用户名: 密码: 验证码:
铒/镱共掺光纤放大器的设计和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤放大器(OFA)是实现全光型光纤通信的关键部件。它具有易集成、高增益、低噪声和带宽大的特点;它有效地提高光信号传输距离,减少中继站数目,降低系统成本,它的研制和改进在全球范围内仍方兴未艾。光纤放大器尤其是掺铒光纤放大器(EDFA)广泛地应用于各种光通信系统特别是波分复用(WDM)系统中。但随着WDM系统传输信道的不断增加,传输码速的不断提高和传输距离的不断增加。当EDFA在WDM系统中用作级联放大时,EDFA增益谱的不平坦会逐渐累积放大,严重影响系统性能,因此要求WDM系统中的EDFA具有恒定的增益、很宽的动态范围、平坦的动态增益谱。Er~(3+)/Yb~(3+)共掺光纤放大器(EYDFA)是对EDFA的一种改进,它把Er~(3+)/Yb~(3+)共掺光纤作为增益介质代替EDFA的掺铒光纤,从而可以改善光纤放大器的整体性能。
     本文系统论述了铒/镱共掺放大器实现光信号的放大原理、速率方程、拓扑结构以及影响光放大器性能的各种因素,分析了两段级联的铒/镱共掺放大器的原理以及各个参数对其性能的影响。通过仿真证明了理论分析的正确性,并可根据仿真结果进一步应用于实践中。
     本文的创新点在于,通过在光放大器的增益介质中间加入光隔离器隔离了光信号在放大过程中产生的反向放大自发辐射(ASE),使泵浦功率主要被用来放大信号光,这样可在相同的条件下获得更大的增益。
The optical fiber amplifier (OFA) realizes the entire light fiber opticcommunications key component. It easy to integrate, the high gain, the low noiseand the band width major characteristic ,It enhances the light signal transmittingrange effectively, reduces the relay station number, reduces the system cost, itsdevelopment and the improvement globally were still on the rise. OFA especiallyerbium-doped fiber amplifier is widely used in a variety of optical communicationsystems, especially wavelength division multiplexing (WDM) systems. However, asthe transmission channel WDM system, the increasing speed transmission codecontinuous improvement and increasing transmission distance. When the EDFA inthe WDM system when used as a cascade, EDFA gain spectrum is not flat willgradually enlarge the cumulative seriously affect system performance, thereforerequested the WDM system with constant EDFA gain, wide dynamic range, flatdynamic gain spectrum. erbium/ytterbium Co-doped fiber amplifier (EYDFA) ofEDFA's an improvement, it uses erbium/ytterbium co-doped fiber as the gainmedium instead of the EDFA erbium-doped fiber, which could improve the overallperformance of fiber amplifier.
     The paper system elaborated erbium/ytterbium co-doping amplifier achieve thelight signal enlargement principle, the rate equation, topology as well as influencelight amplifier performance each kind of factor, has analyzed two section of cascadeerbium/ytterbium co-doping amplifier's principle as well as each parameter to itsperformance influence. Had proven through the simulation theoretical analysis'saccuracy, and may further apply according to the simulation result in the practice.
     The paper's innovation spot lies through joined the light isolation among lightamplifier's gain medium to isolate the light signal reverse Amplified SpontaneousEmission (ASE) which produced in the enlargement process, caused the pump powermainly to use for the signal amplification light, like this obtained a bigger gain underthe same condition.
引文
[1]程琳,邓韬,杨坤涛.高功率光纤放大器的实验[J].光通信研究. 2006(5):66-67.
    [2] Poole Payne Ferman . Fabrication of low-loss optical fibers containing rare-earthions[J]. Electron. Lett. 1985, 21:737738.
    [3] Massicott J A J R W. High fiber gain broadband amplifier 1.6 um Er^3+ dopedsilica[J]. Electron.Lett. 1990, 20(26): 1645-1646.
    [4] Giles C.R, Desurvire E. Modeling of erbium-doped fiber amplifiers[J].Lightwave Tech. 1991, 9(21): 271-283.
    [5] Desurvire. Erbium-doped amplifiers:principles and applications[J]. AWiley-Interscience. 1985.
    [6] G .Wilson. Low-Noise 1-Watt Er/Yb fiber amplifier for CATV distribution in HFCand FTTH/C systems[J]. Couference Fiber Communicatiou (OFC'2000). 2000,Baltimore,USA:2000.FD: 58-60.
    [7] G .C .Valley. Modeling cladding-pumped Er/Yb fiber amplifiers[J]. Optical fibertechnology. 2001, 7(21-24).
    [8] Karasek M. Optimum Design of Er^3+/Yb^3+ Codoped Fibers for Large SignalHigh-Pump-Power Applications [J]. IEEE J.Quantum Electron. 1997, Vol.33: 10.
    [9] G.sorbello ,S .Taccheo, P.Laporta. Numerical modeling and experimentalinvestigation of double-cladding erbium-ytterbium-doped fiber amplifiers[J].pt.Quantum Electron. 2001, 33: 599-619.
    [10] Deiss ,Mcintosh. C .M ,Williams G.M. Gain flatness of a 30 dBm tandemEr^3+-Er^3+/Yb^3+ doubleclad fiber amplifier for WDM transmission[J]. 2002’OFC. 2002: 249-251.
    [11]车继波,杨亚培,刘爽等. Er^3+/Yb^3+共掺磷酸盐玻璃光纤放大器的增益综述[J].激光技术. 2006, 30(1): 82-85.
    [12]徐雪梅,郭玉彬,王天枢等.一种小型铒/镱双掺光纤放大器增益特性研究[J].激光与红外. 2006, 36(4): 254-256.
    [13]杨英杰.光纤通信技术[M].华南理工大学出版社, 2000,202-204.
    [14]李进延,李海清,蒋作文等.我国掺稀土光纤的现状分析[J].光通信研究.2006(3): 41-43.
    [15]柯湘萍.铒镱共掺光纤放大器的共掺杂特性研究[J].武汉理工大学学报(信息与管理工程版). 2006(07).
    [16]董新永,宁鼎. L—波段光纤放大器及其研究进展[J].量子电子学报. 2002,19(3): 193-199.
    [17]傅永军,简伟,郑凯等.铋镓铝共掺的高浓度掺铒光纤及放大器[J].光电子技术. 2007, 27(1): 17-19.
    [18]裴新,向望华,杜荣建等.高效率低功率抖动运转的Yb:Er共掺杂光纤激光器[J].光电子.激光. 2003.
    [19]张书敏,王健,董法杰等.包层泵浦的L波段Er^3+/Yb^3+共掺光纤激光器[J].光子学报. 2005, 34(5): 656-658.
    [20]于岭,张昊,刘艳格等.一种超宽带掺铒光纤放大器的实验研究[J].南开大学学报:自然科学版. 2006, 39(1): 70-73.
    [21]庄茂录,赵尚弘,董淑福等.双包层Er_3_Yb_3_共掺光纤放大器粒子数特性分析[J].激光技术. 2004.
    [22] J.t. Kringlebotn P R M L. Efficient diodepumped single erbium:ytterbium fiberlaser[J]. IEEE Photon. Technol. Lett. 1993, 5 (10)(1162-1164).
    [23] J.t. Kringlebotn J L A L. Highly efficient, low-noise grating feedback Er:Ybcodoped fiber lasers[J]. Electron. Left . 1994, 30(12)(972-973).
    [24]黄绣江,刘永智,隋展等.高掺杂浓度、短腔长Yb^3+光纤环形激光器[J].激光与红外. 2005, 35(1): 42-44.
    [25]宋峰,苏瑞渊,傅强等.高浓度镱铒共掺磷酸盐光纤放大器增益特性[J].物理学报. 2005, 54(11): 5228-5232.
    [26]王华,李乙钢,陈胜平等.双包层Er^3+/Yb^3+共掺光纤放大器[J].光电子技术. 2005, 25(4): 234-238.
    [27]向望华,张良,裴新等. Er~(3+)-Yb~(3+)共掺杂环形腔光纤激光器[J].光电子.激光. 2003(10).
    [28]张芳沛,楼祺洪,周军等.高功率双包层光纤放大器[J].激光与光电子学进展.2007.
    [29]胡恺,蒋群.包层泵浦技术原理及其应用[J].光通信研究. 2004(5): 58-61.
    [30]赵晓吉,马晓明.双包层光纤与抽运光的耦合方式研究[J].光机电信息.2005(11): 28-31.
    [31]姚建铨,任广军,张强等.掺镱双包层光纤激光器及其泵浦耦合技术[J].激光杂志. 2006.
    [32]夏贵进,张旭,张居梅.双包层Er^3+/Yb^3共掺光纤放大器理论模型研究[J].激光与红外. 2004, 34(5): 364-367.
    [33]李清华,马志强,占生宝.双包层Er^3+/Yb^3+共掺光纤激光器粒子数空间分布特性研究[J].激光与红外. 2006, 36(2): 107-110.
    [34] Jenssen D S K A. Upperconversion in Erbium and its dependence on energymigration[J]. OSA technical Digest Series. 1993, Vol. 1 1: 310-311.
    [35] Q .Wang,N.K Dutta. Er-Yb Doped Double Clad Fiber Amplifier[J]. 2003.
    [36] Bedo. The effective absorption coefficient in double-clad fibers[J]. Opt.Communication. 1993, 99: 331-335.
    [37]傅永军,简伟,郑凯等.不同泵浦方式下Er^3+/Yb^3+共掺光纤放大器的自发辐射谱[J].光电子.激光. 2006, 17(7): 803-806.
    [38]衣永青,周述文,宁鼎等.铒镱共掺双包层光纤的研究[J].激光与红外. 2007,37(3): 259-261.
    [39] J. L. Wagener P F W M. Effects of concentration and clusters in erbium dopedfiber lasers[J]. Opt. Lett. 1993, 1 8 (23)(20 14- 1 0 1 6).
    [40] T. Georges E D M M. Pair induced quenching in Erbium doped silicate fibers[J].Optical amplifiers and their applications technical digest. 1992, vol.17: 71-74.
    [41]张婷婷,夏军利,石磊. EDFA研究的新进展[J].现代电子技术. 2004, 27(20):62-64.
    [42]汪松.掺铒光纤最佳长度[J].光通信研究. 1995(4): 49-52.
    [43] S.w.harun H A A S. Dual-stage Er/Yb doped fiber amplifier for gain and noisefigure enhancements[J]. IEICE Electronics Express. , Vol.3(NO.23): 517-521.
    [44]马晓明.带光隔离器的掺铒光纤放大器性能分析[J].光子学报. 2002, 31(2):178-182.
    [45]张华勇,宁继平,韩群等.高功率掺镱双包层光纤激光器双端泵浦的最佳功率分配[J].科学技术与工程. 2007, 7(11): 2504-2508.
    [46]马晓明. EDFA中光隔离器的最佳位置[J].光通信技术. 2003, 27(8): 35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700