用户名: 密码: 验证码:
LD泵浦的全光纤铒镱共掺双包层光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铒镱共掺光纤激光器作为一种适用于全光纤通信网络和WDM通信系统的新型光源备受关注,自20世纪80年代后期以来得到迅猛地发展。本文从理论和实验两方面对DBR全光纤铒镱共掺双包层光纤激光器进行了系统研究。
     1.对铒镱共掺光纤激光器的基本原理和设计思想进行了全面总结。讨论了稀土掺杂双包层光纤光纤的种类和特性、光纤激光器的光腔结构和泵浦源配置方式。分析了铒镱系统的能级结构和辐射原理。根据粒子数速率方程组和功率传输方程组,结合边界条件建立了铒镱共掺光纤激光器的稳态理论模型。
     2.利用matlab软件和龙格—库塔算法对铒镱共掺光纤激光器的稳态工作特性进行了理论模拟,讨论了泵浦功率、光纤长度、后端镜反射率、铒镱掺杂比例与输出功率特性之间的关系,为光纤激光器的优化设计提供了理论依据。
     3.对铒镱共掺光纤激光器的输出特性进行了实验研究。搭建了三种采用不同参数的DBR型全光纤结构激光器,并对其光谱特性、功率特性和时域特性进行了对比实验。在最优化参数条件下测得输出功率达到最高值2W,斜率效率为53.8%,激光中心波长1550.8nm,3dB线宽约0.02nm。同时,实验结果验证了理论的正确性。
Er3+/Yb3+ co-doped fiber lasers, as a new-pattern laser source applicable to all-fiber communication network and WDM System, have been paid great attention and developed rapidly since later 1980s. In this dissertation, theoretical and experimental investigations of Er3+/Yb3+ co-doped fiber laser are presented systematically.
     1. Basic principles and design philosophy of Er3+/Yb3+ co-doped fiber lasers are globally summarized. Properties and variety of double-clad fiber, cavity structure of fiber laser and pumping mode are discussed. Level structure and radiation theory of Er3+/Yb3+ system is analyzed. The theoretical model of Er3+/Yb3+ co-doped fiber laser is established based on rate equations for the atomic populations and power propagation equations.
     2. Theoretical simulation on working characteristics of Er3+/Yb3+ co-doped fiber laser in steady state is made using Rounge-Kutta method with Matlab. The relationship between the pump power, the fiber length, the reflectivity of the output mirror, the doping ratio of Yb3+ and Er3+ and output characteristics is discussed, which provides the theoretical basis for optimizing the fiber laser.
     3. Experimental studies on Er3+/Yb3+ co-doped fiber laser are presented. Three kinds of all-fiber DBR lasers are designed and put up with different parameters. Comparative study on the spectrum properties, power properties, and time-domain properties of them are carried out, experimentally. In the optimum condition, the maximum output power of the fiber laser is 2W with a slope-efficiency of 53.8%, and the measured lasing central wavelength and 3dB bandwidth are 1550.8nm and about 0.02nm, respectively. Furthermore, the experiment results validate the correctness of the theoretical study.
引文
[1] M Ding, P K Cheo. Effects of Yb: Er—codoping on suppressing self-pulsing in Er-doped fiber lasers[J]. IEEE Photon. Technol. Lett., 1997, 9(3): 324-326.
    [2] E Snitzer, H PO, F Hakimi, et al. Erbium fiber laser amplifier at 1.55μm with pump at1.49μm and Yb sensitized Er oscillator[C]. Washington, DC: Optical Fiber Communic, 1988.
    [3] D C Hanna. Efficient operation of an Yb sensitized Er fiber laser pump in the 0.8μm region[J]. Electron.Lett, 1988,24(17): 1068.
    [4] P K Cheo, G G KING. Clad-Pumped Yb:Er Codoped Fiber Laser[J], IEEE Photon. Technol. Lett. , 2001, 13(3): 188-190.
    [5] S U Alam, P W Turner, A B Grudinin, et al. High-Power cladding pumped Erbium-Ytterbium co-doped iber laser[C]. California: OFC, 2001.
    [6] J Nillsson, S U Alam, J A Alvarez-Chavez, et al. High-Power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers[J]. IEEE Journal of Quantum Electronics, 2003,39(8): 987-994.
    [7] J Nilsson, J K SAHU, Y Jeong, et al. High-power fiber lasers: new developments[C]. Bellingham: SPIE, 2003: 50-59.
    [8] D Y Shen, J K SAHU, W A ClARKSON. Highly efficient Er, Yb-doped fiber laser with 188W free-running and > 100W tunable output Power[J]. Optics express, 2005, 13(13): 4916-4921.
    [9] G T Maker, A I Ferguson. 1.56μm Yb-sensitised Er fibre laser pumped by diode-pumped Nd:YAG and Nd:YLF lasers[J]. Electronics Letters, 1988, 24(18): 1160-1162.
    [10] K HSU, C M Miller, J T Kringlebotn, etal. Single-mode tunable erbium:ytterbium fiber Fabry-Perot microlaser[J]. Opt. Lett, 1994,19(12): 886-888.
    [11] W E Lozano Bartra, I D Santos Carvalho, L C Guedes Valente, et al. Single mode operation in two-coupled-cavity Yb3+-Er3+codoped fiber laser[J]. annals of optics- xxv enfmc,2002: 112-115.
    [12] C H Spiegelberg, Y Geng, Y Hu, etal. Compact 100 mW fiber laser with 2 kHz linewidth[C]. Atlanta: OFC, 2003: PD45.
    [13] G Bouwmans, R M Percival, W J Wadsworth, et al. High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide[J]. Applied physics letters, 2003, 83(5): 817-818.
    [14] J K Sahu, Y Jeong, C Codemard, et al. Tunable narrow linewidth high power Er/Yb fiber laser[C]. California: CLEO, 2004: CMK1.
    [15] M Laroche, P Jander, W A Clarkson, et al. High power cladding-pumped tunable Er, Yb-doped fibre laser[J]. Electronics Letters, 2004, 40(14): 855-856.
    [16] J Boullet, L Lavoute, A D Berthelemot, etal. Tunable red-light source by frequency mixing from dual band Er/ Yb co-doped fiber laser[J]. Optics express, 2006, 14(9): 3936-3941.
    [17] Yongsun Guo , D S Moon, Aoxiang Lin, et al. Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror[J]. Optics express. 2008,16(6): 3652-3658.
    [18] J W Kim, P Jelger, J K Sahu, et al. High-power and wavelength-tunable operation of an Er, Yb fiber laser using a volume Bragg grating[J]. Optics letters, 2008, 33(11): 1204-1206.
    [19] D C Hanna, A Kazer, M W Phillips, et al. Active mode-locking of an Yb:Er fibre laser[J]. Electronics Letters, 1989, 25(2): 95-96.
    [20] B C Collings, K Bergman, S T Cundiff, et al. Short cavity erbium/ytterbium fiber lasers mode-locked with asaturable Bragg reflector[J]. IEEE Journal of., 1997, 3(4): 1065-1075.
    [21] S Thai, M J Hayduk. Passive mode locking in erbium-ytterbium fiber lasers[C]. Bellingham: SPIE, 1999: 290-297.
    [22] Shumin Zhang, Fuyun Lu, Jian Wang, et al. All-fiber Q-switched and self-mode-locking Er3+/ Yb3+-codoped ring laser[C]. Beijing: SPIE, 2004: 671-679.
    [23] D Sabourdy, D Bouyge, A Crunteanu, et al. Novel active Q-switched fiber laser based on electrostatically actuated micro-mirror system[J]. Optics express, 2006, 14(9): 3917-3922.
    [24]刘艳格,张春书,孙婷婷,等.输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器[J].物理学报,2006,55(9):4679-4685.
    [25] S Yamashita, T Yoshida, S Y Set, et al. Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes[C]. San Jose: SPIE, 2007: 54631Y.
    [26] Luo Zhichao, Xu Wencheng, Song Chuangxing, et al. Self-Starting Passively Mode-Locked Er3+/Yb3+Codoped Phosphate Glass All-Fibre Ring Laser[J]. Chin.Phys.Lett, 2008, 25(12): 4280-4282.
    [27]向望华,李楠,崔宇,等. Er3+- Yb3+共掺杂光纤环型腔被动谐波锁模激光器[J].强激光与粒子束,2008,20(11):1787-1792.
    [28] Elias Snitzer. Rare earth fiber lasers[J]. Journal of the Less Common Metals, 1989, 148(1-2): 45–58.
    [29] E Snitzer, H Po, F Hakimi, et al. Double clad, offset core Nd fiber laser[C]. Washington, D.C. : Optical Society of America, 1988, PD5.
    [30]黄榜才,苏红新,宁鼎,等.窄线宽高效率的全光纤Yb3+激光器[J].光电子激光,2003,13(2):111-113.
    [31] D M Baney, G Rankin, K W Chang. Blue Pr3+-doped ZBLAN fiber upconversion laser[J]. Opt. Lett., 1996, 21(17): 1372-1374.
    [32]张喜生,郑海荣,何恩节,等. Pr3+ /Tm3+共掺LaF3纳米体系中能量转移效应的光谱学研究[J].科学通报,2009,54(9):1222-1227.
    [33]周军,楼祺洪,李铁军,等. 4.9W掺Yb3+双包层光纤激光器及其输出特性研究[J].光学学报,2003,23(04):476-479.
    [34] N S Platonov, D V Gapontsev, V P Gapontsev, et al. 135W CW fiber laser with perfect single mode output[C]. Long Beach: CLEO Technical Digest, 2002, CPDC3.
    [35] L Goldberg, B Cole, E Snitzer. V-groove side-pumped 1.5μm fibre amplifier[J]. Electron. Lett, 1997, 33(25): 2127~2129.
    [36]吴中林,楼祺洪.采用内置反射镜将抽运光耦合进光纤内包层[J].激光与光电子学进展,2004,41(6):41.
    [37] C W Zhang, S Q Xiang, C A Wang. Coupling efficiency analysis for the micro-prism sided-coupling method of double-cladding fiber[J]. Chin. J. Lasers, 2003, 30(7): 597~600.
    [38] M Federighi, F Di Pasquale. The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+-Yb3+ concentrations[J]. IEEE Photon. Technol. Lett., 1995, 7(3): 303305.
    [39] F Di Pasquale, M Federighi. Improved Gain Characteristics in High-Concentration Er3+/Yb3+ Codoped Glass Waveguide Amplifiers [J]. IEEE Journal of Quantum Electronics, 1994, 30(9): 2127~2131.
    [40] E Tanguy, C Larat, J P Pocholle. Modelling of the erbium-ytterbium laser[J]. Optics Communications,1998, 153(1-3):172~183.
    [41] Karasek M. Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications [J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1699~1705.
    [42] Di Pasquale F. Modeling of highly-efficient grating-feedback and Fabry-Perot Er3+- Yb3+ co-doped fiber lasers[J]. .IEEE Journal of Quantum Electronics, 1996, 32(2): 326~332.
    [43] Kelson I, Hardy A A. Strongly pumped fiber lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(9): 1570~1577.
    [44]苏红新,阮双琛,吕可诚,等. F- P腔掺Yb3+双包层光纤激光器中的模式竞争[J].光子学报,2003,32(4):405~408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700