用户名: 密码: 验证码:
多因素作用下的力学量传感与测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力学试验,作为力学学科的重要研究手段和组成部分,始终以从被试对象或现象中获取并提炼能够反映其客观现象本质的信息为终极目标。力学现象本质信息的提取过程就是一个在繁杂力学环境中去伪存真,去粗取精的过程。力学试验的成败则取决于力学信息获取的手段和方法、力学信息的表征、力学信息的分析与应用以及试验过程中的人为因素。
     随着社会经济和科学技术的飞速发展,一方面,力学试验涉及领域快速扩展,复杂程度不断提升。另一方面,研究与工程实际的需求对试验精度和实验数据的可靠性不断的提出新的挑战。如何在实验中提高测试精度,改进和创新测试方法,从而有效减少和消除来自整个测试过程的误差和失误还有众多问题亟待解决。特别是在多因素作用下的复杂力学量传感和测试、测量信息的不确定度控制以及有效信息的加工与应用是一项具有极强科学意义和现实意义的工作。
     本文以力学测量综合误差控制和力学信息的提取与应用为主线,对金属材料力学性能测试中的变形测试精度问题、高拉扭比复合载荷作用下的多维力传感器设计问题,生物力学中本构实验现存的若干困难的应对方法以及“部件”层次的各种力学量测试的方法,基于力学特征量采集与识别方法等若干多因素作用下力学量传感与测量问题进行了广泛的探讨。具体的工作和成果包括:
     ①探讨了力学测试技术中最重要的两个被测量:力和变形量的传感及测试方法。对在标准试验中最常用的电阻应变式变形传感器——电子引伸计的设计与制造,特别是弹性体及传感臂在结构的设计和材料的选择上作了深入的分析。为了消除试验中偏心拉伸所带来的影响,设计了一种高精度的双侧电子引伸计。同时利用理论分析以及有限元数值模拟方法,系统地研究了在金属标准拉伸实验中,上下夹具偏心对变形测量结果带来的影响,并对变形测量中出现的变形值“反走”这一特殊的现象出现的机理做出了分析与验证。
     ②针对薄壁微管拉扭试验中载荷测量的特殊需求,研制了一种基于薄梁拉——弯变形的对称一体化结构的高拉扭载荷比复合式传感器,解决了拉扭传感器在这一特殊应用下诸多精度问题,满足了试验要求,为类似的高拉扭比载荷传感器的设计提供了具有参考价值的设计实例。
     ③在生物力学交叉学科中的实验领域,针对生物软组织在本构实验中分层分束,含水性高,常规夹持易受损等问题,设计了一种适用于生物软组织材料的冷冻夹持夹具,并结合所设计的膝关节前交叉韧带的分束张力测量的部件试验,实践了混合数值——实验的材料参数反推识别方法,在生物材料的参数获取和修正上取得了良好的效果。
     ④面向生物识别领域设计了一种基于“力感知”键盘的力学特征量的生物学特征识别方法,这种方法利用了人员的击键施力行为,结合按键力度力学特征量的传感、采集以及特征数据的存储等,进而对力学特征信号的时变特征采用曲线形态特征判别分析的方法,对不同人员之间以及同一人员在不同状态下的施力行为进行了识别。
     文章最后对本文工作进行了总结和展望,提出了几个可深入研究的方向。
Mechanical testing is an important research means and components of mechanical discipline. The final goal is to obtain and extract information which can reflect the nature of the test subject or phenomenon. The extration of mechanical phenomenon nature is a process from complex mechanical environment. The success of the mechanical test depends on the means and methods of mechanical information, the characterization of mechanical information, the analysis and application of mechanical information and human factors during the test.
     With the rapid develoment of socio-economic and scientific technology, on the one hand, the areas and complexity of mechanical tests are increasing rapidly. On the other hand, the research and engineering requires much more accuracy and reliability of experiment. There are many issues to be resolved such as improvement the precision of the expriment and the testing methods. And effectively reduce and eliminate errors from the entire testing process. It is a very scientific and pratical study including complex mechanical quantity sensing and testing, uncertainty of measurement controling and effective information application.
     In this paper, the research follows the integrated error control and information extraction and application of mechanical testing. The paper researches deep into the precision of the deformation test methods; the design of special torsion/tension load cell; constitutive experimental and mechanical quantity testing of biomechanics; mechanical quantities feature recognition and so on. The detailed work and outcomes are as following:
     ①It discussed the two most important measured quantities of mechanical testing techniques: force and deformation. And a deep analysis carried out for the most common strain of a deformation sensor in the standard test - electronic extensometer, particularly in the choice of materials and the design of structure. In order to eliminate the impact of the eccentric tensile, a two-side high-precision electronic extensometer was designed. At the same time, the impact of upper and lower clamp’s offset to deformation was systematic studied by using theoretical analysis and finite element method in the metal standard tensile test. The reversal phenomenon of electronic extensometer was analyzed and verified.
     ②A load cell with large ratio of tensile traction to torque is developed for biaxial tension-torsion test of thin-walled microtubes, which is based on the separation of tensile / bending deformation of 4 symmetrically distributed thin strips, on each of which there is a hole in the middle. It solve a lot of problems in this particular application, and meet the need of test requirements. It provides a valuable example for similar sensor design of low-torque / high-tensile.
     ③The biological soft tissue is delamination and multi-bundle fasciculi, high water content, easily damaged by conventional clamping. Aiming at the problems of bio-mechanics constitutive experiment, a freezing clamp was designed for the biological soft tissue. Combining the anterior cruciate ligament tension measurement experiment, a mixed numerical-experimental method for identify the constitutive parameters was carried out. A good result was achieved in parameters acquisition and correction.
     ④A new mechanical characteristics recognition method of biological feature was designed. It uses the keystroke actions, combined with the sense of keystroke mechanical characteristics, data acquisition and features storage. The time-varying characteristics of the signal intensity were analyzed by morphological characteristics curve analysis method. The identification between different people and different states of keystroke behavior was put in practice.
引文
[1] S.特摩辛柯,J.盖尔,胡人礼译,材料力学[M],科学出版社,1978.
    [2] J.阿费里尔,实验应力分析手册[M],机械工业出版社,1988.
    [3] (英)切克兰德(Checkland, P.),系统论的思想与实践[M],华夏出版社,1990.8.
    [4]刘智敏,不确定度原理[M],中国计量出版社,1993.6.
    [5]国家质量技术监督局计量司,测量不确定度评定与表示指南[M],中国计量出版社,2000.1.
    [6]龙琪,钢筋抗拉强度不确定度分析及其应用[J],山西建筑,2006,32(11):145-146.
    [7] Wu H. C. and Rummler D. R. Analysis of Misalignment in the Tension Test[J], J. of Eng, Mat. And Tech. rans of ASME, 1979, 101: 68-74.
    [8] Rilem Draft Recommendation. Tension Testing of Metallic Materials for determining Stress-strain Relations under Monatomic and Uniaxial Tensile Loading[J], Materials and Structures, 1990,23(133): 35-46.
    [9]蔡增伸,王振林,自动消除载荷偏心影响的引伸计研究[J],1996,11(4),501-506.
    [10]孙宏,钢管板状试样拉伸试验存在问题的探讨[J],焊管,2002,25(5),54-55, 62.
    [11]梁新邦,弓形电子引伸计的固有非线性分析[J],理化检验——物理分册,1991,27(5),89-93.
    [12]乌显义,施纪泽,试验机的负荷——位移测量系统,机械工业出版社[M],1985.
    [13]施纪泽,金保森等,高精度应变式引伸计的研究[J],实验力学,1994,9(1),56-62.
    [14]姜振球,曾海燕等,金属材料拉伸试验的误差分析[J],重庆师范学院学报(自然科学版),1998,15,106-108.
    [15] Nardone V. C., Prewo K. M., Tensile performance of Carbon-Fiber-Reinforced Glass[J], J Mater Sci, 1988, 23(2): 168-180.
    [16]刘茂臣,殷建军等,拉伸试验用引伸计应变示值误差计算方法的探讨[J],物理测试,2001,5,32-35.
    [17]张云龙,熊攀,试验机夹具的施力不均匀对弹性模量测定结果的影响[J],试验技术与试验机,2007,4,34-37.
    [18]胡国华,艾彦等,双侧和单侧电子引伸计的比较[J],理化检验——物理分册,2006,42(7),351-354.
    [19] Stelios Kynakides, Edmundo Corona. Collapse of UOE Pipe Under External Pressure[J]. Mechanics of Offshore Pipelines, 2007,1:161-163.
    [20] M Okatsu, etal. Metallurgical and Mechanical Features of X100 Linepipe Steel[J]. Pacifico Yokohama, Aoolication&Evaluation of High-Grade Linepipes in Hostile Environments, pipedreamer’s conference[C]. Japan, 7-8 November, 2002: 263-271.
    [21] Shoemaker, A.K., The effects of plate stress-strain behavior and piremaley varmbles on the yield strength of large-diameter DSAW line pipe[J], lour. eng. Matand Technol,1984, (10): 19-26.
    [22] G Palumbo, L Tricarico. Effect of forming and calibra-tion operations on the final shape of large diameter wel-ded tubes[J]. Journal of Materials Processing Technol-ogy, 2005: 121-126.
    [23]杜百平,油(气)管用钢板的包辛格效应[J],机械工程材料,2006,30(2):13-15.
    [24] Francesea CamPabadal, Josep Lluis Carrera, Enrie Cabruja. Flip-chip packaging of piezoresistive pressure sensors[J]. Sensor and Actuators A, 2006,(132): 415-419.
    [25] Yong Liu, Zeliang Xie, Jan Van Humbeeck. Cyclic deformation of NiTi shape memory alloys[J]. Materials Science and Engineering, 1999.237: 673-678.
    [26] Socie D.F., Marquis G.B., Multi-axial fatigue[M], Warrendale: Society of Automotive Engineers, 2000.
    [27]李玲,赵子龙等,NiTi合金材料力学性能的测试与分析[J],太原理工大学学报,2002.33(1):13-15.
    [28] M.Wagner, J. Richter, J. Frenzel et al. Design of a medical non-linear drilling device: The influence of twist and wear on the fatigue behavior of NiTi wires subjected to bending rotation[J]. Materials Science and Engineering Technology, 2004,35(05): 320-325.
    [29] M. Grujicic, Y. Zhang. Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J]. Materrals Science and Engineering, 1998.251: 64-76.
    [30] Xiaodong Li, Xinnan Wang, Wei-Che Chang, Yuh J. Chao, Effect of tensile offset angles on micro/nanoscale tensile testing[J], REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76(9): 339-348.
    [31] Huang Dayan, Qian Wenxue, Tang Ling, Zhang Wenjia, Yin Xiaowei, Error Simulation Analysis of Gripping Deviation of Plate Specimen Tensile Test Based on Finite Element Method[J], 2009 Second International Conference on Information and Computing Science, 2009: 240-243.
    [32] G. G. Portnov, V. L. Kulakov and A. K. Arnautov, A refined stress-strain analysis in the load transfer zone of flat specimens of high-strength unidirectional composites in uniaxial tension[J], Mechanics of Composite Materials, 2007, 20(6): 503-506.
    [33] V. L. Kulakov, Yu. M. Tarnopol’skii, A. K. Arnautov, J. Rytter, Stress-strain state in the zone of load transfer in a composite specimen under uniaxial tension[J], Mechanics of Composite Materials, 2004,38(2): 91-100.
    [34]赵现朝,金振林,六维鼠标中力矩与转角转换的一种新方法[J],计算机工程,2002.28(07):32-34.
    [35] Hartung, Winfried, Gensheimer, Valentin. System for measuring the engagement pressure between cylinders of a printing press[P]. United States Patent, Patent No. 4625568, Date of Patent: 1986,12.
    [36] Stuart, O. Keith. Force and torque measurement system[P]. United States Patent, Patent No. 4998441, Date of Patent: 1991,3.
    [37] Grant, P. Andris, Ballantyne, J. William. Force moment sensor[P]. United States Patent, Patent No. 5295399, Date of Patent: 1994,3.
    [38]杨怿,李佑斌,苏英群,电子引伸计应变测量误差来源分析[J],物理测试,2006.7,50-52.
    [39]郑文龙,引伸计与变形测量范围[J],试验技术与试验机,2006.3,25-30.
    [40]赵元,拉伸试验的同轴度分析[J],工程与实验,2008增刊,22-25.
    [41]胡国华,唐亮,艾彦,电子引伸计的“反走”现象[J],理化检验-物理分册,2009.45,586-587.
    [42] Carlos García Garinoa, Finite element simulation of the simple tension test in metals[J], Finite element in analysis and design, 2006.42, 1187-1197.
    [43]张福学,现代实用传感器电路[M],北京:中国计量出版社,1997.
    [44]余瑞芳,传感器原理[M],北京:航空工业出版社,1995.
    [45]黄贤武,传感器原理及应用[M],成都:电子科技大学出版社,1999.
    [46]李庆扬,王能超,易大义,数值分析[M],武汉:华中理工大学出版社,2000.
    [47] P.C. Waston, S.H. Drake. Method and Apparatus for Six Degree of Freedom Force Sensing[P]. 1978,US4094192.
    [48] V.Scheinman. Design of a Computer Controlled Manipulator[M]. M.S.Thesi. Mechanical Engineering Dept, Standford University, 1969.
    [49] A.F.Fernandez, F.Berghmans, B.Brichard, et al. Multi-Component Force Sensor Based on Multiplexed Fiber Bragg Grating Strain Sensors. http://www.sckcem.be/sckcen_en.
    [50] Y.Hatamuta. Multi-Axis Load Sensor[P]. 1984, EP139307.
    [51] G.A.Folchi, G.L.Shelton. Six Degree of Freedom Force Translation for a Manipulator System[P]. 1976, US3948093.
    [52] T.Yoshikawa, T.Miyazaki. A Six-Axis Force Sensor with Three-Dimension Cross-Shape Structure[J]. IEEE, 1989: 249-255.
    [53] H.Eguchi, H.Yamazaki, J.Takahashi, et al. Multi-Axis Force Sensor Using Piezoresistors and a Plate-Like Structure. IEEE Catalog Number: 88TH0234-5: 563-568.
    [54]刘正士,陆益民,陈晓东等,一种机器人多轴力传感器弹性体有限元分析[J],机械设计,1998,12(12):12-14.
    [55]王晓华,薛实福,李庆祥等,用有限元法对原子力显微镜力传感器结构优化的研究[J],光学精密工程,1998,6(1):37-41.
    [56] J.Xia, C.L.Zhang. Finite Element Dynamie Analysis of Spatial Parallel Mechanisms[J]. Chinese Joumal of Mechanieal Engineering, 1999, 12(3):224-229.
    [57] J. B. Jonker. A Finite Element Dynamic Analysis of Flexible ManiPulators[J]. International Journal of Roboties Researeh, 1990, 9(4): 59-74.
    [58]官章全,唐晓卫,Visua1C++6.0编程实例详解[M],北京:电子工业出版社,1999.
    [59]杨义勇,王延利等,车辆荷重动态检测系统的传感器设计及有限元分析[J],仪表技术与传感器,2006.12: 4-8.
    [60]于海祥,武建华等,对矩形截面杆弹性自由扭转的探讨[J],力学与实践,2007.29(2):73-74.
    [61]关志东,Yang Chihdar,复合材料管接头拉扭作用下胶层应力分析[J],2004.21(3):96-100.
    [62]贾宏光,吴一辉等,高精度微扭矩动态测试仪[J],仪器仪表学报,2006.21(3):233-239.
    [63]万德安,章阳宁,航天微型扭杆高精度扭矩传感器的设计[J],仪表技术与传感器,2004.2:1-2.
    [64]赵均海,孙家驹,小信号医用传感器的设计及应用[J],生物医学工程学杂志,2004.21(6):1003-1005.
    [65]秦岗,曹效英等,新型四维腕力传感器弹性体的有限元分析[J],传感技术学报,2003.9:238-241.
    [66]冯平,程涛,形状记忆合金微管专用拉扭实验系统的研制[J],机电工程技术,2007.36(06):20-22.
    [67]万德安,章阳宁等,一种高精度扭矩传感器结构的设计与分析[J],机械工程师,2003.11:39-41.
    [68]梁桥康,宋全军等,一种新型结构机器人的四维指力传感器设计[J],中南大学学报(自然科学版),2009.40(1):115-120.
    [69]万德安,鲍凌霞等,一种新型扭矩传感器的设计与刚度分析[J],仪器仪表与检测,2005.9:77-79.
    [70]干方建,刘正士等,一种应变式多维力传感器的优化设计[J],传感器与微系统,2007.26(1):56-59.
    [71]孟凡勇,孟立凡等,应变测试信号处理电路设计[J],电子测试,2009.9:74-77.
    [72]张新,费业泰,应变式全剪切三维加速度传感器的设计[J],中国机械工程,2007.10:8:58-62.
    [73] Korbinian Kunz, Peter Enoksson, Goran Stemme. Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors[J]. Sensor and Actuators A, 2001.92: 156-160.
    [74]王志厚,尚学军,应变式传感器弹性体的选材及热处理[J],传感器世界,1998.2:37-39.
    [75]肖国领,电阻应变式传感器生产工艺分析[J],传感器世界,1996.11:32.
    [76]尚德广,蔡能,陈建华等,高温拉扭比例与非比例加载下循环特性研究[J],机械强度,2006.26(S1): 28-31.
    [77]关志东,Yang Chihdar,复合材料管接头拉扭作用下胶层应力分析[J],复合材料学报,2004.21(3): 96-101.
    [78] Vigen Arakelian, Sébastien Briot, Simultaneous inertia force/moment balancing and torque compensation of slider-crank mechanisms[J], Mechanics Research Communications, 2010.3: 265-269.
    [79]王昌喜,杨先军,徐强等,基于三维加速度传感器的上肢动作识别系统[J],传感技术学报,2010.23(6),816-819.
    [80]王永善,贺志荣,王启等,Ti-Ni形状记忆合金性能及应用研究进展[J],热加工工艺,2009.20(7): 18-21.
    [81] Koyu Abe, Yusuke Tanida, Atsushi Konno, A Directional Deflection Sensor Beam for Very Small Force/Torque Measurement [J], Proceedings of the 2003 IEEE/RSJ, Intl. Conference on Intelligent Robots and Systems, Las Vegas, Nevada. October, 2003, 1056-1061.
    [82] Richard G. Budynas, Advanced Strength And Applied Stress Analysis[M], McGraw-Hill Book Company, 1977.
    [83]于海祥,武建华,李仁佩,对矩形截面杆弹性自由扭转的探讨[J],力学与实践,2007.29(2): 73-74.
    [84]陈卫东,董艳茹,朱奇光等,基于PVDF的三维机器人触觉传感器有限元分析[J],传感技术学报,2010.23(3): 336-340.
    [85] G. S. Kim, J. J. Park, Development of the 6-axis force/moment sensor for an intelligent robot’s gripper[J], Sensor and Actuators, 2005.118(7), 127-134.
    [86]梁桥康,宋全军,葛运建,一种新型结构机器人的四维指力传感器设计[J],中南大学学报(自然科学版),2009.40(S1),115-120.
    [87] Wanmin Han, William L. Cleghorn, Vibration analysis of pre-stressed pressure sensors using finite element method[J], Finite Elements in Analysis and Design, 1998.30, 205-217.
    [88]杨义勇,王延利,王人成等,车辆荷重动态检测系统的传感器设计及有限元分析[J],仪器仪表学报,2006.12,4-5,8.
    [89] Sugawara. Sumio, Yamakawa. Masaki, Kudo. Finite element analysis of sensitivity of frequency-change force sensor[J], Journal of Applied Physics (Ultrasonic Electronics), 2009.12(7): 236-255.
    [90] Li. Yanjie, Piao. Linhua, Analysis on mechanism of effect of acceleration sensor bythree-dimensional finite element method[J], Applied Mechanics and Materials, 2010.6(2), 575-579.
    [91]韩雪松,杨柳,郭林,ACL对膝关节胫骨内外旋转稳定性控制作用的初步研究[J],现代生物医学进展,2007. 21 (7): 2692-1694.
    [92]欧阳云飞,杨柳等,一种新型软组织冷冻夹头的实验研究[J],第三军医大学学报,2007, 29(11): 1087-1089.
    [93]邓国勇,田联房等,基于关节机器人的人体脊柱生物力学试验装置设计[J],医用生物力学,2008.23(6):446-453.
    [94]郭林,杨柳,杨昌棋,赵仕志,唐亮,韩雪松[J],四象限分区法用于前交叉韧带多纤维束动态受力分析[J],医用生物力学,2007.22(4):356-360.
    [95]施广德,董世纯等,电测法在人体新鲜骨骼应变测量中的应用[J],中国生物医学工程学报,1985.4(3):148-153.
    [96]刘天庚,电测法及其在运动生物力学中的应用[J],体育教学与科学,1982.1:63-68.
    [97]刘天庚,电测法及其在运动生物力学中的应用(续)[J],体育教学与科学,1982.3:54-61.
    [98]马洪顺,郭维勤等,应变电测技术在生物力学中的应用探讨[J],试验技术与试验机,1988.04:18-22,36.
    [99]韩雪松,杨柳,郭林,杨昌棋,唐亮,杨滨,谢峰,ACL对膝关节胫骨内、外旋转稳定性控制作用的初步研究[J],现代生物医学进展,2007.7(11):1692-1694.
    [100]许硕贵,张春才,骨科生物力学测试技术及其意义[J],生物医学工程与临床,2002.6(4):232-235.
    [101] Gabrielle Whan, John Phillips, et cal, Development and testing of a modular strain measurement clip[J], Journal of Biomechanics, 2003.36: 1669-1674.
    [102] A.Jain, R. Bolle, S. Pankanti, Introduction to Biometrics[M]. In Biometrics. Personal Identification in Networked Society. Kluwer Academic Publishers, 2003, 1-41.
    [103] S. Gaines, W. Lisowski, S. Press, and S. Shapiro, Authentication by Keystroke Timing: Some Preliminary Results[J], Rand Report, 1980.6: 25-36.
    [104] Dan L, Hong G, Zhang LY, A Fuzzy C-Means Clustering Algorithm Based on Nearest-Neighbor Intervals for Incomplete Data[J], Expert Systems with Applications, 2010,37: 6942-6947.
    [105] Enzhe Yu, Sungzoon Cho, Keystroke Dynamics Identity Verification-Its Problems and Practical Solutions[J], Computers & Security, 2004,23(11): 428-440.
    [106] Jae Kun Shim, Mark L.Latash, Vladimir M.Zatsiorsky. The Human Central Nervous System Needs Time to Organize Task-Specific Covariation of Finger Forces[J]. Neuroscience Letters, 2003,53(3): 72-74.
    [107] Jean-Christophe Buisson, Jean-Charles Quinton, Internalized Activities[J], New Ideas in Psychology, 2010,28(4): 312-323.
    [108] James G. Phillips, Rowan P. Ogeil, Alcohol Influences the Use of Decisional Support[J], Psychopharmacology, 2010,208(12): 603-611.
    [109] Lisa M.Vizer, Linazhou, Andrewsears, Automated Stress Detection Using Keystroke and Linguistic Features: An Exploratory Study[J], Int. Human-Computer Studies, 2009,67(4): 870–886.
    [110] Hyoung-Joo Lee, Sungzoon Cho, Retraining a Keystroke Dynamics-Based Authenticator with Impostor Patterns[J], Computers & Security, 2007,26(7): 300-310.
    [111] Jugurta R. Montalvao Filho, Eduardo O, Freire, On the Equalization of Keystroke Timing Histograms[J], Pattern Recognition Letters, 2006,27(9): 1440–1446.
    [112] Pin Shen Teh, Andrew Beng Jin Teoh, et cal, Keystroke dynamics in password authentication enhancement[J], Expert Systems with Applications, 2010.21(4): 256-264.
    [113]吕玉增,彭启民等,基于参数化求和不变量与特征重整的形状匹配[J],中国图象图形学报,2010.15(1):122-128.
    [114]梁娟,王晅等,基于差别子空间的用户击键特征识别[J],计算机工程,2007.33(11):204-205,221.
    [115]张大海,汪增福,基于多特征的在线签名认证方法[J],模式识别与人工智能,2009,22(6):903-907.
    [116]张治元,田国忠,基于击键韵律的身份认证模型设计与实现[J],计算机应用,2009,29(10):2799-2801.
    [117]林菡,张侃,语音情绪识别的应用和基础研究[J],人类工效学,2009,15(2):64-66.
    [118]马希钦,杨昌棋,唐亮,混合数值——实验方法识别人工晶体本构模型参数[J],力学学报,2011, 43(1):1-5.
    [119]梁家林,金属材料力学性能试验结果的不确定度评定[J],公路交通科技(应用技术版),2008,07:59-62.
    [120]龙琪,钢筋抗拉强度不确定度分析及应用[J],山西建筑,2006,32(11):145-146.
    [121]唐韵,1MN力基准机力值不确定度评估及量值对比验证[J],中国测试,2011,37(1):31-34.
    [122] HOU Yulei, YAO Jiantao, Development and Calibration of a Hyperstatic Six-Component Force/Torque Sensor[J], CHINESE JOURANL OF MECHANICAL ENGINEERING, 2009, 22(4): 505-512.
    [123]刘京诚,李彦刚等,基于虚拟仪器的多维力传感器静态标定系统研究[J],传感器与微系统,2010,29(11):86-89.
    [124]马丙辉,卢泽生,小型微力传感器的研制[J],机械工程学报,2006,42(5):227-230.
    [107] Jean-Christophe Buisson, Jean-Charles Quinton, Internalized Activities[J], New Ideas in Psychology, 2010,28(4): 312-323.
    [108] James G. Phillips, Rowan P. Ogeil, Alcohol Influences the Use of Decisional Support[J], Psychopharmacology, 2010,208(12): 603-611.
    [109] Lisa M.Vizer, Linazhou, Andrewsears, Automated Stress Detection Using Keystroke and Linguistic Features: An Exploratory Study[J], Int. Human-Computer Studies, 2009,67(4): 870–886.
    [110] Hyoung-Joo Lee, Sungzoon Cho, Retraining a Keystroke Dynamics-Based Authenticator with Impostor Patterns[J], Computers & Security, 2007,26(7): 300-310.
    [111] Jugurta R. Montalvao Filho, Eduardo O, Freire, On the Equalization of Keystroke Timing Histograms[J], Pattern Recognition Letters, 2006,27(9): 1440–1446.
    [112] Pin Shen Teh, Andrew Beng Jin Teoh, et cal, Keystroke dynamics in password authentication enhancement[J], Expert Systems with Applications, 2010.21(4): 256-264.
    [113]吕玉增,彭启民等,基于参数化求和不变量与特征重整的形状匹配[J],中国图象图形学报,2010.15(1):122-128.
    [114]梁娟,王晅等,基于差别子空间的用户击键特征识别[J],计算机工程,2007.33(11):204-205,221.
    [115]张大海,汪增福,基于多特征的在线签名认证方法[J],模式识别与人工智能,2009,22(6):903-907.
    [116]张治元,田国忠,基于击键韵律的身份认证模型设计与实现[J],计算机应用,2009,29(10):2799-2801.
    [117]林菡,张侃,语音情绪识别的应用和基础研究[J],人类工效学,2009,15(2):64-66.
    [118]马希钦,杨昌棋,唐亮,混合数值——实验方法识别人工晶体本构模型参数[J],力学学报,2011, 43(1):1-5.
    [119]梁家林,金属材料力学性能试验结果的不确定度评定[J],公路交通科技(应用技术版),2008,07:59-62.
    [120]龙琪,钢筋抗拉强度不确定度分析及应用[J],山西建筑,2006,32(11):145-146.
    [121]唐韵,1MN力基准机力值不确定度评估及量值对比验证[J],中国测试,2011,37(1):31-34.
    [122] HOU Yulei, YAO Jiantao, Development and Calibration of a Hyperstatic Six-Component Force/Torque Sensor[J], CHINESE JOURANL OF MECHANICAL ENGINEERING, 2009, 22(4): 505-512.
    [123]刘京诚,李彦刚等,基于虚拟仪器的多维力传感器静态标定系统研究[J],传感器与微系统,2010,29(11):86-89.
    [124]马丙辉,卢泽生,小型微力传感器的研制[J],机械工程学报,2006,42(5):227-230.
    [140] Laermann KH, Recent developments and further aspects of experimental stress analysis in the Federal Republic of Germany and Western Europe[J], Experimental Mechanics, 1981,21: 49-57.
    [141] Laermann KH, Hybrid analysis of plate problems[J], Experimental Mechanics, 1981,21: 386-388.
    [142] Cardon AH, Sol H, Wilde DWP, et al., Mixed numerical-experimental techniques: past,present and future. Recent Advances in Experimental Mechanics[M], Kulwer Academic Publishers, Netherlands, 2002, 551-560.
    [143] Woo SLY, Kobayashi AS, Schlegel WA, et al., Nonlinear material properties of intact cornea and sclera[J], Experimental Eye Research, 1972,14(1):29-39.
    [144]方如华,王冬梅,瓷修复体界面断裂行为的模拟实验研究[J],力学季刊,2002,23(3): 302-310.
    [145] Gabriel MT, Wong EK, Woo SL, et al. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads[J]. J Orthop Res, 2004, 22(1): 85-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700