用户名: 密码: 验证码:
有机物及金属掺杂对二氧化钛形貌及光催化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛由于具有成本低、化学稳定性好、比表面积大、光催化效率高和不产生二次污染等特点,是一种很重要的光催化材料,在废水处理、空气净化、抗菌杀菌、太阳能转化等诸多领域有着广泛的应用前景。同时,二氧化钛的不同形貌及晶型也同样具有独特的物理、化学性质,在不同的应用领域都表现出独特的性能。本文通过采用不同的模板及金属离子掺杂制备二氧化钛,讨论模板及金属离子对二氧化钛形貌及晶型转变温度的影响。
     选用壳聚糖为模板,壳聚糖浓度的大小对微球的形成起着控制作用,同时也能促进向金红石型转化。研究发现壳聚糖在反应过程中起到螯合剂的作用,能促进Ti-O键的结合,当加入量增加到一定值时,在螯合作用及自身高分子链的相互作用下,影响二氧化钛的形貌。Ti-O键的结合力增强也使得晶型转变温度降低。当壳聚糖加入量为1 g时,产物形貌最规整,为球形颗粒,粒径约为2.5μm,当加入量1.5 g时,在同样温度下煅烧已出现金红石相。
     通过加入表面活性剂DBS,将水热后的产物进行高温煅烧,制备了不同形貌的二氧化钛。研究表明,DBS的加入能提高产物的结晶性。产物煅烧400°C后生成球形颗粒;温度升高至500°C时,大的毛细管力使得纤维状或针状形貌出现;当温度为600°C时,纤维状颗粒聚集在一起,彼此之间发生键结,使得晶粒长大,形成条状结构。光催化结果表明,煅烧温度为500°C时,光催化降解率最高。
     采用廉价的Ti(SO4)2、乙酸钠为原料,通过控制不同的水热反应条件制备出了三种不同形貌的板钛矿型二氧化钛,分别为纳米管状、纤维组装成的纺锤状和花瓣状二氧化钛,XRD分析结果表明,晶型结构是相对较纯净的板钛矿型。研究发现,生成产物的形貌强烈依赖于水热温度、溶液的pH值、反应物浓度。反应物浓度适中,温度较低时形成板钛矿纳米管,温度较高时形成花瓣状;反应物浓度较低,温度较低时则生成纺锤形聚集体。CH3COO-中的羧基氧与Ti4+的配位也会对产物的形貌有着至关重要的影响,具体的影响机理尚在探讨之中。制备的板钛矿型二氧化钛都具有较高光催化活性。
     选取了金属离子Cr3+、Fe2+、Fe3+、W6+作为掺杂剂,采用溶胶-凝较法制备了掺杂改性的纳米二氧化钛光催化剂。三种离子的掺杂都可以大幅度降低锐钛矿相向金红石相的转变温度,且Cr3+对二氧化钛晶粒生长有一定的抑制作用。光催化结果表明,Cr3+的掺杂产物在煅烧500°C时对甲基橙的降解率最高,Fe3+的掺杂产物对吖啶橙和硝基苯的降解能力明显优于P25。
As an important photocatalytic material, TiO2 has wide applications in many fields, such as waste water tratement, air purification, antibacterial, solar energy conversion. Titanium oxide has been widely used because it has very low cost, high chemical stability, large suface area, photocatalytic efficient and no secondary pollution. At the same time, TiO2 with distinct also have unique properties and have been extensively investigated in different fields. In this thesis, TiO2 was obtained by using different templates and metallic ion doping. The influences of structures and crystals transition temperature of TiO2 by templates and metallic ion doping have been discussed.
     Using chitosan as a template, the concentration of chitosan plays a controlling role on the formation of microspheres, and also can promote the transformation to rutile. It’s found that chitosan playing the role of chelating agents in the reaction, could promote the combination of Ti-O bond, when added to a certain amount of value, under the action of sequestration and the interaction of the polymer chain itself, affected the titanium dioxide morphology. The enhancement of Ti-O binding force also made crystal transition temperature reduce. When the dosage of chitosan was 1 g, the product had the most regular shape, as spherical particles, diameter about 2.5μm; when the addition amount was 1.5g, rutile phase had emerged at the same calcination temperature.
     Different structures of TiO2 were obtained by using DBS as surfactant after calcined at high temperature. The results showed that the crystallinity of the product improved greatly by adding DBS. After calcining at 400°C, products generated spherical particles; while the large capillary force made the fibrous or needle-like morphology appear when rised to 500°C. At 600°C, the fibrous particles aggregated together and bonded with each other, leading to the grain grow bigger and forming the stripe structure. Photocatalytic results showed that, photocatalytic degradation rate was the highest at 500°C.
     Three different morphologies of brookite-type titanium dioxide, nano-tube, fiber assembled spindle, and the petal-shaped titanium dioxide respectively, were prepared in different hydrothermal conditions, using cheap Ti(SO4)2 and sodium acetate as raw materials. XRD analysis revealed that the crystal structure is the relatively pure brookite. The study showed that the morphology of the products was strongly dependent on the hydrothermal temperature, pH value and the concentration of reactants. Brookite nano-tubes were formed at low temperature with moderate concentration of reactants, the petal-shaped titanium dioxide were formed when the temperature is higher; When the concentration of reactants and the temperature were low, fiber assembled spindle was formed. Carboxyl oxygen in the CH3COO- and the coordination of Ti4+ had a critical influence on the morphology of the product, and the mechanism was still under explored. Preparation of brookite titanium dioxide had a higher photocatalytic activity.
     The metallic ion doping was used to modify TiO2. Nanometer TiO2 was obtained by selecting metallic ion Cr3+, Fe2+, Fe3+, W6+and using the sol-gel method. The crystal transition temperature all reduced by the three metallic ion doping. The grain growth of titanium dioxide obstruction by Cr3+ droping. Photocatalytic results showed that, the degradation rate of methyl orange was best by Cr3+ doping by calcining at 500°C. The degradation to acridine orange and nitrobenzene by Fe3+ doping was better than P25.
引文
[1] Huagui Yang, Chenghua Sun, Shizhang Qiao, etal. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(29): 638-642
    [2] Burdett JK. Electronic Control of the Geometry of Rutile and Related Structures[J]. Inorganic Chemistry, 1985, 24: 2244-2253
    [3]高濂,郑珊,张青红.纳米氧化钛催化材料及应用[M].化学工业出版社:北京,2002,12
    [4]黄婉霞,孙作凤,吴建春.纳米二氧化钦光催化作用降解甲醛的研究[J].稀有金属,2005,29(1):34-38
    [5] Davydova O I, Agafonov A V, Kraev A S, etal. The effect exerted by the type of the solvent and precursor in sol-gel preparation of titanium dioxide on its electrorheological activity[J]. Russian Journal of Applied Chemistry, 2010.1, 83(1): 14-17
    [6] I-Ming Hung, Yih Wang, Li-Ting Lin, etal. Preparation and characterization of mesoporous TiO2 thin film[J]. Journal of Porous Material, 2009, 8: 123-127
    [7] Bessekhouad Y, Robert D, Weber JV. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions[J]. J. Photochem. Photobiol. A: Chem., 2003, 157(1): 47-53
    [8] Yu J, Yu H, Cheng B, etal. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. J. Phys. Chem. B, 2003, 107(50): 13871-13879
    [9] Huagui Yang, Chenghua Sun, Shizhang Qiao. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(29): 638-642
    [10] Adachi M, Murata Y, Okada I, etal. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. J. Electrochem. Soc., 2003, 150(8): 488-493
    [11] Fisher AC, Peter LM, Ponomarev EA, eta1. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B, 2000, 104(5): 949-958
    [12] Maggie P, Karthik S, Sorachon Y, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length[J]. J. Phys. Chem. B, 2006, 110(33): 16179-16184
    [13] Nian JN, Teng H. Hydrothermal synthesis of single-crystalline anatase TiO2nanorods with nanotubes as the precursor[J]. J. Phys. Chem. B, 2006, 110(9): 4193-4198
    [14] Yu JG., Yu HG., Cheng B, etal. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method[J]. J. Photochem. Photobiol. A: Chem., 2006, 182(2): 121-127
    [15] Tian BL, Zhang XT, Dai SX, etal. Strong visible absorption and photoluminescence of titanic acid nanotubes by hydrothermal method[J]. J. Phys. Chem. C, 2008, 112(14), 5361-5364
    [16] Peng CW, Ke TY, Brohan L, eta1. (101)-exposed anatase TiO2 nanosheets[J]. Chem. Mater., 2008, 20(7): 2426-2428
    [17] Huang JQ, Huang Z, Guo W, etal. Facile synthesis of titanate nanoflowers by a hydrothermal route[J]. Cryst. Growth Des., 2008, 8(7): 2444-2446
    [18] Wu L, Yu JC, Fu XZ. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation[J]. J. Mol. Catal. A: Chem., 2006, 244(1-2): 25-32
    [19] Tian H, Ma JF, Li K, etal. Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method [J]. Mater. Chem. Phys., 2008, 112(1): 47-51
    [20] Serpone N, Texier I, Emeline AV. Past-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent holes cavers [J]. J .Photochem. Photobiol. A, 2000, 136(42): 145-152
    [21] Kim S, Choi W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: effects of nanosized platinum deposits on kinetics and mechanism [J]. J. Phys. Chem. B, 2002, 106(51): 13311-13317
    [22] Kumar PSS, Sivakumar R, Anandan S. etal. Photocatalytic degradation of acid red 88 using Au-TiO2 nanoparticles in squeous solutions [J]. Water. Res., 2008, 42(19): 4878-4884
    [23] Pintar A, Batista J, Tisler T. Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts [J]. Catal. Comm., 2008, 84(1-2): 30-41
    [24] Hou XG., Huang MD, Wu XL. Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol-gel method [J]. Chem. Eng. J., 2009, 146(1): 42-48
    [25] Iliev V, Tomova D, Bilyarska L, etal. Photooxidation of xylenol orange in thepresence of palladium-modified TiO2 catalysts [J]. Catal. Comm., 2004, 5(12): 759-763
    [26] Choi W, Termin A, Hoffmann MR. The role of metal ion depants in quantumsized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem., 1994, 98(51): 13669-13679
    [27] Srinivasan SS, Wade J, Stefanakos EK, etal. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2 [J]. J. Alloys Compd., 2006, 424(1-2): 322-326
    [28] Asahi R, Morikawa T, Ohwaki T, etal. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269-271
    [29] Jin C, Zheng RY, Guo Y, etal. Hydrothermal synthesis and characterization of phosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation [J]. J. Mol. Catal. A: Chem., 2009, 313(1-2): 44-48
    [30] Yuan J, Chen MX, Shi JW, etal. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride [J]. Int. J. Hydrogen Energy, 2006, 31(10): 1326-1331
    [31] Jiang D, Xu Y, Wu D, etal. Visible-light responsive dye-modified TiO2 photocatalyst [J]. J. Solid State Chem., 2008, 181(3): 593-602
    [32] Amao Y, Yamada Y, Aokl K. Preparation and properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO2 film electrode [J]. J. Photochem. Photobiol., A: Chem., 2004, 164(1-3): 47-51
    [33] Asahi R, Morikawa T, Ohwaki T, etal. Visible-light photocatalysis in nitrogen-doped titanium oxide[J]. Science, 2001, 293: 269-271
    [34] Khan SU, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297: 2243-2245
    [35] Yamamoto J, Tan A, Shiratsuchi R, etal. A 4% efficient dye-sensitized solar cell fabricated from cathodically electrosynthesized composite titania films[J]. Adv Mater, 2003, 15(21): 1823-1825
    [36] Radechs M, Rekas M. Effect of high-temperature treatment on n-p transition in titania[J]. J Am Ceram Soc, 2002, 85: 346-354
    [37] Su C, Tseng C, Chen ML, etal. Sol-hydrothermal preparation and photocatalysis of titanium dioxide[J]. Thin Solid Films, 2006, 498: 259-265
    [38] Lu Deyi, Bian Feirong, Xu Ke, etal. Aggregation behavior and the resulting morphology of nanocrystalline titania in peptization and hydrothermal process[J]. J. Inorg Mater (in Chinese), 2007, 22(1): 59-64
    [39]张颖,王桂茹等.光催化氧化法处理活性染料水溶液[J].精细化工,2000,2(17):79-81
    [40] Mattews R W. Photo oxidation of organic material in aqueous suspensions of titanium dioxide[J]. Water Res., 1990, 24(5): 653
    [41] Fushen Zhang, Jerome O Nriagu, Hideaki Itoh. Photocatalytic removal and recovery of mercury from water using TiO2-modified sewage sludge carbon[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, (167): 223-228
    [42] Naomi L. stock, Julie peller, etal. Combinative sonolysis and photocatalysis for textile dye degradation[J]. Environmental science & Technology, 2000, 34(9): 1747-1750
    [43]田秀兰.纳米二氧化钛的合成及其在环保领域的应用[J].节能与环保,2006,(8):81-82
    [44] Jiaguo Yu, Xiujian Zhao. Effect of substrates on the photo-catalytic activity of nanometer TiO2 thin films[J]. Materials Research Bulletin, 2000, (35): 1293-1301
    [45]赵洁,邱克辉,董宏伟.锐钛型纳米TiO2光催化降解与环保应用研究进展[J].中国非金属矿工业导刊,2006,(4):50-55
    [46]刘春艳.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008,18-20
    [47] Wenyu Ye, Tiefeng Cheng, Qing Ye, etal. Preparation and tribological propeies of tetrafluorobenzoic acidmo dified TiO2 nanoparticles as lubrican additives[J]. Materials Science and Engineering, 2003, (359): 82-85
    [48]张青红,高廉,郭景坤.四氯化钛水解法制备纳米二氧化钛纳米晶的影响因素[J].无机材料学报,2000,15(6):992-997
    [49] Gratzel M. Sol-gel processed TiO2 films for photovoltaic applications[J].J. Sol-gel Sci Technol, 2001, 22: 7
    [50] Asahi R, Morikawa T, Ohwaki T, etal. Visible-light photocatalysis in nitrogen-doped titanium oxide[J]. Science, 2004, 293: 269-271
    [51] Khan SU, Al-Shahry M, Ingler WB. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 2005, 297: 2243-2245
    [52] Yamamoto J, Tan A, Shiratsuchi R, et al. A 4% efficient dye-sensitized solar cell fabricated from cathodically electrosynthesized composite titania films[J]. Adv Mater, 2005, 15(21): 1823-1825
    [53]王惠钢,陈平,郑小明.新型聚硅氧烷空心微胶囊的模板合成方法[J].化学学报,2003,61(11):1704-1706
    [54]程刚,周孝德.纳米晶粒TiO2多孔微球的制备及其光催化性能的研究进展[J].化工环保,2007,27(4):319-322
    [55]宋秀芹,杨晓辉,陈汝芬等.纳米结构TiO2/PS及TiO2空心球的自组装与表征[J].化学学报,2006,64 (3):198-202
    [56]赵庆美,逯全县,田勇.甲壳素、壳聚糖及其衍生物在生物医药领域中的应用研究近况[J].化工时刊,2006,20(5):74-77
    [57]董炎明,毛微.甲壳素化学及应用[J].大学化学,2005,20(2):27-32
    [58] Tao Y, Pan J, Yan S, et al. Tensile strength optimization and characterization of chitosan/TiO2 hybrid film[J]. Materials Science and Engineering B, 2007, 138(1): 84-89
    [59]庞洪涛,张志坤.纳米二氧化钛/壳聚糖一维纳米复合材料制备及结构分析[J].功能材料,2007,38(2):313-315
    [60]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001:17-18
    [61] Jing LQ, Sun XJ, Xin BF, etal. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity[J]. J Solid State Chem, 2004, 177: 3375-3382
    [62] Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, etal. Modifier ligands effects on the synthesized TiO2 nanocrystals[J]. Mater Sci, 2008, 43: 1723-1729
    [63] Baek IC, Vithal M, Chang JA, Yum JH, et al. Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell[J]. Electrochem Commun, 2009, 11: 909-912
    [64]林琳,林建明,吴季怀等.表面活性剂模板法制备纳米TiO2有序薄膜[J].功能材料,2007,增刊(8):1542-1545
    [65] Cassagneau T, Fendler JH, Mallouk TE. Optical and electrical characterizations of ultrathin films self-assembled from ll-aminoundecanoi-c acid capped TiO2 nanoparticles and polyallylamine hydrochloride[J]. Langmuir, 2000, 16: 241-246
    [66] Ramakrishna G, Ghosh HN. Optical and photochemical properties of Sodium dodecylbenzenesulfonate (DBS)-capped TiO2 nanoparticles dispersed in nonaqueous solvents[J]. Langmuir, 2003, 19: 505-508
    [67] Xu CY, Zhang PX, Yan L. Blue shift of Raman peak from coated TiO2 nanoparticles[J]. J Raman Spectrosc, 2001, 32: 862-865
    [68] Kim Sun-Jae, Park Sung. Effects of negative ions in aqueous Ti solution on formation of ultrafine TiO2 powder by low temperature homogeneous precipitation[J]. Jpn J Appl Phys, 2001, 40: 6797-6802
    [69]张立德,解思深主编(eds. Zhang LD, Xie SS).纳米材料和纳米结构(Nanomaterials and Nanostructures)(M).北京:化学工业出版社(Beijing:Chemical Industry Press),2005,113-160
    [70] Syed S. Amin, Shu-you Li, Xiaoxia Wu, etal. Facile Synthesis and Tensile Behavior of TiO2 One-Dimensional Nanostructures[J]. Nanoscale Res Lett, 2010, 5: 338-343
    [71] Miao L, Ina Y, Tanemura S, etal. Fabrication photochromic study of titanate nanotubes loded with silver nanoparticles[J]. Surf Sci, 2007, 601: 2792-2799
    [72] Kim GS, Seo HK, Godbol VP, etal. Electrodeposition of titanate nanotubes from commercial titania nanoparticles: application to desensitized solar cells[J]. Electrochem Commun, 2006, 8: 961-966
    [73] Hu F, Ding F, Shen PK, etal. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation[J]. J Power Sources, 2006, 163: 319-415
    [74] Coey J M D. Dilute magnetic oxides[J]. Curr Opin Solid State Mater Sci, 2006, 10: 83-92
    [75] Yinhua Jiang, Hengbo Yin, Yueming Sun, etal. Effects of organic acids on the size-controlled synthesis of rutile TiO2 nanorods[J]. Appl Surf Sci, 2007, 253: 9277-9282
    [76] Oomman KV, Maggie Paulose, etal. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J]. Sensors and Actuators, 2003, 93: 338-344
    [77]石金娥,闫吉昌,王悦宏等.不同形貌TiO2的水热合成及对苯酚的降解研究[J].高等学校化学学报,2006,27(8):1513-1517
    [78]孙静,高镰.TiCl4水解条件对相转变的影响[J].无机材料学报,2003,18(2):505-508
    [79]李桂芹.pH值对TiO2相结构的影响[J].贵州科学,2005,23(1):30-32
    [80] Amar Kumbhar, George Chumanov. Synthesis of Iron(III)-Doped Titania Nanoparticles and its Application for Photodegradation of Sulforhodamine-B Pollutant[J]. Journal of Nanoparticles Research, 2005, (7): 489-498
    [81]马明远,刘岭松,李佑稷等.铁铈共掺杂TiO2纳米复合体的制备及光催化性能[J].硅酸盐学报,2009,37(9):1458-1483
    [82]苏会东,周丽娜.溶胶-凝胶掺杂铁对微弧氧化TiO2膜光催化性能影响[J].环境科学与技术,2009,32(2):39-41
    [83]盛雪,余足玲,刘士荣等.溶胶凝胶法制备磷钨酸掺杂TiO2薄膜及其光催化性能[J].环境工程学报,2008,2(8):1026-1030
    [84]张定国,刘芬,熊小青.Fe3+掺杂TiO2薄膜的制备及光催化降解甲醛的研究[J].环境科学与技术,2006,29(5):24-26
    [85] Asil T. M., Say?lkana F., Arpac E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation [J]. J. Photochem. Photobiol., A: Chem., 2009, 203(1): 64-71
    [86] Devi L. G., Murthy B. N., Kumar S. G. Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate [J]. Chemosphere, 2009, 76(8): 1163-1166
    [87] Srinivasan S. S., Wade J., Stefanakos E. K., et al. Synergistic effects of sulfation and Co-doping on the visible light photocatalysis of TiO2 [J]. J. Alloys Compd., 2006, 424(1-2): 322-326
    [88] Wang Z., Chen C., Wu F., et al. Photodegradation of rhodamine B under visible light by bimetal Co-doped TiO2 nanocrystals [J]. J. Hazard. Mater., 2009, 164(2-3): 615-620
    [89] Dholam R., Patel N., Adami M., et al. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst [J]. Int. J. Hydrogen Energy, 2009, 34(13): 5337-5346
    [90] Sayilkan H. Improved photocatalytic activity of Sn4+-doped and undoped TiO2 thin film coated stainless steel under UV- and VIS-irradiation [J]. Appl. Catal. A: General, 2007, 319(1): 230-236
    [91] Sayilkan F., Asiltürk M., Tatar P., et al. Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights [J]. J. Hazard. Mater., 2007, 144(1-2): 140-146
    [92] Ali B., Rumaiz A., Ozbay A., et al. Influence of oxygen partial pressure on structural, transport and magnetic properties of Co doped TiO2 films [J]. Solid State Commun., 2009, 149(39-40): 2210-2214
    [93] Khan R., Kim T. J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts [J]. J. Hazard. Mater., 2009, 163(2-3): 1179-1184
    [94] Chen R. F., Zhang C. X., Deng J., et al. Preparation and photocatalytic activity of Cu2+-doped TiO2/SiO2 [J]. Int. J. Minerals, Metallurgy and Materials, 2009, 16(2): 220-225
    [95] Abbas K,Aysha ANI. Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene[J]. Appl Cataly B: Environm, 2008, 80(1/2): 176-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700