用户名: 密码: 验证码:
农药新剂型微乳粒剂及其微乳液形成与稳定机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别以三唑磷、氯氰菊酯、阿维菌素为代表性农药,研究油溶性的液态原药、低熔点及高熔点固态原药配制成一种稀释后能形成微乳液的新型固体剂型——微乳粒剂(MEG)的可行性。以三唑磷MEG为对象,研究微乳粒剂兑水稀释后微乳液的形成及稳定机制。
     通过测试溶解度、溶解速度及吸油率,筛选出苯甲酸钠、乳糖、甘露醇、硫酸镁、水溶性淀粉5个载体,采用混料均匀设计U11(105)优化得到混合载体C12,吸油率为56.2g/100g;比表面积及孔隙参数测试表明,影响载体吸油率的主要因子为BET表面积、总孔面积、BJH解吸附累积孔表面积、BJH解吸附累积孔容积、总孔容积。
     按U10(1O8)配制30%三唑磷微乳剂(ME)(不含有机溶剂)来筛选可用于配制MEG的表面活性剂(SAA)。根据Xi的标准回归系数(SRC)筛选得到602#+EL40+JM6140(SAA-6EJ),以甘露醇或硫酸镁与柠檬酸复配后作为载体可以配制得到10%三唑磷MEG (10%SAA-6EJ),D5o最小为40.64nm;15%三唑磷MEG(8%SAA-6EJ)的D5o为75.49nm。根据Xi及XiXj的SRC筛选得到500#+602#(SAA-56),用乳糖或甘露醇或水溶性淀粉作为载体或分别与柠檬酸复配后作为载体,均可配制得到10%三唑磷MEG;15%三唑磷MEG(8%SAA-56)的D5o为54.2nm。根据XiXj的SRC筛选得至(?)FS7PG+602#(SAA-F6)、HASS7+602#(SAA-H6),以硫酸镁或C12为载体可配制得到10%三唑磷MEG(10%SAA-F6),以乳糖、甘露醇、水溶性淀粉、硫酸镁或C12作为载体可配制得到10%三唑磷MEG (10%SAA-H6),15%三唑磷MEG (10%SAA-H6)的D5o为63.69nm。试验发现,对于同一个乳状液,D5o的变化与透明度或透射率的变化呈负相关;不同乳状液间对比时,离心稳定性更高的乳状液其D5o不一定更小;纳米乳液在RCF100g下离心5min亦可保持稳定,且纳米乳液与微乳液之间的临界相对离心力会随乳化体系的改变而改变。
     采用熔融共混法,按U6(63)配制10%氯氰菊酯MEG (10%SAA),应用偏最小二乘回归(PLSR)对FS7PG、500“、EL60间比例进行优化后所配制10%氯氰菊酯MEG的Dso为51.45nm。根据SRC筛选得到FS7PG+EL60,比例法试验表明,两者在1/9-10/0配比范围内均能配制出10%氯氰菊酯MEG,其中以9/1时Dso最小,为59.91nn。采用10%氯氰菊酯MEG的配方,可以成功配制三氟氯氰菊酯10%MEG、氟氯菊酯10%及5%MEG、顺式氯氰菊酯10%MEG。
     按L9(34)配制2%阿维菌素ME,以透明温度区域为因变量,对TSP16、JM6180、 HASS7间比例进行优化后配制2%阿维菌素MEG (10%SAA),载体为苯甲酸钠、硫酸镁、乳糖的混合物,D5o为79.54nm。以苯甲酸钠为载体,按U11(114)配制2%阿维菌素MEG(10%SAA),以D5o为因变量,用PLSR对602#、NP10P、AEC903、NP10间比例进行优化后所配制2%阿维菌素MEG的Dso为12.13m;根据SRC对SAA筛选得到602#+NP10P+NP10、602#+NP10、NP10P+NP10,根据优化后的配比配制所得2%阿维菌素MEG(10%SAA)的Dso分别为44.31nm、14.22nm、14.04nm。采用2%阿维菌素MEG的配方可成功配制2%伊维菌素MEG、2%甲氨基阿维菌素苯甲酸盐MEG。
     微乳粒剂的配制采用旋转括壁式挤压造粒或沸腾造粒。各个微乳粒剂的理化性能满足实际使用的要求。提出了微乳粒剂产品登记所需的质量指标,并建立了乳化时间测试方法——机械搅拌法。
     对粘虫的生物测定结果表明,15%三唑磷MEG的生物活性要优于10%三唑磷MEG、15%三唑磷ME、15%三唑磷EC,后3个药剂之间无显著差异。10%氯氰菊酯MEG的生物活性与10%氯氰菊酯ME、10%氯氰菊酯EC之间无显著差异,但要显著优于10%氯氰菊酯EG。阿维菌素配制成微乳粒剂、微乳粉剂后,在生物活性上与微乳剂无显著差异,但要显著好于乳油。毒力回归方程斜率对比表明剂型的变化不会影响靶标生物对农药的敏感性程度。
     以三唑磷MEG为研究对象,采用动态或静态光散射技术研究水硬度、自来水、水温、载体对微乳液形成的影响,初步分析微乳粒剂微乳液的形成机理。以SAA-56或SAA-6EJ为乳化剂时,水硬度≤1368mg/L时不影响微乳液的形成,水硬度的升高可促使前者的粒径缓慢减小,水硬度≤684mg/L时可促使后者形成粒径更小的微乳液;以SAA-H6为乳化剂时,水硬度的升高可促进微乳液的形成,并可促使形成粒径显著减小的微乳液。以SAA-6EJ、SAA-H6或SAA-56为乳化剂时,自来水对形成微乳液的影响分别为促使形成粒径更小的微乳液、促进微乳液的形成、阻止微乳液的形成。温度过高可能会阻止微乳液的形成,以SAA-H6、SAA-56为乳化剂时,分别在≥40℃、≥50℃时无法形成微乳液。以SAA-6EJ为乳化剂时,乳糖、甘露醇、水溶性淀粉、苯甲酸钠、硫酸镁的溶解过程均会阻止微乳液的形成;柠檬酸的溶解过程则可以促进微乳液的形成,并且柠檬酸用量的升高可促使形成粒径更小的微乳液。以SAA-56或SAA-H6为乳化剂时,甘露醇、乳糖、水溶性淀粉、硫酸镁的溶解过程不影响微乳液的形成,但苯甲酸钠的溶解过程会阻止微乳液的形成。
     采用近红外多重光散射技术研究乳液稳定机理。各个三唑磷MEG稀释后形成的微乳液,在70min内,液滴的迁移速率均为0,但D5o或保持不变,或增大,或减小,载体是造成这种变化的主要因素。以碳水化合物或无机盐为载体的微乳粒剂的乳状液,随着时间的推移,前者的D5o会逐渐增大,而后者的Dso会逐渐减小。与制剂中未含柠檬酸时相比,若柠檬酸的加入使乳状液的初始粒径增大,则会升高D5o的增大速率;若使初始粒径减小,则会降低Dso增大或减小的速率。另外,Zeta电位对微乳粒剂乳状液D5o的变化无影响。
     研究结果表明,常温下呈液态或熔点较低的农药原药可以配制成微乳粒剂,且无需使用有机溶剂;高熔点农药原药通过添加合适的有机溶剂也可以配制成微乳粒剂。RCF100g下离心5min后体系是否保持稳定可作为判别是否有可能是微乳液的依据,但不能认为此条件下稳定的透明或半透明乳状液就是微乳液。SRC在农药制剂配方筛选中可作为一种非常有效的筛选依据。Ca2+、Mg2+及自来水中的离子会影响乳滴形成前及界面重新平衡后的界面张力,最终影响微乳液的形成及粒径大小。SAA烷基及乙氧基链长上的差异会导致微乳粒剂能形成微乳液的温度范围不一样。载体溶解时的吸热及放热过程会阻止或促进微乳液的形成。静电斥力不是微乳粒剂乳状液的稳定机理。微乳粒剂的生物活性不低于微乳剂。微乳粒剂是一种新型、高效的环境友好型剂型,具有较好的应用前景。
The feasibility to formulate oil-soluble pesticide technical material (TC) into a novel solid formulation, micro-emulsifiable granule (MEG) was studied. The test pesticides were triazophos, cypermethrin and abamectin to represent oil-soluble pesticide TC, including liquid TC, low melting point TC and high melting point TC, respectively. Triazophos MEG as object of study, the mechanisms of micro emulsion formation and emulsion stability were researched.
     By testing the solubility, dissolution rate and oil absorption rate, sodium benzoate, lactose, mannitol, magnesium sulfate and water soluble starch were selected as carriers of MEG. And a mixture, C12was obtained by uniform design of experiments with mixtures U11(105). The oil absorption rate of C12was56.2g oil per100g carrier. Specific surface area and pore size parameters test showed the parameters which had significantly influence on carrier's oil absorption rate were BET surface area, total area in pores, BJH desorption cumulative surface area of pores, BJH desorption cumulative volume of pores and total volume in pores.
     According to U10(108), triazophos300ME (not containing organic solvent) were prepared in order to screen surface active agent (SAA) used for the preparation of MEG. A mixture SAA of non-ionic surfactants,602#+EL40+JM6140(named SAA-6EJ), was screened out by standard regression coefficient (SRC) of Xi. Triazohpos100MEG which contains10%SAA-6EJ was successfully formulated when using mannitol or MgSO4conjoined citric acid as carrier, and its minimum value of D5o was40.64nm. D50of triazohpos150MEG containing8%SAA-6EJ was75.49nm. A mixture SAA of anionic surfactant and non-ionic surfactant,500#+602#(named SAA-56), was screened out by SRC of Xi and XiXj. Triazophos100MEG containing SAA-56was successfully formulated when the carrier was a mixture of lactose or mannitol or water soluble starch and citric acid. D50of triazohpos150MEG containing8%SAA-6EJ was54.2nm. Triazophos300micro-emulsifiable gel (MGL) was formulated using the mixture SAA of anionic surfactant and non-ionic surfactant, FS7PG+602#(named SAA-F6) or HASS7+602#(named SAA-H6), which screened out by SRC of XiXj And triazophos100MEG could be successfully formulated using SAA-F6, if the carrier was MgSO4or C12. Triazophos100MEG also could be successfully prepared using SAA-H6, when the carrier was the one of lactose, mannitol, water soluble starch, MgSO4, or C12. D50of triazophos150MEG containing10%SAA-H6was63.69nm. They were discovered in experiments. First, in same emulsion, the change of D50negatively correlated with the change of transparency or transmission. Second, although the D50of one emulsion was smaller than another emulsion, its centrifugal stability might not higher than that of another. Third, Nano emulsion could maintain stability after centrifuge5min under relative centrifugal force (RCF)100g, and the critical RCF between nano emulsion and micro emulsion would change along with the change of emulsifier system.
     According to U8(63), cypermethrin100MEG containing10%SAA were prepared by melt-blending process. The optimum combination of FS7PG,500#and EL60, optimized by Partial Least Squares Regression (PLSR), was used as emulsifier of cypermethrin100MEG, and the value of D50was51.45nm. Two surfactants, FS7PG and EL60, were screened out by SRC. The test results of proportional method were showed cypermethrin100MEG could be successfully formulated using FS7PG and EL60as emulsifiers when the ratio of FS7PG/EL60between1/9and10/0, and the least value of D50was59.91nm when the ratio was9/1. Lambda-cyhalothrin100MEG, bifenthrin100MEG, bifenthrin50MEG and alpha-cypermethrin100MEG could be successfully formulated using the recipes of cypermethrin100MEG.
     According to L9(34), abamectin20ME were prepared. And the optimum combination (named SAA-TJH) of TSP16, JM6180, and HASS7was obtained when the independent variable was transparency temperature section of ME. When the carrier was the mixture of benzoate, MgSO4and lactose, D50of abamectin20MEG containing10%SAA-TJH was79.54nm. According to U11(114), abamectin20MEG were prepared using benzoate as carrier, and the proportion of602#, NP10-P, AEC903and NP-10was optimized by PLSR. When the optimum combination was used as emulsifier of abamectin20MEG, D50was12.13nm. There were three combinations,602#+NP10P+NP10,602#+NP10and NP10P+NP10, screened out by SRC. Using their optimized proportion, D50of abamectin20MEG (10%SAA) was44.31nm,14.22nm, and14.04nm, respectively. Ivermectin MEG and emamectin benzoate MEG could be successfully formulated using the recipes of abamectin20MEG.
     The formulation process of MEG was rotary extruding granulation or fluidized granulation. The physical and chemical properties of MEG preparations meet the requirements of application. In the thesis, the test items and corresponding values for product registration quality requirements were proposed, and mechanical stirring method as the test method of emulsified time, one of test items, was established.
     The bioassay test results of armyworm (Leucania separata) showed that the bioactivity of triazophos150MEG was higher than that of triazophos100MEG, triazophos150ME and triazophos150EC, and there were no significant differences of bioactivity among later3preparations. There were no significant differences of bioactivity among cypermethrin100MEG, cypermethrin100ME, cypermethrin100EC, but they were significantly better than of cypermethrin100EG. If abamectin was formulated as MEG or micro-emulsifiable powder, its bioactivity was no significant difference with that of ME, but significantly better than that of EC. And it was found that the formulation would not affect the biological sensitivity level of target organism to pesticide active ingredient by comparing the slopes of toxicity regression equations.
     Triazophos MEG was selected as the research object. The effect of water hardness, tap water, water temperature and carrier on the micro emulsion formation after MEG diluted using dynamic light scattering technique and static light scattering technique, and the formation mechanism was preliminary analyzed. If water hardness was less than or equal to1368mg/L, the formation of micro emulsion would not be affected when MEG's emulsifier was SAA-56or SAA-6EJ, and the rise of water hardness could make former's droplet diameter decreased slowly, the latter could form micro emulsion with smaller droplet diameter if water hardness was not greater than684mg/L. Water hardness could promote the formation of micro emulsion if emulsifier was SAA-H6, and droplet diameter decreased rapidly following the rise of water hardness. The effect of tap water on micro emulsion formation was to promote forming a micro emulsion with smaller droplet size, or promote the formation of micro emulsion, or prevent the formation of micro emulsion, when the emulsifier was SAA-6EJ, SAA-H6and SAA-56, respectively. If the water temperature was too high, the micro emulsion formation might be prevented. When MEG's emulsifier was SAA-H6or SAA-56, the formation of micro emulsion would be prevented if the water temperature was not lower than40℃and50℃, respectively. When the emulsifier of MEG was nonionic mixture surfactants, SAA-6EJ, the carrier's dissolution process could prevent the formation of micro emulsion if the MEG's carrier was lactose, mannitol, water soluble starch, benzoate and MgSO4, respectively; but the dissolution process of citric acid could promote the formation of micro emulsion, and it could form a micro-emulsion with more smaller droplet size following the rise of citric acid dosage. When MEG's emulsifier was a mixture of anionic and nonionic surfactants, like SAA-56and SAA-H6, the dissolution process of lactose, mannitol, water soluble starch and MgSO4would not prevent the formation of micro emulsion, but the dissolution process of benzoate could prevent the micro emulsion formation.
     The technique, near-infrared multiple light scattering, was introduced to study mechanism of MEG's emulsion stability. Within70min, the migration velocity of droplet was zero, and D50might unchanged, or increased or decreased following time, and the carrier was the major factor contributing to this change. D50would gradually increase as time goes by if the carrier was carbohydrates. But if the carrier was inorganic salts, D50would gradually decrease as time goes by. Compared with MEG that no contain citric acid, if the initial droplet size increased because citric acid as one of carriers, the rising rate of D50would be increased by citric acid; but if the initial droplet size decreased because citric acid as one of carriers, the change rate of D50, including rising rate and decreasing rate, would be reduced by citric acid. Moreover, the Zeta potential had no obviously affect to the change of D50.
     The research results show that pesticide TC, including liquid TC and low melting point TC, can be formulated as micro-emlsifiable granule with no organic solvent; and high melting point TC also can be formulated into micro-emulsifiable granule by adding suitable organic solvent. The fact that transparent or translucent emulsion remains steady after5min centrifugation at RCF100g can be regard as a necessity for determining that the emulsion is a microemulsion. In spite of that the stability is not adequate to ensure the emulsion is microemulsion. Standard regression coefficient can be used as a very effective filter of pesticide formulation recipe screen. Ca2+, Mg2+and ions in tap water can affect the interfacial tension before the droplet formation and after interfacial rebalance, and finally make effects on the formation of micro emulsion and droplet size. The chain length difference of alkyl and ethoxy group between different surfactants can cause the different temperature range that MEG's dilution can form micro emulsion. The endothermic and exothermic processes of carrier's dissolution can prevent or promote the formation of micro emulsion. The electrostatic repulsion is not emulsion stability mechanism of micro-emulsifiable granule. And the bioactivity of micro-emulsifiable granule will not lower than that of microemulsion. Micro-emulsifiable granule is a high effective and environment friendly pesticide formulation, and good application prospect.
引文
[1]中国农药工业协会.2010中国农药行业发展报告[A].见:2010中国农药行业发展报告和热点产品[C].第十一届全国农药交流会.上海,2010.
    [2]中华人民共和国农业部农药检定所.农药电子查询服务系统[DB/CD].北京:2011.
    [3]冷阳.VOC控制与农药科技创新思路的调整[J].农化新世纪.2007(9):16-23.
    [4]冷阳,仲苏林,吴建兰,等.农药水基化制剂的开发近况和有关深层次问题的讨论[J].农药科学与管理.2005,26(4):29-33,20.
    [5]Shinoda K, Kunieda H. Conditions to produce so-called microemulsions:Factors to increase the mutual solubility of oil and water by solubilizer[J]. Journal of Colloid and Interface Science. 1973,42(2):381-387.
    [6]Danielsson I, Lindman B. The definition of microemulsion[J]. Colloids and Surfaces.1981,3(4): 391-392.
    [7]Kahlweit M. Microemulsions[J]. Science.1988,240(4852):617-621.
    [8]崔正刚,殷福珊.微乳化技术及应用[M].第1版.北京:中国轻工业出版社,1999.
    [9]Moulik S P, Paul B K. Structure, dynamics and transport properties of microemulsions[J]. Advances in Colloid and Interface Science.1998,78(2):99-195.
    [10]Pratap A P, Bhowmick D N. Pesticides as Microemulsion Formulations[J]. Journal of Dispersion Science and Technology.2008,29(9):1325-1330.
    [11]张春华,王忠伟,黄啟良,等.农药微乳剂的优越性及其发展现状[J].农药科学与管理.2006,27(1):35-37,6.
    [12]陈福良,王仪,郑斐能.几种微乳剂制剂与相应其他剂型的药效对比[J].农药.2003,42(4):2648.
    [13]华乃震.农药微乳剂的研究和进展[J].现代农药.2004,3(5):19-23.
    [14]徐齐云,罗建军,胡美英.30%毒死蜱微乳剂防治稻纵卷叶螟药效[J].广东农业科学.2006(9):73.
    [15]陈福良,尹明明.农药微乳剂概念及其生产应用中存在问题辨析[J].农药学学报.2007, 9(2):110-116.
    [16]Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of micro emulsions by electron microscopy[J]. Journal of physical Chemistry.1959,63:1677-1680.
    [17]Schwuger M, Stickdornt K, Schomacker R. Microemulsions in Technical Processes[J]. Chemical reviews.1995,95:849-864.
    [18]陈蔚林,吴秀华,王飞,等.8%氰戊菊酯微乳剂的研究[J].安徽化工.1997(1):19-22.
    [19]中华人民共和国农业部农药检定所.农药电子查询服务系统[DB/CD].北京:2012.
    [20]Prince L M. Microemulsion:Theory and Practice[M]. New York:Academic Press,1977.
    [21]Chen F L, Wang Y, Zheng F N, et al. Studies on cloud point of agrochemical microemulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2000,175:257-262.
    [22]陈福良,王仪,郑斐能,等.微乳剂低温稳定性的研究[J].物理化学学报.2002,18(7):661-664.
    [23]孙华,路福绥,李培强,等.氰戊菊酯微乳剂形成规律的研究[J].农药.2004,43(12):547-548.
    [24]宋芳,王险,张宗军,等.不同影响因素对二嗪磷微乳剂物理稳定性的影[J].农药学学报.2004,6(2):93-96.
    [25]贾忠明,慕卫,刘峰,等.5%己唑醇微乳剂的配方研究[J].农药学学报.2005,7(1):92-96.
    [26]聂思桥,吴志华,曹永松,等.10%残杀威微乳剂的研制[J].农药.2006,45(9):587-590.
    [27]张春华,王忠伟,黄啟良,等.农药微乳剂浊点的研究[J].农药.2006,45(3):176-177,198.
    [28]徐妍,江才鑫,徐林清,等.不同影响因子对苯醚甲环唑微乳剂理化性质的影响[J].农药.2007,46(4):243-245.
    [29]马超,朱炳煜,杜有辰,等.应用比例法和对分法优选2.5%高效氯氟氰菊酯微乳剂配方[J].山东农业大学学报(自然科学版).2007,38(3):411414.
    [30]阳鹏,戴春芳,沈德隆,等.30%氟铃脲·三唑磷微乳剂的研究[J].农药.2008,47(7):495-496.
    [31]戴春芳.农药微乳剂的研究与开发[D].杭州:浙江工业大学,2008.
    [32]刘大勇,赵永和,赵丽娜,等.绿色农药乙草胺微乳剂组成的研究[J].江西师范大学学报(自然科学版).2008,32(1):116-119.
    [33]孙作洋.甲氨基阿维菌素苯甲酸盐微乳剂加工及其机理研究[D].福州:福建农林大学,2008.
    [34]张大侠,徐加利,张源,等.己唑醇微乳剂的低温稳定性研究[J].农药学学报.2010,12(1):85-89.
    [35]孙作洋,林瑞娜,范庆秀,等.1%甲氨基阿维菌素苯甲酸盐微乳剂的研制[J].福建农林大学学报(自然科学版).2010,39(2):128-131.
    [36]吕长和,温家钧,戴权,等.应用拟三元体系相图法制备烟嘧磺隆微乳剂[J].安徽化工.2010,36(2):6-8.
    [37]张胡焕,谢艺贤,蒲金基,等.20%咪鲜·三唑酮微乳剂的研制[J].现代农药.2911,10(3):24-27,30.
    [38]吴梅香.30%苯醚甲环唑·丙环唑微乳剂的配方[J].农药.2011,50(4):271-272.
    [39]冷阳.高效水基化农药新剂型研究成果及应用[J].新农药.2004(6):4044.
    [40]华乃震.农药水基性制剂的开发和前景[J].农药科学与管理.2006,25(11):4246.
    [41]GB/T 19378-2003.农药剂型名称及代码[S].
    [42]FAO. Manual on development and use of FAO and WHO specifications for pesticides[M].1st ed. Rome:FAO and WHO,2002.
    [43]赵欣昕,楼少巍.第46届CIPAC年会及第1届FAO/WHO农药规格联合会议内容简介[J].农化新世纪.2003(3):35-37.
    [44]侯宇凯,段秀洪,尹俊FAO农药规格编写指南—介绍两种农药新剂型[J].化工标准·计量·质量.2005,25(4):34-36.
    [45]宋后昆.拟除虫菊酯杀虫剂固体乳油加工技术[J].今日科技.1997(8):8-9.
    [46]张国生,林长福.一种农药新剂型——氟磺胺草醚25%可乳化粉剂配方研究[C].中国化工学会农药专业委员会第十四届年会.沈阳,2010.
    [47]张国生,韩葆莉.喹草烯10%可乳化粉剂配方研究[J].农药科学与管理.2008,29(10):23-26.
    [48]孔宪滨,刘兆斌.50%杀螟硫磷可乳化粉剂(EP)研究[C].中国化工学会农药专业委员会第十三届年会.,2008.
    [49]张鹤清,胡洪营,席劲瑛.6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能[J]. 环境科学.2003,24(6):83-89.
    [50]季颖,王雪娟.2005年CIPAC年会及FAOWHO农药标准联席会议在荷兰召开[J].农药科学与管理.2005,25(10):40-41.
    [51]Solans C, Izquierdo P, Nolla J, et al. Nano-emulsions[J]. Current Opinion in Colloid & Interface Science.2005,10(3-4):102-110.
    [52]Forgiarini A, Esquena J, Gonzalez C, et al. Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation[J]. Progress in Colloid and Polymer Science.2000,115:36-39.
    [53]Gutierrez J M, Gonzalez C, Maestro A, et al. Nano-cmulsions:New applications and optimization of their preparation[J]. Current Opinion in Colloid & Interface Science.2008, 13(4):245-251.
    [54]Henry J V L, Fryer P J, Frith W J, et al. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters[J]. Journal of Colloid and Interface Science.2009,338(1):201-206.
    [55]Ignac C. Degradation of kinetically-stable o/w emulsions[J]. Advances in Colloid and Interface Science.2004,107(2-3):125-155.
    [56]Taylor P. Ostwald ripening in emulsions[J]. Advances in Colloid and Interface Science.1998, 75(2):107-163.
    [57]Taylor P. Ostwald ripening in emulsions:estimation of solution thermodynamics of the disperse phase[J]. Advances in Colloid and Interface Science.2003,106(1-3):261-285.
    [58]Pons R, Carrera I, Caelles J, et al. Formation and properties of miniemulsions formed by microemulsions dilution[J]. Advances in Colloid and Interface Science.2003,106(1-3): 129-146.
    [59]Gradzielski M. Recent developments in the characterisation of microemulsions[J]. Current Opinion in Colloid & Interface Science.2008,13(4):263-269.
    [60]Acharya D P, Hartley P G. Progress in microemulsion characterization[J]. Current Opinion in Colloid & Interface Science.2012,17(5):274-280.
    [61]Furo I. NMR spectroscopy of micelles and related systems[J]. Journal of Molecular Liquids. 2005,117(1-3SI):117-137.
    [62]Deen G R, Pedersen J S. Phase behavior and microstructure of C12E5 nonionic microemulsions with chlorinated oils[J]. Langmuir.2008,24(7):3111-3117.
    [63]Blochowicz T, G O Gelein C, Spehr T, et al. Polymer-induced transient networks in water-in-oil microemulsions studied by small-angle x-ray and dynamic light scattering[J]. Physical Review E. 2007,76(4):41505.
    [64]Deen G R, Oliveira C, Pedersen J S. Phase Behavior and Kinetics of Phase Separation of a Nonionic Microemulsion of C12E5/Water/1-Chlorotetradecane upon a Temperature Quench[J]. Journal of Physical Chemistry B.2009,113(20):7138-7146.
    [65]Foster T, Sottmann T, Schweins R, et al. Small-angle neutron scattering from giant water-in-oil microemulsion droplets. I. Ternary system[J]. Journal of Chemical Physics.2008, 128(0545025).
    [66]Foster T, Sottmann T, Schweins R, et al. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system[J]. Journal of Chemical Physics.2008,128(0649026).
    [67]Freiberger N, Moitzi C, de Campo L, et al. An attempt to detect bicontinuity from SANS data[J]. Journal of Colloid and Interface Science.2007,312(1):59-67.
    [68]Lettow J S, Lancaster T M, Glinka C J, et al. Small-angle neutron scattering and theoretical investigation of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) stabilized oil-in-water microemulsions[J]. Langmuir.2005,21(13):5738-5746.
    [69]Powers K W, Brown S C, Krishna V B, et al. Research Strategies for Safety Evaluation of Nanomaterials. Part VI. Characterization of Nanoscale Particles for Toxicological Evaluation[J]. Toxicological Sciences.2006,90(2):296-303.
    [70]Murdock R C, Braydich-Stolle L, Schrand A M, et al. Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique[J]. Toxicological Sciences.2008,101(2):239-253.
    [71]Belkoura L, Stubenrauch C, Strey R. Freeze fracture direct imaging:a new freeze fracture method for specimen preparation in cryo-transmission electron microscopy [J]. Langmuir.2004, 20(11):4391-4399.
    [72]Sharma S C, Tsuchiya K, Sakai K, et al. Formation and characterization of microemulsions containing polymeric silicone[J]. Langmuir.2008,24(15):7658-7662.
    [73]Zhao X Y, Xu J, Zheng L Q, et al. Preparation of temperature-sensitive microemulsion-based gels formed from a triblock copolymer[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects.2007,307(1-3):100-107.
    [74]Silva E J, Zaniquelli M E D, Loh W. Light-Scattering Investigation on Microemulsion Formation in Mixtures of Diesel Oil (or Hydrocarbons) plus Ethanol plus Additives[J]. Energy Fuels.2007, 21(1):222-226.
    [75]Lemyre J L, Lamarre S, Beaupre A, et al. A new approach for the characterization of reverse micellar systems by dynamic light scattering[J]. Langmuir.2010,26(13):10524-10531.
    [76]Bootz A, Vogel V, Schubert D, et al. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles[J]. European Journal of Pharmaceutics and Biopharmaceutics.2004,57(2): 369-375.
    [77]Wooster T J, Augustin M A. β-Lactoglobulin-dextran Maillard conjugates:Their effect on interfacial thickness and emulsion stability[J]. Journal of Colloid and Interface Science.2006, 303(2):564-572.
    [78]唐红,郑文斌,李宪霞.主成分分析在光全散射特征波长选择中的应用[J].光学精密工程.2010,18(8):1691-1698.
    [79]朱嘉宁,陈抱雪,隋国荣,等.光全散射法颗粒粒径分布测量的改进研究[J].光学仪器.2010,32(3):23-27.
    [80]孙晓刚,唐红,原桂彬.颗粒系的可见消光光谱分析及最佳波长的选择[J].光谱学与光谱分析.2008,28(9):1968-1973.
    [81]孙晓刚,唐红,原桂彬.非独立模式算法下粒径分布反演及分类的研究[J].光谱学与光谱分析.2008,28(5):1111-1114.
    [82]孙晓刚,唐红,戴景民.可见-红外波段光全散射法颗粒粒径测量范围的研究[J].光谱学与光谱分析.2008,28(12):2793-2798.
    [83]Wang L J, Li X F, Zhang G Y, et al. Oil-in-water nanoemulsions for pesticide formulations[J]. Journal of Colloid and Interface Science.2007,314(1):230-235.
    [84]Tadros T, Izquierdo P, Esquena J, et al. Formation and stability of nano-emulsions[J]. Advances in Colloid and Interface Science.2004,108-109(0):303-318.
    [85]Simonnet J T. Transparent nanoemulsion based on silicone surfactants and use in cosmetics or in dermopharmaceuticals. United States:08/772724[P].1996-11-23.
    [86]魏方林,魏晓林,刘迎,等.农药新剂型——微乳粒剂配制的可行性研究[J].农药学学报.2011,13(3):319-326.
    [87]魏方林,朱国念,魏晓林.含三唑磷的杀虫固体微乳剂及其制备方法.中国:200810060603.5[P].2008-09-10.
    [88]唐启义.DPS数据处理系统——实验设计、统计分析及数据挖掘[M].第2版.北京:科学出版社,2010.
    [89]IUPAC manual of symbols and termeinology[M]. Pure Appl. Chem.,1972.
    [90]刘焕焕.石油焦系纳米孔结构材料制备方法的研究[D].青岛:中国石油大学(华东),2008.
    [91]吴明铂.多孔炭的制备及其孔结构、表面官能团的调控[D].大连:大连理工大学,2003.
    [92]蒋文举,金燕,朱晓帆,等.活性炭材料的活化与改性[J].环境污染治理技术与设备.2002,3(12):25-27.
    [93]赵军,张兴凯,王云海.硫铁矿的比表面积、孔体积及其对硫铁矿吸附能力的影响研究[J].中国安全生产科学技术.2008,4(4):119-121.
    [94]周新利,刘祖亮,吕春绪.膨化硝酸铵高吸油率和低渗油性内因的实验研究[J].矿冶工程.2005,25(6):6-8.
    [95]钟玲文,张慧,员争荣,等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探.2002,30(3):26-29.
    [96]赵存梅,朱世斌.药物泡腾剂技术[M].第一版.北京:化学工业出版社,2007.
    [97]李范珠.药物制粒技术[M].第一版.北京:化学工业出版社,2007.
    [98]齐宜广,蒋曙光,周建平.水难溶性药物的新型载体一干乳的研究进展[J].海峡药学.2009,21(7):14-19.
    [99]王勇,吴胜军,万涛.膨胀石墨-酚醛活性炭复合材料处理污油的研究[J].武汉理工大学学 报.2004,26(1):15-18.
    [100]Kahlweit M, Strey R, Haase D, et al. How to study microemulsions[J]. Journal of Colloid and Interface Science.1987,118(2):436-453.
    [101]Li X, Kunieda H. Catanionic surfactants:microemulsion formation and solubilization[J]. Current Opinion in Colloid & Interface Science.2003,8(4-5):327-336.
    [102]李兴福,王建中,傅正生,等.混合表面活性剂微乳状液的形成和相行为研究进展[J].化学通报.1999(6):13-19.
    [103]Li X, Lin E, Zhao G, et al. Microemulsion Formation and Phase Behavior of Anionic and Cationic Surfactants with Sodium Dodecyl Sulfate and Cctyltrimethylammonium Bromide[J]. Journal of Colloid and Interface Science.1996,184(1):20-30.
    [104]Li X, Zhao G, Lin E, et al. Formation and phase behavior of water-in-dicscl oil microemulsion with sodium oleate and cetyltrimethylammonium bromide[J]. Journal of Dispersion Science and Technology.1996,17(2):111-130.
    [105]蔺恩惠,李兴福.掺水汽油微乳状液的生成和应用[J].石油炼制.1991(8):26-31.
    [106]黄啟良,李干佐,张文吉,等.高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶[J].中国农业科学.2006,39(6):1173-1178.
    [107]张春华,黄啟良,王忠伟,等.农药微乳剂复配表面活性剂的筛选与优化[J].农药.2006,45(10):667-668,674.
    [108]李嘉诚,邱学青,冯玉红,等.单一及复合表面活性剂对联苯菊酯微乳液的影响[J].应用化学.2008,25(8):890-894.
    [109]李嘉诚,冯玉红,林强.表面活性剂的协同作用在甲维盐微乳剂中的应用[J].化学研究与应用.2006,18(8):991-995.
    [110]肖乾芬,王晓栋,魏忠波,等.三唑磷农药水解动力学研究[J].农药.2005,44(8):356-358.
    [111]Fang K T, Lin D K J. uniform experimnetal designs and their applications in industry[M].//Khattree R, Rao C R, ed. Handbook of Statistics Vol.22-Statistics in Industry,Elsevier Press,2003:131-170.
    [112]魏方林,魏晓林,张小琴,等.比例法和对分法在乳油制剂配方研制中的联合应用[J].农药.2005,44(10):457-459.
    [113]魏方林,张小琴,魏晓林,等.比例法和对分法在农药水乳剂配方研制中的应用[J].现代农药.2005,4(1):28-30.
    [114]GB/T 1603-2001.农药乳液稳定性测定方法[S].
    [115]GB/T 1601-93.农药pH值的测定方法[S].
    [116]HG/T 2467.5-2003.农药悬浮剂产品标准编写规范[S].
    [117]李云雁,胡传荣.试验设计与数据处理(第二版)[M].第二版.北京:化学工业出版社,2010.
    [118]GB/T 19378-2003.农药剂型名称及代码[S].
    [119]杜嬛,徐升华,孙祉伟,等.流体力学半径对估算胶体微球聚集速率常数的影响[J].物理化学学报.2010,26(10):2807-2812.
    [120]刘亚敏,王亚廷.40%三唑磷水乳剂的研制[J].世界农药.2008,30(3):4748,18.
    [121]Song S L, Liu X H, Jiang J H, et al. Stability of triazophos in self-nanoemulsifying pesticide delivery system[J]. Colloids and Surfaces A:Physicochemical And Engineering Aspects. 2009(350):57-62.
    [122]魏方林,朱国念,程敬丽,等.15%三唑磷微乳剂配方研制及其田间药效[J].现代农药.2004,3(4):25-28.
    [123]谢光东.不同影响因子对20%三唑磷微乳剂的影响[J].农药.2010,49(8):569-570,598.
    [124]张金鑫,徐妍,战瑞,等.不同影响因子对三唑磷乳油稳定性的影响[J].现代农药.2009,8(2):27-29.
    [125]Mengual O, Meunier G, Cayre I, et al. Characterisation of instability of concentrated dispersions by a new optical analyser:the TURBISCAN MA 1000[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1999,152(1-2):111-123.
    [126]Lemarchand C, Couvreur P, Vauthier C, et al. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan[J]. International Journal of Pharmaceutics. 2003,254(1):77-82.
    [127]Mengual O, Meunier G, Cayre I, et al. TURBISCAN MA 2000:multiple light scattering measurement for concentrated emulsion and suspension instability analysis[J]. Talanta.1999, 50(2):445-456.
    [128]Zhao Y P, Turay R, Hundley L. Monitoring and Predicting Emulsion Stability of Metalworking Fluids by Salt Titration and Laser Light Scattering Method[J]. Tribology Transactions.2006, 49(1):117-123.
    [129]Mehtaab R N, Barada J M, Chakrabortya M, et al. A Stability and Performance Study of Ethanol-Diesel Microemulsion Fuel[J]. Petroleum Science and Technology.2012,30(2): 159-169.
    [130]Szelag H, Szumala P. Effect of Alkyl Sulfate on the Phase Behavior of Microemulsions Stabilized with Monoacylglycerols[J].2011,14(2):245-255.
    [131]Kim E J, Hur W. Stabilities of water-in-oil(W/O) micro-emulsions prepared by varying sorbitan monooleate and polyoxyethylene 20 sorbitan monooleate contents. [A]. In:韩国生物技术会议论文集[C].2008:149.
    [132]周怀东,彭文启,杜霞,等.中国地表水水质评价[J].中国水利水电科学研究院学报.2004,2(4):255-264.
    [133]Song S L, Liu X H, Jiang J H, et al. Stability of triazophos in self-nanoemulsifying pesticide delivery system[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects.2009, 350(1-3):57-62.
    [134]张晓光,张高勇,王红霞,等.农药微乳液相行为及微乳结构的研究[J].精细化工.2003,20(8):475477,512.
    [135]吴亚芊,赵丰.毒死蜱微乳剂的研制[J].农药.2010,49(2):108-110.
    [136]魏方林,吴慧明,程敬丽,等.多因素试验设计方法在农药微乳剂配方研制中的应用研究[J].农药学学报.2009,11(3):373-380.
    [137]黄啟良.农药微乳剂形成与稳定的机理及其性能表征[D].中国农业大学,2006.
    [138]宁建辉.混料均匀设计[D].武汉:华中师范大学,2008.
    [139]Wang Y, Fang K T. Uniform design of experiments with mixtures[J].Sci China (Series A).1996, 39(3):264-275.
    [140]蒋建平,陈功奇,章杨松.偏最小二乘回归在地表沉陷预测中的应用[J].重庆大学学报.2010,33(9):92-97.
    [141]郭天永,车玉满,孙鹏,等.基于偏最小二乘回归的高炉焦比影响因素分析[J].鞍钢技术.2009(5):23-26.
    [142]曹雁平,刘佐才,徐小丽,等.红茶氨基酸、茶多酚、咖啡因的低强度多频超声浸取特性[J].精细化工.2006,23(11):1075-1081.
    [143]Taha E I, Al-Saidan S, Samy A M, et al. Preparation and in vitrocharacterization of self-nanoemulsifieddrugdelivery system (SNEDDS) of all-trans-retinol acetate[J]. International Journal of Pharmaceutics.2004,285(1-2):109-119.
    [144]Kawakami K, Yoshikawa T, Moroto Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs:I. Prescription design[J]. Journal of Controlled Release. 2002,81(1-2):65-74.
    [145]Gao Z G, Choi H G, Shin H J, et al. Physicochemical characterization and evaluation of amicroemulsionsystem for oraldelivery of cyclosporin A[J], International Journal of Pharmaceutics.1998,161(1):75-86.
    [146]Yan F, Texter J. Surfactant ionic liquid-based microemulsions for polymerization[J]. Chem. Commun.2006:2696-2698.
    [147]Von Rybinski W, Guckenbiehl B, Tesmann H. Influence of co-surfactants on microemulsions with alkyl polyglycosides[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1998,142(2-3):333-342.
    [148]Sakai K, Maeda H, Yoshimori T, et al. High-throughput formulation screening system for self-microemulsifying drug delivery[J]. Drug Development and Industrial Pharmacy.2009, 35(6):746-755.
    [149]朱永和,王振荣,李布青.农药大典[G].第一版.北京:中国三峡出版社农业科教出版中心,2006.
    [150]Liu Y, Wei F L, Wang Y Y, et al. Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2011,389(1):90-96.
    [151]刘振邦,董立峰,王智,等.联苯菊酯10%水乳剂的配方研究[J].农药科学与管理.2012,33(3):19-22.
    [152]李佳佳.绿色农药氯氰菊酯微乳剂的制备、性质与应用[D].扬州:扬州大学,2011.
    [153]张保华,潘淑翠,王智,等.5%三氟氯氰菊酯水乳剂的安全环保配方[J].农药.2011,50(11): 813-816.
    [154]齐武,陈金福,张兰平.5%顺式氯氰菊酯水乳剂的开发[J].世界农药.2006,28(6):34-37.
    [155]陈蔚林.农药水性制剂的研发[J].安徽化工.2004,30(6):2-5.
    [156]扈洪波,朱蓓蕾,李俊锁.阿维菌素类药物的研究进展[J].畜牧兽医学报.2000,31(6):520-529.
    [157]阿维菌素协作组.2010阿维菌素发展报告[A].见:2010中国农药行业发展报告和热点产品[C].第十届全国农药交流会.上海,2010:217-234.
    [158]陈福良,王仪,郑斐能.微乳剂质量技术指标的确定及测定方法研究[J].农药.2004,43(2):67-69.
    [159]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [160]黄玉嫒,杜上鉴.精细化工配方研究与产品配制技术(上册)[M].广州:广东科技出版社,2003.
    [161]朱兆璋,李骥联,沈寅初.天然杀虫素Avermectin的结构改造产物——伊维菌素(Ivermectin)[J].农药译丛.1995(06):21-28.
    [162]毕富春,徐凤波.甲胺基阿维菌素苯甲酸盐研究概述[J].农药科学与管理.2002(03):31-33.
    [163]吴秀华,陈蔚林,王飞.农药微乳液物理稳定性的探讨[J].化学通报.1999(3):36-38.
    [164]GB/T 1600-2001.农药水分测定方法[S].
    [165]郭武棣.第六章 水分散粒剂[M].//凌世海主编.固体制剂,第三版.北京:化学工业出版社,2003:276-283.
    [166]GB/T 19136-2003.农药热贮稳定性测定方法[S].
    [167]HG/T 2467.12-2003.农药颗粒剂产品标准编写规范[S].
    [168]US EPA. Pesticide fact sheet number 199:cypermethrin[EB/OL]. Washington, DC:Office of Pesticides and Toxic Substances,1989.
    [169]张卫,虞云龙,谭成侠,等.阿维菌素水解动力学的研究[J].农业环境科学学报.2004,23(1):174-176.
    [170]Siegel M. An Overview on the Development of Wettable Powder Formulations[J]. ASTM SPECIAL TECHNICAL PUBLICATION.1996,15(1268):104-113.
    [171]马毓龙,蒋志坚.第二章 可湿性粉剂[M].//凌世海主编.固体制剂,北京:化工出版社, 2003:90-176.
    [172]Casanova H, Ortiz C, Pelaez C, et al. Insecticide Formulations Based on Nicotine Oleate Stabilized by Sodium Caseinate[J]. J. Agric. Food Chem.2002,50(22):6389-6394.
    [173]宗建平.灌根和喷雾施用吡虫啉在番茄植株上的内吸特性及对烟粉虱的生物活性[D].济南:山东农业大学,2009.
    [174]胡珍娣,陈焕瑜,李树权,等.3种氯虫苯甲酰胺剂型理化性能测试及对小菜蛾活性评价[J].农药.2011,50(4):263-265.
    [175]李敏,胡美姣,高兆银,等.杀菌剂对火龙果革节孢属病菌的室内毒力测定[J].热带农业科学.2012,32(4):72-75,78.
    [176]董怀玉,张明会,徐秀德,等.杀菌剂对玉米大斑病菌的抑菌效果测定[J].农业科技通讯.2010(3):42-44,47.
    [177]张炬红.转Bt基因抗虫棉对棉蚜的生态风险评价[D].北京:中国农业科学院,2006.
    [178]Sampson B J, Tabanca N, Kirimer N, et al. Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae:Homoptera)[J]. Pest Management Science.2005,61(11):1122-1128.
    [179]Ignoffo C M, Wong J F H, Mcintosh A H, et al. Sensitivity of heliothine larvae to wild-type and recombinant strains of a single nucleocapsid (HzSNPV) and a multiple nucleocapsid (AcMNPV) baculovirus[J]. Applied Entomology and Zoology.2001,36(1):127-136.
    [180]杜布亚.豇豆主要害虫发生为害及不同药剂防治效能的研究[D].南宁:广西大学,1998.
    [181]Mittal K L. Micellization, Solubilization and Microemulsion[M]. New York:Plenum Press, 1977.
    [182]Mitchell D J, Ninham B W. Micelles, vesicles and microemulsions[J]. J. Chem. Soc. Faraday Trans.2.1981,77:601-629.
    [183]Bourrel M, Schechter R S. Microemulsions and related systems[M]. New York and Basel: Marcel Dekker, Inc.,1988.
    [184]Mukherjee K, Mukherjee D C, Moulik S P. Thermodynamics of Microemulsion Formation[J]. Journal of Colloid and Interface Science.1997,187(2):327-333.
    [185]Batov D V. Formation Enthalpies of Water-n-octane-1-propanol-sodium Dodecyl Sulfate Microemulsions at 298.15 K[J].2004,66(1):109-112.
    [186]Batov D V, Kartsev V N. Formation enthalpies of water-o-xylene-triton X-100 microemulsions at 298.15 K[J].2006,68(5):648-650.
    [187]Kartsev V N, Shtykov S N, Bogomolova I V, et al. Thermodynamic stability of microemulsion based on sodium dodecyl sulfate [J]. Journal of Molecular Liquids.2009,145(3):173-176.
    [188]Kumar P, Mittal K L. Handbook of Microemulsion Science and Technology[M]. New York and Basel:Marcel Dekker Inc.,1999.
    [189]Paul B K, Moulik S P. Microemulsions:An Overview[J]. Journal of Dispersion Science and Technology.1997,18(4):301-367.
    [190]Moulik S P, Paul B K. Structure, dynamics and transport properties of microemulsions[J]. Advances in Colloid and Interface Science.1998,78(2):99-195.
    [191]李小俊,管骁,李海洲,等.都市水供给安全远程监控与实时补偿系统的研究与开发[J].水资源与水工程学报.2011,22(4):76-80.
    [192]张琛.自来水厂常用的几种水处理消毒技术[J].大众科技.2010(11):94-95.
    [193]董民强,汪明华,许阳.自来水加氯点及投加量的合理选择[J].科技通报.2001,17(5):59-62.
    [194]Spanos N, Klepetsanis P G, Koutsoukos P G. Calculation of the zeta potentials from electrokinetic data[M].//Hubbard A T, ed. Encyclopedia of Surface and Colloid Science. New York:Marcel Dekker,2002, Vol(1):829-845.
    [195]陈福良.农药微乳剂稳定性机理研究[D].中国农业大学,2006.
    [196]Xu Q, Nakajima M, Ichikawa S, et al. Effects of surfactant and electrolyte concentrations on bubble formation and stabilization[J]. Journal of Colloid and Interface Science.2009,332(1): 208-214.
    [197]Koelsch P, Motschmann H. Varying the Counterions at a Charged Interface[J]. Langmuir.2005, 21(8):3436-3442.
    [198]Alargova R, Petkov J, Petsev D, et al. Light Scattering Study of Sodium Dodecyl Polyoxyethylene-2-sulfonate Micelles in the Presence of Multivalcnt Counterions[J]. Langmuir. 1995,11(5):1530-1536.
    [199]Ostrovsky M V, Good R J. Mechanism of microemulsion formation in systems with low interfacial tension:Occurrence, properties, and behavior of microemulsions[J]. Journal of Colloid and Interface Science.1984,102(1):206-226.
    [200]Robbins M L, Bock J, Huang J S. Model for microemulsions:Ⅲ. Interfacial tension and droplet size correlation with phase behavior of mixed surfactants[J]. Journal of Colloid and Interface Science.1988,126(1):114-133.
    [201]Binks B P, Meunier J, Abillon O, et al. Measurement of film rigidity and interfacial tensions in several ionic surfactant-oil-water microemulsion systems[J]. Langmuir.1989,5(2):415-421.
    [202]Kahlweit M, Strey R, Busse G. Microemulsions:a qualitative thermodynamic approach[J]. The Journal of Physical Chemistry.1990,94(10):3881-3894.
    [203]Kahlweit M, Reiss H. On the stability of microemulsions[J]. Langmuir.1991,7(12):2928-2933.
    [204]张巍,董国君,杨惠,等.新型树枝状非离子表面活性剂的温度与盐效应研究[J].应用化工.2009,38(5):625-628,631.
    [205]Rosen M J, Hua X Y. Surface concentrations and molecular interactions in binary mixtures of surfactants[J]. Journal of Colloid and Interface Science.1982,86(1):164-172.
    [206]Deng Y J, Dixon J B, White G N. Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite[J]. Colloid and Polymer Science.2006,284(4): 347-356.
    [207]王培义,徐宝财,王军.表面活性剂——合成·性能·应用[M].第1版.北京:化学工业出版社,2007:124-182.
    [208]张跃军,华平.磺基琥珀酸酯盐类表面活性剂的研究进展[J].江苏化工.2001,29(6):16-21,26.
    [209]王业飞.非离子-阴离子两性活性剂的合成与研究[D].石油大学中国石油大学(北京),1994.
    [210]任翠翠,牛金平.壬基酚聚氧丙烯聚氧乙烯醚磺酸盐的应用性能[J].精细化工.2012,29(8):738-741,782.
    [211]贺伟东,葛际江,张贵才,等.烷基醇/酚聚氧乙烯醚磺酸盐的性能与应用前景[J].日用化学工业.2011,41(2):122-126.
    [212]曹翔宇,龙海华,崔正刚.醇醚磺酸盐的合成及其耐温耐盐和界面化学性能研究[J].日用化学工业.2011,41(2):92-96,108.
    [213]贺伟东,蒋燕军,靳路超,等.不同结构聚醚磺酸盐的耐盐性能和起泡性能研究[J].石油与天然气化工.2011,40(5):475-480.
    [214]杨晓鹏,郭东红,钟安武.结构及用量对脂肪醇/烷基酚聚氧乙烯醚磺酸盐界面活性的影响[J].石油天然气学报.2010,32(1):132-135.
    [215]朱国华,华平,戴宝江,等.月桂醇聚氧乙烯醚(7)辛基磺基琥珀酸混合双酯钠的合成与性能[J].农药.2009,48(4):249-25 1,254.
    [216]邱增中.非典型改性聚醚的研究[D].济南:山东师范大学,2008.
    [217]李立勇,周忠,崔正刚,等.脂肪醇聚氧乙烯醚磺酸盐耐温耐盐性研究[J].精细石油化工进展.2008,9(1):4-7.
    [218]华平,戴宝江,吴东辉,等.月桂醇聚氧乙烯醚(9)辛基磺基琥珀酸混合双酯钠的合成与性能[J].精细化工.2007,24(10):956-960.
    [219]戴宝江,华平,李建华.月桂醇聚氧乙烯醚(3)辛基磺基琥珀酸混合双酯钠的合成与性能研究[J].南通大学学报(自然科学版).2007,6(4):4045.
    [220]Miller C A, Neogi P. Interfacial Phenomina:Equilibrium and Dynamic Effects[M]. New York: Marcel Dekker,1985:151.
    [221]Luisi P I, Straub B E. Reverse Micelles[M]. New York:Plenum Press,1984:181.
    [222]Bourrel M, Schechter R S. Microemulsion and Related Systems:Formulation, Solvency, and Physical Properties[M]. New York and Basel:Marcel Dekker Inc.,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700