用户名: 密码: 验证码:
蝶形半导体激光器自动化封装的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝶形半导体激光器是光通讯行业重要的元器件,是最常用的长距离传输光信号放大装置。但是一直以来蝶形半导体激光器的封装成本高居不下,极大地限制了光电器件行业的发展速度。限制蝶形半导体激光器封装自动化的瓶颈主要有两大技术:光纤耦合(光纤对准)技术和尾纤固定技术。光纤耦合的瓶颈在于,实际对准大多数由人工根据激光器输出功率的大小来判断光纤是否对准,并利用半自动或手动的调节平台进行微调。这样势必导致激光器封装速度慢,成品率低,封装成本居高不下。自动化的光纤耦合过程首先需从光功率计中提取功率误差信号,配合先进的光纤对准算法将其转换为光纤末端位置误差信号,再通过控制器驱动亚微米级精度的光学对准平台将光纤逐步调整至最佳耦合位置。尾纤固定一般采用激光焊接的方式,其难点在于焊后变形导致最佳对准位置再度偏离,借助于光纤对准平台的微调和智能的焊后偏移补偿算法,焊后偏移完全可以被自动地补偿至最小。
     本课题旨在从四个方面展开研究工作以解决光纤对准与尾纤固定这两大难题。第一个方面主要从光学对准平台上入手。当前的多自由度并联光学对准平台一般采用单轴独立控制,忽略了各轴之间的耦合误差,这导致光纤耦合不准,输出功率下降,同时对准速度也会降低。本课题对3自由度6支链PSS构型的并联微动平台进行了研究,通过建立全闭环位置反馈系统来消除轴间耦合误差。首先本课题运用经典的牛顿-欧拉法对6PSS构型的并联微动平台进行了动力学建模;根据本平台正交无姿态变化的特点对模型进行了简化并求出其位置正解与工作空间;借助于简化的动力学模型设计了滑模控制器,通过闭环反馈实现3自由度并联微动平台闭环系统的仿真,仿真结果显示滑模控制可以消除轴间耦合误差,轨迹跟踪性能良好。
     由于滑模控制存在明显的抖振现象,并且其鲁棒稳定的条件较为苛刻,另外考虑到系统在实际应用时一般采用计算机控制,因此设计一个既保证鲁棒性有可有效缓解抖振现象的离散滑模控制器就显得尤为必要。本课题在离散滑模控制的基础上提出了基于滑模预测思想的控制系统设计新思路。以不确定系统的名义模型作为滑动模态预测模型,利用当前及过去时刻的滑模信息预测将来时刻不确定因素对系统的影响,从而实现了滚动优化求解,对滑模控制进行实时校正,既显著削弱了抖振现象,又使得闭环控制系统具有很强的鲁棒性。仿真结果也证实了滑模预测控制的优越性。
     现有的光纤耦合算法大都不考虑角度耦合。由于角度调节平台的旋转中心与光纤末端不重合导致角度调整会引入线性方向的额外偏差,因此大大影响光纤耦合的速度。针对这个问题,本课题采用了相角跟踪角度耦合法,实时地补偿角度耦合造成的线性方向额外偏差。相角跟踪是一种可以在较小的搜索范围内迅速定位最佳耦合位置的对准算法,一旦光纤产生偏离,光功率计就会反馈输出功率偏差,此时算法可以迅速根据功率偏差信号提取位置偏差信号,并实时将偏离的误差补偿回去。实验结果的比较也进一步证明相角跟踪在角度耦合应用上的优势。
     焊后偏移难以消除,但是可以通过预先调节某些焊接参数使之被优化至最小。本课题通过大量的实验测量出:焊前预偏移、焊点位置、激光脉冲能量以及焊接初始位置这四个可调参数对焊后偏移的影响情况,设计了基于BP神经网络的焊后偏移智能预补偿系统。大量实验数据训练出的BP网络可以预测出相应参数下的焊后偏移大小,因此系统可以在焊接前用光学对准平台将待焊接光纤调整至预偏移位置,焊接后由于焊后偏移和预偏移相互抵消,光纤则被补偿至最佳耦合位置。实验证明通过神经网络的预补偿策略焊后偏移可以被补偿至0.4μm以内。
As the most common optical signal amplifier, butterfly laser diode module is one of the important components in photo-communication. But the expensive packaging cost is always the bottleneck, and extremely limits the development of photo-electricity industry. The main reason is the manual or half-automatic packaging process. To improve the automatic packaging level, two main technologies should be considered. One is the fiber coupling (fiber alignment) technology. The other is fiber fixing technology. To improve the fiber coupling technology, a multi-axis optical alignment stage with highly positioning ability should be equipped. Also a quick and stable fiber coupling algorithm should be applied. The obstacle of fiber fixing technology is post welding shift (PWS). Research works should be focused on how to reduce the PWS or how to compensate the PWS.
     This thesis deals with the fiber coupling and fiber fixing technology mainly based on four different sections. First researching aim is optical alignment stage. In now days many multi-axis optical alignment stage only have a closed loop for single axis but not for the whole stage. This kind of control strategy could not take the axis coupling error into account. And the fiber alignment time would be increased or the fiber output power would be decreased. In this thesis a whole closed loop position feedback system is designed for a 3-axies parallel micro-stage to compensate the axis coupling error influence. A dynamic model of the 6-PSS parallel micro-stage is also discussed. Also the working space and forward solution are discussed based on kinematic analysis. At last simulation results have proved that with a sliding mode controller the axis coupling error can be deleted and the position tracking ability of the micro-stage is well.
     Conventional sliding mode control has its two inherent drawbacks. The first one is chattering and the second one is the strict robustness boundary condition. So a improved discrete sliding mode controller should be designed for a computer control system. And the discrete sliding model predictive algorithm overcomes the shortcomings of the conventional sliding mode controller. By predicting the future sliding mode function value and combining feedback correction and receding horizon optimization approaches, a discrete-time sliding mode control law for tracking problem is constructed. With the designed control law, closed-loop systems have strong robustness to matched or unmatched uncertainties as they eliminate chattering. Numerical simulations illustrate the validity of the proposed algorithm.
     Currently most fiber alignment algorithms are only suitable for lateral axes, and for angular alignment. Manual coupling is still widely used in product line. In recent years, engineers have tried to apply some automatic algorithms such as Hill-climbing algorithm to realize angular alignment. But since the pivot point is not always the end point of the fiber tip, an angular movement will cause an extra offset in lateral axis. Consequently, the whole alignment process will cost much more time. In this thesis, a novel automatic angular alignment method based on phase angle tracking is presented. Phase angle tracking is used to detect the optical power increasing direction and drive the collimator to the maximum power point. Experimental results show that the novel automatic angular alignment method can reduce the total time less than 160 seconds. It is obvious that this method is rapidly improved the efficiency in optical collimators assembly.
     Post welding shift can not be fully eliminated. But by optimizing some welding parameters, the PWS can be compensated or minimized. Based on enough welding experiments and the analysis by FEM, influence factors of PWS are studied, such as pre-welding shift, welding spot position, welding laser energy and initial position respectively. A BP neural network is constructed for analyzing efficiently the welding data, so that PWS can be predicted before welding. And then the fiber could be moved to an anti-direction shift of the predictive PWS. After welding the anti-direction shift will compensate the PWS. The experiment can validate that the PWS can be compensate into 0.4μm
引文
1 http://www Axsys Com/AxsysHomePage.php
    2 http://www.pionline.it/.
    3安辉.压电陶瓷驱动六自由度并联微动机器人的研究.哈尔滨工业大学博士论文. 1995.
    4金振林,刘辛军,高峰.六自由度并联解耦结构微动机器人. ZL99121020.4. 1999
    5孔令富,韩佩富,黄真. 6-DOF并联机器人修正位置/力控制系统的研究.机器人. 1998, 20(4)
    6赵现朝,高峰.并联机构的六维鼠标研制开发.机械设计. 2003, 20(6): 15-17
    7金振林,高峰.新型3-2-1正交结构机器人六分量腕力传感器设计.机械设计. 2001, 18(5): 12-14
    8毕树生,王守杰.串并联微动机构的运动学分析.机器人. 1997, 19(4): 259-264
    9 Li Y, Xu Q. Design and Optimization of an XYZ Parallel Micromanipulator with Flexure Hinges. Journal of Intelligent and Robotic Systems. 2009, 55(4): 377-402
    10 Li Y, Xu Q. Dynamics analysis of a modified 3-PRC compliant parallel micromanipulator. 7th IEEE Conference on Nanotechnology Hong Kong 2007, 432 - 437
    11 Yun Y, Li Y. Design and analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision positioning. Nonlinear Dynamics. 2010: 1-17
    12 Zhao Y, Gao F. Dynamic performance comparison of the 8PSS redundant parallel manipulator and its non-redundant counterpart--the 6PSS parallel manipulator. Mechanism and Machine Theory. 2009, 44(5): 991-1008
    13 Zhao Y, Gao F, Dong X, et al. Elastodynamic characteristics comparison of the 8-PSS redundant parallel manipulator and its non-redundant counterpart--the 6-PSS parallel manipulator. Mechanism and Machine Theory. 2010,45(2): 291-303
    14 Fichter E F. A Stewart platform-based manipulator: general theory and practical construction. The International Journal of Robotics Research. 1986, 5(2): 157
    15 Do W, Yang D. Inverse dynamic analysis and simulation of a platform type of robot. Journal of Robotic Systems. 2007, 5(3): 209-227
    16 Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanism and Machine Theory. 1998, 33(8): 1135-1152
    17孔令富,张世辉,肖文辉.基于牛顿—欧拉方法的6-PUS并联机构刚体动力学模型.机器人. 2004, 26(005): 395-399.
    18 Geng Z, Haynes L S, Lee J D, et al. On the dynamic model and kinematic analysis of a class of Stewart platforms. Robotics and Autonomous Systems. 1992, 9(4): 237-254
    19 Guo H B, Li H R. Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2006, 220(1): 61-72
    20 Huang Q, H?deby H, Sohlenius G. Connection method for dynamic modelling and simulation of parallel kinematic mechanism (PKM) machines. The International Journal of Advanced Manufacturing Technology. 2002, 19(3): 163-173
    21 Wang J, Gosselin C M. A new approach for the dynamic analysis of parallel manipulators. Multibody System Dynamics. 1998, 2(3): 317-334
    22 Fujie X, Chunlin Z. Finite element dynamic analysis of spatial parallel mechanisms. Chinese Journal of Mechanical Engineering. 1999, 12(3): 224-229
    23张国伟,宋伟刚.并联机器人动力学问题的Kane方法.系统仿真学报. 2004, 16(007): 1386-1391
    24 Wu F X, Zhang W J, Li Q, et al. Integrated design and PD control of high-speed closed-loop mechanisms. Journal of Dynamic Systems, Measurement, and Control. 2002, 124: 522
    25 Ruvindal F, Longchamp G R. Modeling and set point control of closed-chainmechanisms: theory and experiment. IEEE Transactions on Control Systems Technology. 2002, 8(5):801-815
    26 Ghorbel F, Gunawardana R. A validation study of PD control of a closed-chain mechanical system. IEEE Conference on Decision and Control, 36th, San Diego. 1997: 1998-2004.
    27 Yiu Y K, Li Z X. PID and adaptive robust control of a 2-dof over-actuated parallel manipulator for tracking different trajectory. Computational Intelligence in Robotics and Automation, 2003, 3:1052-1057
    28 Ouyang P R, Zhang W J, Wu F X. Nonlinear PD control for trajectory tracking with consideration of the design for control methodology. ICRA '02. IEEE International Conference on. 2002, 4: 4126-4131
    29 Su Y X, Sun D, Zheng C H. Nonlinear trajectory tracking control of a closed-chain manipulator. WCICA 2004. Fifth World Congress on. 2004, 6: 5012-5016
    30 Su Y X, Duan B Y, Zheng C H. Nonlinear PID control of a six-DOF parallel manipulator. IEE Proceedings-Control Theory and Applications. 2004, 151(1): 95-102
    31 Begon P, Pierrot F, Dauchez P, et al. Fuzzy sliding mode control of a fast parallel robot. Robotics and Automation IEEE International Conference on. 1995, 1:1178-1183.
    32 Chung I F, Chang H H, Lin C T. Fuzzy control of a six-degree motion platform with stability analysis. Systems, Man, and Cybernetics, IEEE International Conference on. 1999, 1: 325-330
    33 Lewis F L. Neural network control of robot manipulators. IEEE Expert. 1996, 11(3): 64-75
    34 Pernechele C, Bortoletto F, Giro E. Neural network algorithm controlling a hexapod platform. Proceedings of the IEEE-INNS-ENNS International Joint Conference on. 2000, 4:349-352
    35 Ropponen T. Actuation redundancy in a closed-chain robot mechanism. Ph. D. Thesis Helsinki Univ. of Technology, Espoo (Finland). Machine Design Lab. 1993
    36 Kock S, Schumacher W. Control of a fast parallel robot with a redundant chain and gear boxes: experimental results. Robotics and Automation IEEEInternational Conference on. 2000, 2: 1924-1929
    37 Craig J J, Hsu P, Sastry S S. Adaptive control of mechanical manipulators. The International Journal of Robotics Research. 1987, 6(2): 16
    38 Sirouspour M R, Salcudean S E. Nonlinear control of hydraulic robots[J]. IEEE Transactions on Robotics and Automation. 2001, 17(2): 173-182
    39 Berghuis H, Nijmeijer H. A passivity approach to controller-observer design for robots. IEEE Transactions on Robotics and Automation. 1993, 9(6): 740-754
    40 De Wit C C, Slotine J. Sliding observers for robot manipulators. Automatica. 1991, 27(5): 859-864
    41 Lee S H, Song J B, Choi W C, et al. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Mechatronics. 2003, 13(6): 605-619
    42徐东光,董彦良,吴盛林,等.液压驱动Stewart平台非线性自适应控制器设计.机械工程学报. 2007, 43(3): 223-227
    43郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制.液压与气动. 2004(10): 38-40
    44傅绍文,姚郁.带有逆向力补偿的Stewart平台自适应鲁棒控制.电机与控制学报. 2007, 11(1): 88-92
    45方浩,周冰.基于层迭CMAC网络的6-DOF机器人自适应控制.机器人. 2001, 23(4): 294-299
    46吴军,李铁民,关立文.飞行模拟器运动平台的计算力矩控制.清华大学学报:自然科学版. 2006, 46(8): 1405-1408
    47何景峰,谢文建,韩俊伟.六自由度并联机器人输出解耦控制.哈尔滨工业大学学报. 2006, 38(3): 395-398
    48陈立国,荣伟彬,孙立宁,等.显微视觉结合光功率检测的光纤耦合方法.光电工程. 2005, 32(4): 42-44
    49于波,刘荣,宗光华.基于双目视觉的光纤定位研究.机器人. 2003, 25(4): 296-299
    50 Mobarhan K S, Hagenbuechle M, Heyler R. Fiber to Waveguide Alignment Algorithm. Google Patents, 2000
    51 Miyazaki K. Method for aligning laser diode and optical fiber. Google Patents, 2001
    52 Mizukami M, Hirano M, Shinjo K. Simultaneous alignment of multiple optical axes in a multistage optical system using Hamiltonian algorithm. Optical Engineering. 2001, 40: 448
    53 Lu Z, Chen P, Lin W. Optimization of Hamiltonian algorithm for fiber alignment by simulation and experiments. Optical Engineering. 2005, 44: 75
    54 Zhang R, Shi F G. Novel fiber optic alignment strategy using Hamiltonian algorithm and Matlab/Simulink. Optical Engineering. 2003, 42: 22
    55 Zhang R, Shi F G. A novel algorithm for fiber-optic alignment automation. IEEE Transactions on Advanced Packaging. 2004, 27(1): 173-178
    56 Zhang R, Guo J, Shi F G. Fast fiber-laser alignment: beam spot-size method. Journal of lightwave technology. 2005, 23(3): 1083
    57 Murakawa M, Noda Y, Higuchi T. An automatic fiber alignment system using genetic algorithms. Systems and Computers in Japan. 2004, 35(11): 90
    58 Tseng C, Wang J. Automation of multi-degree-of-freedom fiber-optic alignment using a modified simplex method. International Journal of Machine Tools and Manufacture. 2005, 45(10): 1109-1119
    59 Nag In Kim, Chong Won Lee. High speed trackingcontrol of Stewart platform manipulator via enhanced sliding mode control. IEEE International Conference on Robotics & Automation. 1998, 3:2716-2721.
    60 Chun J, Wu Y L, Dai Y F, et al. Fiber optic active alignment method based on a pattern search algorithm. Optical Engineering. 2006, 45: 45
    61 Sui G, Chen B, Zhang X, et al. Automatic waveguide-fiber coupling system based on a multiobjective evolutionary algorithm. Applied optics. 2007, 46(30): 7452-7459
    62 Tang Z, Zhang R, Shi F G. Effects of angular misalignments on fiber-optic alignment automation. Optics Communications. 2001, 196(16): 173-180
    63 Hsu Y C, Huang W K, Sheen M T, et al. Fiber-alignment shifts in butterfly laser packaging by laser-welding technique: Measurement and finite-element method analysis. Journal of Electronic Materials. 2004, 33(1): 40-47
    64 Hsu Y C, Tsai Y C, Ho Y L, et al. A novel fiber alignment shift measurement and correction technique in laser-welded laser module packaging. Journal of Lightwave Technology. 2005, 23(2): 486
    65 Hsu Y C, He Y L. A novel fiber shift measurement technique employing an ultra high precision laser displacement meter in laserwelded laser module packaging. 2004:1903-1908
    66 Wu Y, Zhang A, Chun J, et al. Simulation and Experimental Study of Laser Hammering for Laser Diode Packaging. IEEE Transactions on Components and Packaging Technologies. 2007, 30(1): 163-169
    67杨海涛,吴宇列.基于应变电测方法的激光焊焊后偏移的检测技术.航空精密制造技术. 2007, 43(6): 19-22
    68 Yih-Tun T, Hsin-Chin S. A novel inspection of fiber post-weld-shift in butterfly laser module packaging. Advanced Packaging, IEEE Transactions on. 2005, 28(4): 713-719
    69 Hsu Y C, Tsai Y C, Hung Y S, et al. A novel post-weld-shift measurement and compensation technique in butterfly-type laser module packages. 2005, Proc. SPIE, Vol. 5877
    70 Hsu Y C, Kuang J H, Tsai Y C, et al. High yield coaxial-type laser module packages using on-line monitoring system. Optics Communications. 2007, 281: 725-731
    71 Chang W S, Na S J. Thermomechanical analyses of laser precision joining for optoelectronic components. IEEE Transactions on Components and Packaging Technologies. 2003, 26(2): 349-358
    72 Kang D H, Son K J, Yang Y S. Analysis of laser weldment distortion in the EDFA LD pump packaging. Finite Elements in Analysis & Design. 2001, 37(9): 749-760
    73 Cheng W H, Sheen M T, Wang G L, et al. Fiber alignment shift formation mechanisms of fiber-solder-ferrule joints in laser module packaging. Journal of lightwave technology. 2001, 19(8): 1177
    74 Labudovic M, Burka M, Lasertron C, et al. Finite element analysis of post-weld shift during fiber pigtail of 980 nm pump lasers. IEEE Transactions on Advanced Packaging. 2003, 26(1): 41-46
    75 Valk B, Baettig R K, Anthamatten O. Laser welding for fiber pigtailing with long-term stability and submicron accuracy. Optical Engineering. 1995, 34: 2675.
    76 Hong B Z, Burrell L G. Nonlinear finite element simulation of thermoviscoplastic deformation of C4 solder joints in high density packaging under thermal cycling. Thermal Phenomena in Electronic Systems, 1994. I-THERM IV. 'Concurrent Engineering and Thermal Phenomena'., InterSociety Conference on Washington, DC, USA: 1994
    77 Kuang J H, Sheen M T, Wang S C, et al. Post-weld-shift in dual-in-line laser package. IEEE Transactions on Advanced Packaging. 2001, 24(1): 81-85
    78 Hsu Y C, Tsai Y C, Kuang J H, et al. Postweld-shift-induced fiber alignment shifts in laser-welded laser module packages: Experiments and simulations. Journal of lightwave technology. 2005, 23(12): 4287
    79吴宇列,张爱成,解旭辉,等.光电器件激光焊接封装的建模与分析.光电子技术. 2005, 25(4): 239-243
    80 Yang Y S, Na S J. Residual stresses in laser surface hardening of large areas. Surface and Coatings Technology. 1990, 42(2): 165-174
    81张威,王春青.半导体激光器组件封装中光纤的固定方法.半导体光电. 2004, 25(2): 87-90
    82 Lin Y, Eichele C, Shi F G. Effect of welding sequence on welding induced alignment distortion in packaging of butterfly laser diode modules: Simulation and experiment. Journal of Lightwave Technology. 2005, 23(2): 615
    83 Lin Y, Liu W, Shi F G. Laser welding induced alignment distortion in butterfly laser module packages: effect of welding sequence. IEEE Transactions on Advanced Packaging. 2002, 25(1): 73
    84 Lin Y, Shi F G. Effect of welding sequence on laser-welding-induced alignment distortion in butterfly laser diode module packages. Proc. SPIE, Vol. 4997, 2003: 30-39
    85 Liu W, Lin Y, Shi F G. Welding-induced alignment distortion in DIP LD packages: effect of laser welding sequence. Proc. SPIE, Vol. 4652, 2002: 128-135
    86 Lin Y, Guo J, Shapiro A A, et al. WIAD Minimization in Butterfly Laser Module Packages: Clip Design. IEEE Transactions on Advanced Packaging. 2007, 30(3): 499-505
    87 Lou X, Wu J, Wu X. Effect of weld clip design on thermally induced angular misalignment in laser welding based optoelectronic packaging.Sensors & Actuators: A. Physical. 2007, 135(2): 580-586
    88 Hsu Y C, Tsai Y C, Kuang J H, et al. A Notch-Saddle-Compensation Technique in Butterfly-Type Laser Module Packages. Journal of Lightwave Technology. 2007, 25(6): 1594-1601
    89黄韦凯. 2.5-10Gb/s高速蝶式半导体镭射模组焊后位移之研究.国立中山大学机械与机电工程研究所硕士论文, 2003.
    90邱显桓.蝶式镭射模组焊后位移与能量损失之研究.国立中山大学机械与机电工程研究所硕士论文, 2004.
    91 Lin Y, Shi F G. Minimization of welding-induced alignment distortion in butterfly laser module packages: a study of laser pulse shape. Optical Engineering. 2007, 46: 4430
    92 Lin Y, Shi F G. Toward Targeted Laser Welding Optimization: Influence of Laser Pulse Shape on WIAD in Butterfly Laser Module Packages. Long Beach, CA,: 2004:14-18
    93 Fischer U H P, Krips O, Müller E, et al. Laser microwelding for fiber-chip coupling modules with tapered standard monomode fiber ends for optical communication systems. Optical Engineering. 2002, 41: 3221
    94淳静,吴宇列,李圣怡,等. LD圆柱形封装焊后位移的定向热补偿研究.光电子?激光. 2007, 17(8): 911-923
    95苑立波.光源与纤端光场.光通信技术. 1994, 18(1): 54-56
    96 Wang L A, Su C D. Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber. Journal of Lightwave Technology. 1996, 14(12): 2757-2762
    97刘金琨.滑模变结构控制MATLAB仿真.清华大学出版社, 2005
    98李磊.六自由度并联平台位置正解及控制方法研究.哈尔滨工程大学博士论文, 2008
    99 Qi Z, Mcinroy J E, Jafari F. Trajectory tracking with parallel robots using low chattering, fuzzy sliding mode controller. Journal of Intelligent and Robotic Systems. 2007, 48(3): 333-356
    100杨永刚. 6-PRRS并联机器人关键技术的研究.哈尔滨工业大学博士论文, 2008
    101 Gao W, Wang Y, Homaifa A. Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics. 1995, 42(2): 117-122
    102宋立忠,陈少昌,姚琼荟.滑模预测离散变结构控制.控制理论与应用. 2004, 21(5): 826-829
    103宋立忠,陈少昌,姚琼荟.多输入离散时间系统滑模预测控制.电机与控制学报. 2005, 9(2): 128-132
    104宋立忠,李红江,陈少昌.滑模预测离散变结构控制用于船一舵伺服系统.中国电机工程学报. 2003, 21(11): 160-163
    105 Xiao L, Su H, Chu J. Sliding mode prediction tracking control design for uncertain systems. Asian Journal of Control. 2007, 9(3): 317
    106 Xiao L, Su H, Chu J. Sliding mode prediction based control algorithm for discrete-time non-linear uncertain coupled systems. International Journal of Control. 2007, 80(10): 1616-1625
    107王洪瑞,侯增广,宋维公.并联机器人轨迹跟踪变结构控制的研究.机器人. 1995, 17(2): 65~691
    108焦晓红,方一鸣,王洪瑞.并联机器人轨迹跟踪离散变结构鲁棒控制器设计.工业仪表与自动化装置. 2001,(5): 3~51
    109焦晓红,方一鸣.液压伺服驱动的并联机器人离散滑模变结构控制.自动化与仪器仪表. 2001,93(1): 25~271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700