part Ⅱ. Photoreactivity and FTIR study.Applied Catalysis B:Environmental,2003,44(2):153~160.
    [140]B Tryba, A W Morawski, M Inagaki. Application of TiO2-mounted activated carbon to the removal of phenol from water. Applied Catalysis B:Environmental,2003,41(4):427~433.
    [141]C H Ao, S C Lee. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air leve.Applied Catalysis B:Environmental,2003,44(3):191-205.
    [142]C H Ao, S C Lee. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A:Chemistry,2004,161 (2-3):131~140.
    [143]B Tryba, A W Morawski, M Inagaki. A new route for preparation of TiO2-mounted activated carbon.Applied Catalysis B:Environmental,2003,46(3):203~208.
    [144]M C Lu, J N Chen, K T Chang. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation of propoxur.Chemosphere,1999,38(3):617-627.
    [145]李佑稷,李效东,李君文等.负载型TiO2/活性炭的制备及光催化降解罗丹明B研究.环境科学学报,2005,25(7):918~924.
    [146]刘守新,陈广胜,孙承林.活性炭的光催化再生机理.环境化学,2005,23(4):356-359.
    [147]Y. Matatov-Meytal, M. Sheintuch. Comparison of Catalytic Processes with Other Regeneration Methods of Activated . Carbon.Appl.Catal. A,2002,231(1):1-16.
    [148]E. Joannet, C. Horny, L. Kiwi-Minsker, et al. Palladium supported on filamentous active carbon as effective catalyst for liquid-phase hydrogenation of 2-butyne-1.4-diol to 2-butene-1,4-diol,Chem. Eng. Sci.,2002,57(16):3453~3460.
    [149]M.V. Landau, S.B. Kogan, D. Tavor, et al. Selectivity in heterogeneous catalytic processes. Catalysis Today,1997, 36(4):497~510.
    [150]M. Suzuki. Activated carbon fiber:Fundamentals and applications, Carbon,1994,32(4):577~586.
    [151]刘守新,陈曦,TiO2/活性炭的协同作用机制.化学通报,2006,69(2):91~104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700