用户名: 密码: 验证码:
阿拉伯木聚糖的功能性质及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全麦食品富含膳食纤维、维生素、矿物质及多种植物营养素。经常食用全麦食品会降低多种慢性病的发生率。全麦食品中全麦面包是西方国家首选的主食,是补充膳食纤维及多种营养素的最佳途径。在我国,由于全麦面包结构粗糙,消费者接受程度差,因而消费量受到极大的限制。面筋蛋白、阿拉伯木聚糖(Arabinoxylan,AX)及它们之间的相互作用对全麦面团的流变性质和全麦面包品质有很大影响。因此研究AX的功能性质,能改善全麦面包质构,提高民众健康水平,具有重要的理论意义和实用价值。本论文以全麦面粉为原料,优化水不溶性阿拉伯木聚糖(Water unextractable arabinoxylan,WUAX)的提取工艺,制得高纯度的水溶性阿拉伯木聚糖(Water extractable arabinoxylan,WEAX)和WUAX;研究了WEAX及WUAX的氧化胶凝机理以及AX与面筋蛋白之间的相互作用;研究了氧化酶在实际体系中的应用。
     从全麦粉中提取纯化得到纯度较高的WEAX,相对重均分子质量为414,459。其单糖组成为阿拉伯糖42.60%,木糖51.55%,葡萄糖3.89%,甘露糖1.96%。FA含量较低为0.25%。
     采用Ba(OH)2提取WUAX,优化了提取工艺。碱提WUAX预处理结果发现高压蒸煮法可提高WUAX的提取率及提取物中WUAX的含量。Ba(OH)2提取WUAX的最佳工艺条件为:料液比1:188,提取温度63℃,提取时间3h,提取率为31.60%;方差分析结果显示各因素对提取率影响的模型显著(P<0.05),提取温度的平方项对提取率的影响高度显著(P<0.001);最佳工艺条件下得到的提取物中WUAX含量为92.09%。
     采用毛细管黏度法测定漆酶(laccase,LAC)与氧化酶体系POX/H2O2体系、LOX/LA体系及化学氧化剂KBrO3、ADA、BPO及过硫酸铵对AX粘度的影响,结果表明LAC较其他两种氧化酶体系和四种化学氧化剂更有效的作用于AX,使AX黏度明显增加。添加氧化酶前后,WEAX和WUAX的重均相对分子质量分布测定结果表明,加入氧化酶后WEAX和WUAX的重均相对分子质量均增加,且WUAX增加更明显。加入LAC时,重均相对分子质量增加最为明显。这说明LAC催化AX氧化交联能力较强。加入LAC后,AX中阿魏酸(Ferulic acid,FA)含量降低较明显,证明在LAC的作用下,更多的FA参与了氧化交联。在AX和LAC混合体系中加入游离的FA,反应1h后经反相高效液相色谱法(RP-HPLC)测定混合物中游离FA的含量,结果表明,游离的FA,在LAC的作用下,参与形成聚合物,因此WEAX在LAC的作用下可通过FA产生氧化交联。在AX和LAC混合体系中加入富马酸时,WEAX及WUAX溶液中FA浓度与未加入富马酸时FA浓度下降速度差别不大。说明富马酸不参与LAC催化的AX的氧化交联反应。而加入香草酸时,溶液中FA较未加入时降低速度明显加快。且随香草酸浓度的增大,FA降低速度加快。说明加入香草酸对AX的氧化交联反应有影响。进而证明了AX的氧化交联中心为酚羟基而非双键。
     采用蠕变试验与小振幅振荡动态流变性质的测定相结合,研究WEAX和WUAX对面筋蛋白黏弹性的影响,结果表明面筋蛋白(gluten)、面筋蛋白与WEAX混合体系(G-WEAX)及面筋蛋白与WUAX的混合体系(G-WUAX)当NaCl浓度为4.0%(w/v)时,面筋蛋白、G-WEAX黏弹性最大;G-WUAX在NaCl浓度为3.0%(w/v)时弹性最大,在NaCl浓度为4.0%(w/v)时黏度最大。当加水量为50%时,面筋蛋白及G-WEAX和G-WUAX混合体黏弹性最佳。WEAX和WUAX可显著提高面筋蛋白的黏弹性。加入WEAX和WUAX后,面筋蛋白的LMWG中自由巯基的数量明显减少,这是面筋蛋白黏弹性增大的原因之一。
     采用荧光各向异性法研究了AX对醇溶蛋白和麦谷蛋白荧光各向异性的影响,结果表明,麦谷蛋白中加入AX,其各向异性值显著提高,说明AX与麦谷蛋白分之间存在相互作用。
     采用13C NMR法研究AX和面筋蛋白的相互作用,结果表明麦谷蛋白中加入WEAX时化学位移δ为136.5和128.8ppm的吸收峰(归属于芳香烃类化合物),分别向低场强方向移动至137.6ppm和129.9ppm;当加入WUAX时,化学位移δ为136.5和128.8ppm的吸收峰也分别向低场强方向移动至137.8ppm和130.1ppm。对于醇溶蛋白,当加入WEAX或WUAX时,未发现化学位移的变化。结果表明AX与面筋蛋白的相互作用主要是由AX分子侧链上的阿魏酸与麦谷蛋白分子上的酪氨酸基团相互作用引起的。
     采用小振幅动态流变试验测定面团的黏弹性,面包体积测定、感官评定法与质构测定法相结合对面包品质进行综合评价,并对面包进行了贮存试验,结果表明LAC可提高普通面团和全麦面团的黏弹性,对全麦面团的作用更强。全麦面包的比容普遍小于普通面包,全麦面包中加入LOX和LAC能显著增加全麦面包的比容,并以LAC提高比容最为明显。当加入LAC时,评分员对全麦面包切面的组织结构、口感的评分的平均值较对照面包提高较大,说明LAC对全麦面包质构的改善作用最明显,且能改善全麦面包的风味。质构测定结果表明当加入LOX和LAC的普通面包硬度较对照面包减小。加入LAC的面包弹性增大和硬度降低较明显。说明LAC对全麦面包质构的改善作用最强。面包贮存过程中面包心硬度的变化和面包中水分含量的变化测定表明,加入LAC的全麦面包经贮存7天后硬度变化较小,水分下降速度较全麦面包对照面包明显减慢,说明LAC可明显延长面包的老化时间。
Whole meal foods are rich in dietary fiber, vitamin, minerals and various phytonutrients. Regular consumption of whole meal food will reduce the incidence of multiple chronic diseases. Whole meal bread as the staple food in western countries, is the best way to supplement the dietary fiber and a variety of nutrients. In our country, the coarse structure of whole meal bread leads to poor acceptance of the consumer and tremendous restrictions of the consumption. Gluten protein, arabinoxylan (AX) and their interactions have great influence on rheological properties of the whole meal dough and quality of the whole meal bread. The texture of whole meal bread can be improved and national health can be siginificantly enhanced by studying the functional properties of AX, which has important theoretical and practical value.
     In this paper, whole wheat flour was used as material, the extraction process of water unextractable arabinoxylan (WUAX) was optimized, and the high purity water extractable arabinoxylan (WEAX) and WUAX was obtained. The oxidative gelation mechanism of WEAX and WUAX as well as the interaction between gluten protein and AX was studied.
     The relative weight-average molecular weight of extracted WEAX is 414, 459 and WEAX is composed of 42.60% of arabinose, 51.55% of xylose, 3.89% of glucose and 1.96% of mannose. WEAX contains 0.25% of ferulic acid (FA), which play an important role in the functional properties of WEAX. The pretreatment results of extraction of WUAX by Ba(OH)2 showed that high-pressure treatment can increase extracion yield of the WUAX and content of WUAX in the extract as well. The optimum conditions of extracting WUAX by Ba(OH)2 are as follows: WUS (the water unextractable substance that removed protein and starch):Ba(OH)2 is 1:188(w/v), the extraction temperature is 63°C, the extraction time is 3h, the extraction rate is 31.60%. Variance analysis showed that the yield factors model was significant (P<0.05), and the square of the extraction temperature highly significant (P<0.001). Under optimum conditions, WUAX contents in the extract is 92.09%.
     Laccase (LAC) increase the viscosity of AX more obviously comparing with POX/H2O2, LOX/LA and chemical oxidants KBrO3, azodicarbonamide(ADA), benzoyl peroxide (BPO) and (NH4)2S2O8. When added LAC, the average weight molecular weight increased most obviously, which indicated that LAC can catalyze oxidation crosslinking more efficiently. By adding LAC, the FA of AX decreased more, which indicated that more FA involved in the oxidative cross-linking of AX. The free FA was added in the mixture of AX and LAC, the content of free FA in the mixture was measured after 1 h reaction. The results show that the free FA decreased and participated in the oxiditave cross-linking of AX, which means that AX cross-link through FA. When fumaric acid was added in the mixture of AX and LAC, concentrations of FA was almost no change, which indicated that the site of oxidation of AX was not double bond of FA structure. While by adding vanillic acid, FA in the solutions reduced and and with the increasing concentration of the vanillic acid, FA reduces more. To draw a conclusion, the site of oxidative crosslinking of AX was benzene ring and not double bond.
     Studies on the effect of WEAX and WUAX on viscoelasticity of gluten by combination of creep tests and dynamic small amplitude oscillatory measurements showed that WEAX and WUAX can significantly increase the viscoelasticity of gluten. When NaCl concentration was 4.0% (w/v), gluten and gluten-WEAX mixtures (G-WEAX) showed the largest viscoelastic. The gluten-WUAX mixtures (G-WUAX) showed the maximum elasticty at 3.0% (w/v) NaCl concentration and the maximum viscosity at 4.0% (w/v) NaCl concentration.The viscoelasticity of gluten, G-WEAX and G-WUAX reached the maximum at 50% water level. The free sulfhydryl of LMWG obviously reduced by adding WEAX and WUAX, which is one of the reason that the viscoelasticity gluten was increased by adding WEAX and WUAX.
     The fluorescence anisotropy measurements of gliadin and glutenin by adding AX showed that anisotropy value of glutenin significantly increased when AX was add in, indicating that AX interacted with glutenin.
     The ineractions of gluten proteins and G-AX determined by 13C NMR spectrum showed that the glutenin absorption peaks at chemical shift (δ) 136.5 and 128.8ppm (both were the absorption peaks of benzene ring) shifted to 137.6ppm and 129.9ppm, respectively by adding WEAX and shifted to 137.8ppm and130.1ppm, respectively by adding WUAX. For gliadin, there was no chemical shift by adding WEAX or WUAX. The results indicated that AX interacted with glutenin by covalently bond FA to tyrosine of glutenin.
     Studies on the effect of LAC, POX/H2O2 and LOX/LA on dough rheological properties showed that LAC most significantly improved the ordinary and the whole meal dough viscoelasticity and more significantly improved the viscoelasticity of the latter. The results of synthetically evaluation of the quality of ordinary bread and whole meal bread showed that the volume of whole meal bread is less than ordinary bread. When added to LOX and LAC, the volume of whole meal bread was significantly increased, and more obviously increased by adding LAC. When added by LAC, the average score of organizational structure of the bread section, mouth feeling and flaver of the whole meal bread increased more than that of the control, which means LAC can obviously improve texture of whole meal bread.
     Elasticity and hardness measurements showed that by adding LOX and LAC hardness of ordinary bread and whole meal bread reduced and elasticity increased comparing with control with LAC leading to more hardness reduce and elasticity increase. When adding LAC, changes of hardness and water content of whole meal bread and ordinary bread was the least.
引文
[1] Hoseney R.C. Principles of cereal science and technology [M]. 2nd ed. American Association Cereal Chemists, Inc. St. Paul, Minnesota, USA. (1994) pp 1-13, 213-227.
    [2]李里特,江正强,卢山.焙烤食品工艺学[M].中国轻工出版社, 2000,北京.
    [3]陈慧,张进萍,陆娅,等.应用超微粉碎技术制备全麦粉[J].粮食与油脂, 2008, 8: 8-11.
    [4] Liu R.H. Whole grain phytochemicals and health [J]. Journal of Cereal Science. 2007, 46: 207-219.
    [5] Liu R.H. Health benefits of fruits and vegetables are from additive and synergistic combination of phytochemicals [J]. American Journal of Clinical Nutrition. 2003, 78: 517-520.
    [6] Liu R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action [J]. Journal of Nutrition. 2004, 134, (34): 79-85.
    [7] Slavin J.L. Mechanisms for the impact of whole grain foods on cancer risk [J]. Journal of the American College of Nutrition. 2000, 19: 300-307.
    [8] Liu S., Willett W.C., Manson J.E., et al. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women [J]. American Journal of Clinical Nutrition. 2003, 78(5): 920-927.
    [9] McKeown N.M., Meigs J.B., Liu S., et al. Carbohydrate nutrition, insulin resistance and the prevalence of the metabolic syndrome in the framingham offspring cohort [J]. Diabetes Care. 2004, 27(2): 538-546.
    [10] van Dam R.M., Hu F.B., Rosenberg L., et al. Dietary calcium and magnesium major food sources and risk of type 2 diabetes in U.S. Black women [J]. Diabetes Care. 2006, 29(10): 2238-2243.
    [11] Liu S., Manson J.E., Stampfer M.J., et al. A prospective study of whole grain intake and risk of type 2 diabetes mellitus in US women [J]. American Journal of Public Health. 2000, 90: 1409-1415.
    [12] Zeisel S.H. Is there a new component of the Mediterranean diet that reduces inflammation [J]. American Journal of Clinical Nutrition. 2008, 87(2): 277-278.
    [13] Tsai C.J., Leitzmann M.F., Willett W.C., et al. Long-term intake of dietary fiber and decreased risk of cholecystectomy in women [J]. American Journal of Gastroenterology. 2004, 99(7):1364-1370.
    [14] Cade J.E., Burley V.J., Greenwood D.C. Dietary fibre and risk of breast cancer in the UK women's cohort study [J]. International Journal of Epidemiology. 2007, 24: [Epub ahead of print].
    [15] Suzuki R., Rylander-Rudqvist T., Ye W., et al. Dietary fiber intake and risk of postmenopausal breast cancer defined by estrogen and progesterone receptorstatus--a prospective cohort study among Swedish women [J]. International Journal of Cancer. 2008, 122(2): 4003-4012.
    [16] Jacobs D.R., Slavin J., Marquart L. Whole grain intake and cancer: a review of literature [J]. Nutrition and Cancer. 1995, 22: 221-229.
    [17] Tabak C., Wijga A.H., de Meer G., et al. Diet and asthma in Dutch school children (ISAAC-2) [J]. Thorax. 2006, 61(12): 1048-1053.
    [18] Johnsen N.F., Hausner H., Olsen A., et al. Intake of whole grains and vegetables determines the plasma enterolactone concentration of Danish women [J]. Journal of Nutrition. 2004, 134(10): 2691-2697.
    [19] Anderson J.W., Hanna T.J., Peng X., et al. Whole grain foods and heart disease risk [J]. Journal of the American College of Nutrition. 2000, 19(3):291-299.
    [20] Erkkila A.T., Herrington D.M., Mozaffarian D., et al. Cereal fiber and whole-grain intake are associated with reduced progression of coronary-artery atherosclerosis in postmenopausal women with coronary artery disease [J]. American Heart Journal. 2005, 150(1): 94-101.
    [21] Goldberg R.J., Ciampa J., Lessard D., et al. Long-term survival after heart failure: a contemporary population-based perspective [J]. Archives of Internal Medicine. 2007, 167(5):490-496.
    [22] Cleland J.G., Loh H., Windram J, et al. Threats, opportunities, and statins in the modern management of heart failure [J]. European Heart Journal. 2006, 27(6): 641-643.
    [23] DjousséL., Gaziano J.M. Breakfast cereals and risk of heart failure in the physicians' health study I [J]. Archives of Internal Medicine. 2007, 67(19): 2080-2085.
    [24] Http://www.whfoods.com/genpage.php?tname=foodspice&dbid=66
    [25] USDA (2005) US Department of Agriculture. Department of health and human services. Nutrition and your health: dietary guidelines for Americans. Washington, DC.
    [26] USDHHS, 2000. US Department of Health and Human Services, public health service. Office of disease prevention and health promotion healthy people 2010: Volumes I and II. US Government Printing Office, Washington, DC.
    [27] British nutrition foundation (2003) healthy eating: a whole diet approach.
    [28] Australian government, department of health and ageing (1998), the Australian guide to healthy eating.
    [29] NHMRC (2003). National health and medical research council.
    [30] DGE, German nutrition society (2005) 10 guidelines of the German Nutrition Society (DGE) for a wholesome diet.
    [31] Khatkar, B.S., Bell, A.E. and Schofield, J.S. The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality [J]. Journal of Cereal Science. 1995, 22: 29-44.
    [32]朱小乔,刘通讯.面筋蛋白及其对面包品质的影响[J].食品科学. 2001,22: 90-93.
    [33] Janssen, A.M., van Vliet, T., Vereijken, J.M. Rheological behaviour of wheat glutens at small and large deformations. Effect of gluten composition [J]. Journal of Cereal Science. 1996, 23: 33-42.
    [34] Thomson N.H., Miles M.J., Popineau Y., et al. Small angle X-ray scattering of wheat seed-storage proteins:α-,γ- andω-gliadins and the high molecular weight (HMW) subunits of glutenin [J]. Biochimica et Biophysica Acta. 1999, 1430: 359-366.
    [35] Shewry P.R. and Tatham A.S. Disulphide Bonds in Wheat Gluten Proteins [J]. Journal of Cereal Science. 1997, 25: 207-227.
    [36] Khatkar B.S., Fido R.J., Tatham A.S., et al. Functional properties of wheat gliadins. II. Effects on dynamic rheological properties of wheat gluten [J]. Journal of Cereal Science. 2002, 35: 307-313.
    [37]孟宪刚,谢放,尚勋武.面筋蛋白与小麦品质关系的研究进展[J].中国粮油学报. 2006, 1(21): 33-36.
    [38] Wieser H., Bushuk W., & MacRitchie F. The polymeric glutenins. In: Wrigley C., Bekes F., Bushuk W. (Eds.). Gliadin and glutenin: the unique balance of wheat quality [M]. Paul St. American Association of Cereal Chemistry, 2006, pp. 213-240.
    [39] Wieser H., Kieffer R. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale [J]. Journal of cereal Science. 2001, 34: 19-27.
    [40] Shewry P.R., Halford N.G., & Tatham, A.S. High molecular weight subunits of wheat glutenin [J]. Journal of cereal Science. 1992, 15: 105-120.
    [41] Shewry P.R., & Tatham A. S. Disulphide bonds in wheat gluten proteins [J]. Journal of Cereal Science. 1997, 25: 207-227.
    [42] Lindsay M.P., Skerritt J.H. The glutenin macropolymer of wheat flour doughs: structure function perspectives [J]. Trends in Food Science & Technology. 1999, 10:247-253.
    [43] Shewry P.R., Sayanova O., & Tatham A.S. Structure, assembly and targeting of wheat storage proteins [J]. Journal of Plant Physiology. 1995, 145: 620-625.
    [44] Shewry P.R. & Tatham A.S. The prolamin storage proteins in cereal seeds: structure and evolution [J]. Biochemical Journal. 1990, 267: 1-12.
    [45] Khatkar B.S. & Schofield J.S. Molecular and physicochemical basis of breadmaking properties of wheat gluten proteins: A critical appraisal [J]. Journal of Food Science and Technology. 1997, 34: 85-102.
    [46] Chiruta J., van den Berg R., Hugyen, Q.D., et al. Study of the effects of starch-protein interaction on rheological properties of wheat flour doughs. In: Proceeding 47th Australian Cereal Chemistry Conference. (eds, Tarr A.W, Ross A.S., & Wrigley C.W.) RACI: North Melbourne, Australia. 1997, pp 373-377.
    [47]黄思棣.面粉蛋白质的结构和在烘焙食品中的功能[J].粮食储藏. 1988, 1: 25-30.
    [48]何承云,林向阳,郑丹丹,等.淀粉和面筋蛋白对面制品流变特性的影响[J].农产品加工学刊. 2005, 7: 21-23.
    [49] Sandsted R.M. The function of starch in the baking of bread [J]. Baker’s Digest. 1961, 35: 36-44.
    [50]王璋,许时婴,江波等译.食品化学[M].(第三版).北京:中国轻工出版社, 2003, 4: 162-166.
    [51] Miles M. J., Morris V. J., Orford, P. D., et al. The roles of amylose and amylopectin in the gelation and retrogradation of starch [J]. Carbohydrate Research. 1985, 135: 271-281.
    [52] Eliasson A.C., & Gudmundsson M. Starch: Physicochemical and functional aspects. In A.-C. Eliasson (Ed.), Carbohydrates in food [M].1996, (pp. 431–503). New York, NY: Marcel Dekker.
    [53] Bloksma A.H. Dough structure, dough rheology, and baking quality [J]. Cereal Foods World. 1990, 35: 237-244.
    [54] Eliasson A.-C., & Larsson K. Cereals in breadmaking. A molecular colloidal approach [M]. 1993, pp. 220-231. New York, NY: Marcel Dekker.
    [55] Larsson H., & Eliasson A.-C. Influence of the starch granule surface on the rheological behaviour of wheat flour dough [J]. Journal of Texture Studies. 1997, 28: 487-501.
    [56]李利民,郑学玲,姚惠源.面粉中的碳水化合物在面包烘焙食品中的作用[J].粮食与饲料工业. 2000, 9: 41-43.
    [57] Goesaert H., Brijs K., Veraverbeke W.S., et al. Wheat flour constituents: how they impact bread quality, and how to impact their functionality [J]. Trends in Food Science & Technology. 2005, 16:12-30.
    [58] Hoseney R.C. Principles of cereal science and technology (2nd ed.). Paul St., MN: Association of Cereal Chemists, Inc. 1994, (pp.81-101, 229-273).
    [59] Selvendran R.R. & Robertson J. A. The chemistry of dietary fiber: An holistic view of the cell wall matrix. In Chemical and Biological Aspects; Special Publication 83; Southgate D.A.T., Waldron K.W., Johnson I. T., et al. Royal Society of Chemistry: Cambridge, U.K., 1990, pp 23-46.
    [60] Guttieri M.J., Souza E.J., & Sneller C. Nonstarch polysaccharides in wheat flour wire-cut cookie making [J]. Journal of Agriculture and Food Chemistry. 2008, 56: 10927-10932.
    [61] Subba R. M. & Muralikrishna G. Hemicelluloses of Ragi (Finger Millet, Eleusine coracana, Indaf-15): Isolation and purification of an alkali-extractable arabinoxylan from native and malted hemicellulose [J]. Journal of Agriculture and Food Chemistry. 2006, 54: 2342-2349.
    [62] Lazaridou A., Biliaderis C.G., & Izydorczyk M.S. Cerealβ-glucans: Structures,physical properties, and physiological functions. In Biliaderis C.G. & Izydorczyk M.S. (Eds.), Functional food carbohydrates [M]. 2007, (pp. 1-72). Boca Raton:CRC Press, Taylor & Francis Group.
    [63] Bell S., Goldman V.M., & Bistrian, B.R. Effect of beta-glucan from oats and yeast on serum lipids [J]. Critical Reviews in Food Science and Nutrition. 1999, 39: 189-202.
    [64] Braaten J.T., Wood P.J., & Scott, F.W. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects [J]. European Journal of Clinical Nutrition. 1994b, 48: 465-474.
    [65] Brennan C.S., & Cleary L.J. Utilisation glucagel in the b-glucan enrichment of breads: a physicochemical and nutritional evaluation [J]. Food Research Interna- -tional. 2007, 40(2): 291-296.
    [66] Jacobs M.S., Izydorczyk M.S., Preston K.R., et al. Evaluation of baking procedures and wheat flours for incorporation of high dietary fibre barley fractions into bread [J]. Journal of the Science of Food and Agriculture. 2008, 88: 558-568.
    [67] Symons L.J., & Brennan C.S. The physicochemical and nutritional evaluation of wheat breads supplemented with (1→3) (1→4)-β-D-glucan rich fractions from barley [J]. Journal of Food Science. 2004, 69(6): 463-467.
    [68] Mann G., Leyne E., Li Z., & Morell M.K. Effects of a novel barley, Himalaya 292, on rheological and breadmaking properties of wheat and barley doughs [J]. Cereal Chemistry. 2005, 82(6): 626-632.
    [69] Ingelbrecht J. A., Verwimp T., Grobet P. J., et al. Behavior of Triticum durum desf. arabinoxylans and arabinogalactan peptides during industrial pasta processing [J] Journal of Agricultural and Food Chemistry. 2001, 49: 1783-1789.
    [70] Courtin C. M. and Delcour J. A. Arabinoxylans and endoxylanases in wheat flour bread-making [J]. Journal of Cereal Science. 2002, 35: 225-243.
    [71] Courtin C.M., Delcour J.A. Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan [J]. Journal of Cereal Science. 2001, 33: 301-312.
    [72] Biely P., Vrsanska M., Tenkanen, M., et al. Endo-α-1, 4-xylanase families: differences in catalytic properties [J]. Journal of Biotechnology. 1997, 57: 151-166.
    [73] Bonnin E., Saulnier L., Vigouroux J., et al. Potentialities of endogenous peroxydases and feruloyl esterases in wheat for modifications of arabinoxylans. In: Simoinen, T., Tenkanen, M. (Eds.), Second European symposium on Enzymes in Grain processing. Technical Research Centre of Finland (VTT), Helsinki, Finland, 1999. pp. 81-89.
    [74]李利民,侯业茂,朱永义,等.谷物戊聚糖国内外研究进展[J].粮油加工与食品机械. 2002, 5: 36-38.
    [75] Santos D. M. J., Monteiro S. R., & Silva J. A. L. Small strain viscoelastic behaviour of wheat gluten-pentosan mixtures [J]. European Food Research and Technology. 2005, 221: 398-405.
    [76] Philippes S., Barron C.C., Robert P., et al. Characterization using raman microspectroscopy of arabinoxylans in the walls of different cell types during the development of wheat endosperm [J]. Journal of Agricultural and Food Chemistry. 2006, 54: 5113-5119.
    [77] Dervilly G., Saulnier L., Roger P., et al. Isolation of homogeneous fractions from wheat water-soluble arabinoxylans. Influence of the structure on their macromole -cular characteristics [J]. Journal of Agricultural and Food Chemistry. 2000, 48: 270-278.
    [78] Dervilly-Pinel G., Thibault J.F., & Saulnier L. Experimental evidence for semi- flexible conformation for arabinoxylans [J]. Carbohydrate Research. 2001a, 330: 365-372.
    [79] Izydorczyk M.S., & MacGregor A.W. Evidence of intermolecular interactions ofβ-glucans and arabinoxylans [J]. Carbohydrate Polymers. 2000, 41(4): 417-420.
    [80] Lazaridou A., Biliaderis C.G., & Izydorczyk M.S. Cerealβ-glucans: Structures, physical properties, and physiological functions. In C.G. Biliaderis & M.S. Izydorczyk (Eds.), Functional food carbohydrates [M]. 2007, (pp. 1-72). Boca Raton: CRC Press, Taylor & Francis Group.
    [81] Saulnier L., Guillon F., Sado P.E., et al. Plant cell wall polysaccharides in storage organs: xylans (Food Applications). 2007, Elsevier, Amsterdam, the Netherlands.
    [82]郑学玲,蒋清民,李秀梅,等.小麦麸皮戊聚糖理化性质研究[J].河南工业大学学报(自然科学版). 2006, 12(27): 33-39.
    [83] Izydorczyk M.S., Chornick T.L., Paulley F.G., et al. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread [J]. Food Chemistry. 2008, 108: 561-570.
    [84] Andrewartha K.A., Phillips D.R., & Stone B.A. Solution properties of wheat flour arabinoxylans and enzymically modified arabinoxylans [J]. Carbohydrate Research. 1979, 77: 191-204.
    [85] Girhammar et al., Girhammar U., Nakaramura M., & Nair B.M. Water soluble pentosans from wheat and rye: chemical composition and some physical properties in solution. In: Philips G.O., Wedlock D.J. & Williams P.A., Editors, Gums and stabilisers for the food industry [M]. Elsevier Applied Science, London.1986, pp. 123-134.
    [86]周素梅,向波,王璋,等.小麦面粉中阿拉伯木聚糖研究进展[J].粮油食品. 2001, 9 (2): 20-22.
    [87] Fincher G.B. & Stone B.A. In‘Advances in Cereal Technology, Vol VIII (Y. Pomeranz, ed.) AACC, Paul St, Minnesota 1986, 207-295.
    [88] Gruppen H., Hoffmann R.A, & Kormelink F.J.M. Characterisation by 1H-NMR spectroscopy of enzymically derived from oligosaccharide from alkali-extractable wheat flour arabinoxylan [J]. Carbohydrate Research. 1992, 233: 45-64.
    [89] Girhammar U., & Nair B.M. Izolation, separation and characterisation water-soluble nonstarch polysaccharides from wheat and rye [J]. Food Hydrocolloids 1992, 63: 285-299.
    [90] Schooneveld-Bergmans M.E.F., Dijk Y.M. van, Beldman G., et al. Physicochemical characteristics of wheat bran glucuronoarabinoxylans [J]. Journal of Cereal Science. 1999, 29: 49-61.
    [91] Figueroa-Espinoza M.C., & Rouau X. Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans [J]. Cereal Chemistry. 1998, 75(2):259-265.
    [92] Hoseney R.C., Faubion J.M.A. Mechanism for the oxidative gelation of wheat flour water-soluble pent sans [J]. Cereal Chemistry. 1981, 58(5): 421-424.
    [93] Dervilly, G. & Rimsten, P.L. Water-extractable arabinoxylar from pearled flours of wheat,barley,rye and triticale Evidence for the presence of ferulic acid dimers and their involvement in gel formation [J]. Journal of Cereal Science. 2001, 34:207-214.
    [94] Crowe N.L., & Rasper V.F. The ability of chlorine and chlorine-related oxidants to induce oxidative gelation in wheat flour pent sans [J]. Journal of Cereal Science. 1988, 7: 283-294.
    [95] Izydorczyk M.S., Biliaderis C.G., & Bushuk W. Oxidative gelation studies water- soluble pentosans from wheat [J]. Journal of Cereal Science. 1990, 11: 153-169.
    [96] Oosterveld A., Grabber J.H., Beldman G., et al. Formation of ferulic acid dehydrodimers through oxidative cross-linking of sugar beet pectin [J]. Carbohydrate Research. 1997, 12(2): 179-181.
    [97] Ralph J., Quideau S., Grabber J.H., et al. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls [J]. Journal of the Chemical Society. Perkin Transactions. 1994, 1:3485-3498.
    [98] Parr A.J., Waldron K.W., Ng A., et al. The wallbound phenolics of Chinese water chestnut (Eleocharis dulcis) [J]. Journal of the Science of Food and Agriculture. 1996, 71: 501-507.
    [99] Waldron K.W., Parr, A.J., Ng A., et al. Cell wall esterified phenolic dimers: Identification and quantification by reverse phase high performance liquid chromatography and diode array detection [J]. Phytochemical Analysis. 1996, 7: 305-312.
    [100] Vemulapalli V., & Hoseney R.C. Glucose oxidative effects on gluten and water solubles [J]. Cereal Chemistry. 1998, 75: 859-862.
    [101]田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究. 2001, 19(4): 332-344.
    [102]王璋.食品酶学[M].北京:轻工出版社, 1990.
    [103]田其英,华欲飞.大豆脂肪氧合酶研究进展[J].粮食与油脂. 2006, 8: 6-9.
    [104] Kuhn H., Thiele B.J. The diversity ofthe lipoxygenase family many sequence data but little information on biological significance [J]. FEBS Letters.1999, 44: 7-11. 18
    [105]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用[J].植物学通报. 2003, 20 (4): 469-475.
    [106]宋安东,王艳婕,王松江,等.漆酶的分子生物学研究及其应用[J].信阳师范学院学报(自然科学版). 2004, 2: 244-248.
    [107]初华丽,梁宗琦.漆酶的潜在应用价值[J].山地农业生物学报. 2004, 23: 529-533.
    [108]丁原涛,吴晖.漆酶及其在食品工业中的应用[J].食品工业. 2004, 3: 26-27.
    [109] Cantarelli C., & Giovanelli G. White wines tabilization treatments by enzymic oxidation of polyphenol [J]. Rev Fr. Oenol. 1990, 127: 15-25.
    [110] Servil M., Stefanog D.E., Piaequadio P., et a1. Anovel method for removing phenol form grape must [J]. American Journal of Ecology and Viticulture. 2000, 51: 357-361.
    [111] Frank W., Henriette Z., Hans B., et a1. Semi-preparative isolation and physico- chemical characterization of 4-coumaroylquinic acid and phloretin-2′-xylogluco -side from laccase-oxidized apple juice [J]. LWT-Food Science and Technology. 2007, 40: 1344-1351.
    [112] Murugesan G.S., Angayarkanni J., & Swaminathan K. Effect of tea fungal enzymes on the quality of black tea [J]. Food Chemistry. 2002, 79: 411-417.
    [113] Nobuya I., Yuji Katsube, Keiichi Yamamoto, et al. Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3-O-gallate [J]. Tetrahedron. 2007, 63: 9488-9492.
    [114] Guillon F., Tranquet O., Quillien L., et al. Generation of polyclonal and monoclenal antibodies against arabinoxylans and their use for immunocyto chemical location of arabinoxylans in cell walls of endosperm of wheat [J]. Journal of Cereal Science. 2004, 40: 167-182.
    [115] Ordaz-Ortiz J.J., Guillon F., Tranquet O., et al. Specificity of monoclonal antibo -dies generated against arabinoxylans of cereal grains [J]. Carbohydrate Polymers. 2004, 57: 425-433.
    [116] Izydorczyk M.S., & MacGregor A.W. Evidence of intermolecular interactions ofβ-glucans and arabinoxylans [J]. Carbohydrate Polymers. 2000, 41: 417-420.
    [117] Vincken J.P., de Keizer A., Beldman G., et al. Fractionation of xyloglucan fragments and their interaction with cellulose [J]. Plant Physiology. 1995, 108: 1579-1585.
    [118] Lam T.B.T., Iiyama K., & Stone B.A. Determination of etherified hydroxycinna -mic acids in cell-walls of grasses [J]. Phytochemistry.1994, 36: 773-775.
    [119] Lam T.B.T., Kadoya K., & Iiyama K. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls [J]. Phytochemistry. 2001, 57: 987-992.
    [120] Iiyama K., Lam T.B.T., & Stone B.A. Covalent cross-links in the cell-wall [J].Plant Physiology. 1994, 104: 315-320.
    [122] Antoine C., Peyron S., Mabille F., et al. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran [J]. Journal of Agricultural and Food Chemistry. 2003, 51: 2026-2033.
    [123] Rhodes D.I., & Stone B.A. Proteins in walls of wheat aleurone cells [J]. Journal of Cereal Science. 2002, 36: 83-101.
    [124] Piber M., & Koehler P. Identification of dehydro-ferulic acidtyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins [J]. Journal of Agricultural and Food Chemistry. 2005, 53: 5276-5284.
    [125] [0]Izydorczyk M.S., Biliaderis C.G. & Bushuk, W. Physical properties of water- soluble pentosans from different wheat varieties [J]. Cereal Chemistry. 1991a, 68: 145-150.
    [126] Gan Z., Ellis P.R., & Schofield J.D. Mini review: Gas cell stabilisation and gas retention in wheat bread dough [J]. Journal of Cereal Science. 1995, 21: 215-230.
    [127] Kulp K., & Bechtel W.G. Effect of water-insoluble pentosan fraction of wheat endosperm on the quality of white bread [J]. Cereal Chemistry. 1963, 40: 665-675.
    [128] Courtin C.M., & Delcour J. A. Arabinoxylans and endoxylanases in wheat flour bread-making [J]. Journal of Cereal Science. 2002, 35: 225-243.
    [129] Courtin C.M., Roelants A., & Delcour J.A. Fractionation reconstitution experimentprovide insight into the role of endoxylanases in bread-making [J]. Journal of Agricultural and Food Chemistry. 1999, 47: 1870-1877.
    [130] Kim S.K., & D’Appolonia B.L. Bread staling studies. III. Effect of pentosans on dough, bread and bread staling rate [J]. Cereal Chemistry. 1977a, 54: 225-229.
    [131] Kim S.K., & D’Appolonia B.L. Effect of pentosans on the retrogradation of wheat starch gels [J]. Cereal Chemistry. 1977b, 54: 150-160.
    [132] Biliaderis C.G., Izydorczyk M.S., & Rattan O. Effect of arabinoxylans on bread making quality of wheat flours [J]. Food Chemistry, 1995, 5: 165-171.
    [1] Saulnier L., Sado P.E., Branlard G., et al. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties [J]. Journal of Cereal Science. 2007, 46 (3): 261-281.
    [2] Lam T.B.T., Iiyama K. & Stone B.A. Covalent polysaccharide-lignin interactions through cinnamic acids in plant cell walls. In‘Abstracts of XVIth International Carbohydrate Symposium’, Paris, France. 1992, pp 621.
    [3] Iiyama K., Lam T.B.T. & Stone B.A. Covalent cross-links in the cell wall [J]. Plant Physiology. 1994, 104: 315-320.
    [4] Verwimp T., Craeyveld V., Courtin C.M., and Delcour J.A. Variability in the structu -re of rye flour alkali-extractable arabinoxylans [J]. Journal of Agriculture and Food Chemistry. 2007, 55: 1985-1992.
    [5] Kim, S.K. & D’Appolonia, B.L. Note on a simplified procedure for the purification of wheat-flour pentosans [J]. Cereal Chemistry. 1976, 53: 871-873.
    [6] Izydorczyk M.S., Biliaderis C.G. Cereal arabinoxylans: advances in structure and physicochemical properties [J]. Carbohydrate Polymers. 1995, 28: 33-48.
    [7] Izydorczyk M.S., Biliaderis C.G. & Bushuk W. Comparison of the structure and composition of water-soluble pentosans from different wheat varieties [J]. Cereal Chemistry. 1991, 68: 139-144.
    [8] Izydorczyk M.S. & Biliaderis C.G. Structural heterogeneity of wheat endosperm arabinoxylans [J]. Cereal Chemistry. 1993, 70: 641-646.
    [9] Buchanan C.M., Buchanan N.L., Debenham J.S., et al. Corn fiber for the production of advanced chemicals and materials: Separation of monosaccharides and methods thereof. US Patent # 6,352,845, 2002.
    [10] Fang J.M., Sun R.C., Salisbury D., et al. Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions [J]. Polymer Degradation and Stability. 1999, 66: 423-432.
    [11] Fang J.M., Sun R.C., & Tomkinson J. Isolation and characterization of hemicellulo -loses and cellulose from rye straw by alkaline peroxide extraction [J]. Cellulose. 2000, 7: 87-107.
    [12] Bergmans M.E.F., Beldman G., Gruppen H., et al. Optimisation of the selective extraction of (Glucurono) arabinoxylans from wheat bran: use of barium and calcium hydroxide Solution at elevated temperatures [J]. Journal of Cereal Science. 1996, 23: 235-245.
    [13] Ordaz-Ortiz J.J., & Saulnier L. Structural variability of arabinoxylans from wheatflour. Comparison of water-extractable and xylanase-extractable arabinoxylans [J]. Journal of Cereal Science. 2005, 42: 119-125.
    [14]郑学玲.小麦麸皮戊聚糖的分离制备、理化性质及功能特性研究[D]: [博士学位论文].无锡:江南大学, 2002.
    [15] Gruppen H., Hamer R.J., & Voragen A.G. J. Barium hydroxide as a tool to extract pure arabinoxylans from water-insoluble cell wall material of wheat flour [J]. Jour -nal of Cereal Science. 1991, 13: 275-290.
    [16] Huisman M.M.H., Schols H.A., & Voragen A.G.J. Glucuronoarabinoxylans from maize kernel cell walls are more complex than those from sorghum kernel cell walls [J]. Carbohydrate Polymers. 2000, 43: 269-279.
    [17] Mandalari G., Faulds C.B., Sancho A.I., et al. Fractionation and characterisation of arabinoxylans from brewers’spent grain and wheat bran [J]. Journal of Cereal Science. 2005, 42: 205-212.
    [18]周素梅.阿拉伯木聚糖在烘焙制品中的功能性质的研究[D]: [博士学位论文].无锡:无锡轻工大学, 2000.
    [19]李建武.生物化学实验原理与方法[M].北京大学出版社, 1997,北京.
    [20]王璋,许时婴.食品化学[M].中国轻工出版社, 2006,北京.
    [21]徐广超.豆渣可溶性膳食纤维的制备及功能性的研究[D][:硕士学位论文].无锡:江南大学, 2005.
    [22] Figueroa-Espinoza M.C. & Rouau X. Oxidative Cross-Linking of Pentosans by a horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans [J]. Cereal Cheminstry. 1998 (75): 259-265.
    [23] Dervilly-Pinel L., Rimsten L., Saulnier R., et al. Water-extractable arabinoxylan from pearled flours of wheat, barley, rye and triticale. Evidence for the presence of ferulic acid dimers and their involvement in gel formation [J]. Journal of Cereal Science. 2001, 34: 207-214.
    [24] Fry S.C. The growing plant cell wall: chemical and metabolic analysis. Longman, Harlow (1988).
    [25]周素梅,王障,许时婴.小麦面粉中阿拉伯木聚糖研究进展[J].中国粮油学报. 2000, 6: 2-15.
    [26] Hollmann J., & Lindhauer M.G. Pilot-scale isolation of glucuronoarabinoxylans from wheat bran [J]. Carbohydrate Polymers. 2005, 59: 225-230.
    [27] Prochazka S., Mulholland M., & Lloyd-Jones A. Optimisation for the separation of the oligosaccharide, sodium pentosan polysulfate by reverse polarity capillary zone electrophoresis using a central composite design [J]. Journal of Pharmaceutical and Biomedical Analysis. 2003, 31: 133-141.
    [28] Cyran M., Courtin C.M., & Delcour J.A. Heterogeneity in the fine structure of alkali-extractable arabinoxylans isolated from two rye flours with high and low breadmaking quality and their coexistence with other cell wall components [J] Journal of Agricultulure and Food Chemistry. 2004, 52 (9): 2671-26.
    [1] Moore A.M., Hoseney.R.C. Factors affecting the oxidative gelation of wheat water-solubles[J]. Cereal Chemistry. 1990(67):76-80.
    [2] Mingwei W. Effect of Pentosans on Gluten Formation and Properties [D]. The Netherlands: ThesisWageningen University. 2003.
    [3] Ralph J., Quideau S., Grabber J. H., et al. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls [J]. Journal of Chemistry Society. Perkin Transations. 1994, 1: 3485-3498.
    [4] Parr A. J., Waldron K. W., Ng A., et al. The wallbound phenolics of Chinese water chestnut (Eleocharis dulcis) [J]. Journal of Science and Food Agriculture. 1996, 71: 501-507.
    [5] Waldron K. W., Parr A. J., Ng A., et al. Cell wall esterified phenolic dimers:Identification and quantification by reverse phase high performance liquid chromatography and diode array detection [J]. Phytochemical Analysis. 1996, 7: 305-312.
    [6]周素梅.阿拉伯木聚糖在烘焙制品中的功能性质的研究[D]: [博士学位论文].无锡:无锡轻工大学, 2000.
    [7]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用[J].植物学通报. 2003, 20 (4): 469-475.
    [8]初华丽,梁宗琦.漆酶的潜在应用价值[J].山地农业生物学报. 2004, 23: 529-533.
    [9] Minussi R.C., Gláucia M., Pastore et al. Potential applications of laccase in the food industry [J]. Trends in Food Science & Technology. 2002, 13: 205-216.
    [10] Cantarelli C., Giovanelli G. White wines tabilization treatments by enzymic oxidation of polyphenol [J]. Rev Fr. Oenol. 1990, 127: 15-25.
    [11] Servil M., Stefanog D.E., Piaequadio P., et a1. Anovel method for removing phenol form grape must [J]. American Journal of Ecology and Viticulture.2000, 51: 357-361.
    [12] Murugesan G.S., Angayarkanni J., Swaminathan K. Effect of tea fungal enzymes on the quality of black tea [J]. Food Chemistry. 2002, 79: 411-417.
    [13] Itoh N., Katsube Y., Yamamoto K., et al. Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3-O-gallate [J]. Tetrahedron. 2007, 63: 9488-9492.
    [14] Daiwa Kasei K.K. The assy method for laccase activity. P-4AA method. Amino Enzyem Inc., 1999.
    [15] Figueroa-Espinoza M.C.& Rouau X. Oxidative Cross-Linking of Pentosans by a Horseradish Peroxidase: Mechanism of Linkage Between Feruloylated Arabinoxylans [J]. Cereal Cheminstry. 1998, 75: 259-265.
    [16]邓倩莹,李立华,李毅群等.溶菌酶、过氧化氢对壳聚糖降解性能的影响[J].化学世界. 2005, 6: 338-340.
    [17]马夏军,岑颖洲,邱玉明等.超声波辅助过氧化氢氧化降解制备相对低分子质量异枝麒麟菜硫酸多糖[J].中国海洋药物杂志. 2005, 8: 10-13.
    [18] Courtin C.M., Delcour J.A. Arabinoxylans and Endoxylanases in wheat flour bread-making [J]. Journal of cereal science. 2002, 35: 225-243.
    [19] Izydorczyk, M.S., Biliaderis C.G. Cereal Arabinoxylans:Advances in Structure and Physicochemical Properties [J]. Carbohydrate Polymers. 1995, 28: 33-48.
    [20]王镜岩,朱圣庚,徐长法.生物化学第(第三版)[M].高等教育出版社, 2002,北京.
    [21]罗勤贵,欧阳韶晖.国内外面粉中食品添加剂的使用现状[J].麦类作物学报. 2002, 22 (2): 87-90.
    [22] Schooneveld-Bergmans M.E.F., Dignum M.J.W., Grabber J.H., et al. Studies on theoxidative cross-linking of feruloylated arabinoxylans from wheat flour and wheat bran [J]. Carbohydrate Polymers. 1999, 38: 309–317.
    [23] Holwerda R.A., Wherland S., and Gray H.B. Electron transfer reactions of copper proteins [J]. Annual Review of Biophysics and Bioengineering. 1976, 5: 363-396.
    [1]李里特,江正强,卢山.焙烤食品工艺学[M].中国轻工出版社, 2000,北京.
    [2] Mingwei W. Effect of pentosans on gluten formation and properties [D]. The Nether -lands: Thesis Wageningen University. 2003.
    [3]周素梅.阿拉伯木聚糖在烘焙制品中的功能性质的研究[D]. [博士学位论文].无锡:无锡轻工大学, 2000.
    [4] Michniewics J., Biliaderis C.G., & Bushuk, W. Effect of added pentosans on some properties of wheat bread [J]. Food Chemistry. 1992, 43(4): 251-257.
    [5] Courtin C.M., & Delcour J.A.. Relative activity of endoxylanases towards water- extractable and water-unextractable arabinoxylan [J]. Journal of Cereal Science. 2001, 33: 301-312.
    [6] Wang M., Vliet T.V., & Hamer R.J. How gluten properties are affected by pentosans [J]. Journal of Cereal Science, 2004, 39: 395-402.
    [7]房喻,陈道道.水溶性高分子在固/液界面上吸附行为的光物理研究进展[J].高分子通报. 2000, 6: 58-64.
    [8] Xiaohong F., Zehui C., Terry B., et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy [J]. Analytical Chemistry. 2001, 73: 5752-5757.
    [9] Weegels P.L., Marseille J.P., & Hamer R.J.. Small scale separation of wheat flour in starch and gluten [J]. Starch. 1988, 40: 342-346.
    [10]陆启玉,章绍兵.蛋白质及其组分对面条品质的影响研究[J].中国粮油学报. 2005, 6: 13-17.
    [11] Egorov T.A., Odintsova T.I., Shewry P.R., et al. Characterisation of high wheat glutenin polymers by agarose geleletrophoresis and dynamic light scattering [J]. FEBS Letters. 1998, 434: 215-217.
    [12]司学芝,李建伟,王金水,等.麦醇溶蛋白和麦谷蛋白提取条件的研究[J].郑州工程学院学报, 2004, 101(3): 33-35.
    [13] Verbruggen I.M., Veraverbeke W.S., Vandamme A., et al. Delcour. Simultaneous isolation of wheat high molecular eeight and low molecular weight glutenin subun -its [J]. Journal of Cereal Science. 1998, 28: 25-32.
    [14] Fessas D., & Schiraldi A. Interactions between arabinoxylans and wheat proteins [J]. Food Chemistry. 2003, inpress.
    [15] Stathopoulos C.E., Tsiami A.A.J., Schofield D., et al. Effect of heat on rheology, surface hydrophobicity and molecular weight distribution of glutens extracted from flours with different bread-making quality [J]. Journal of Cereal Science. 2008, 47: 134-143.
    [16] Arnosti C. Fluorescent derivatization of polysaccharides and carbohydrate-contain -ing biopolymers for measurement of enzyme activities in complex media [J]. Journal of Chromatography B. 2003, 793: 181-191.
    [17] Stathopoulosa C.E., Tsiamib A.A., et al. Effect of heat on rheology, surface hydro -phobicity and molecular weight distribution of glutens extracted from flours with different bread-making quality [J]. Journal of Cereal Science. 2007, in press.
    [18]李云飞,殷永光,金万镐.食品物性学[M].中国轻工出版社, 2005,北京.
    [19] Barnes, H. A. (2000). A Handbook of Elementary Rheology. Aberystwyth: institute of non-newtonian fluid mechanics wales: University of Wales. Steffe, J. F. 1996. Rheological methods in food process engineering. East Lansing: Freeman Press.
    [20] Dolz M., Hernández M.J., Delegido J.. Creep and recovery experimental investiga -tion of low oil content food emulsions [J]. Food Hydrocolloids. 2008, 22: 421-427.
    [21] Wang M., Robert J.H., Vliet Tv, et al. Interaction of water extractable pentosans with gluten protein: effect on dough properties and gluten quality [J]. Journal of Cereal Science. 2002, 36: 25-37.
    [22] Mondher M., Barbara R., Abdelfattah B., et al. Effects of some additives on wheat gluten solubility: A structural approach [J]. Food Chemistry. 2005, 92: 7-15.
    [23] Dupuis B., Bushuk W., & Sapirstein H. D.. Characterization of acetic acid soluble and insoluble fractions of glutenin of bread wheat [J]. Cereal chemistry. 1996, 73(1): 131-135.
    [24] Kokelaar J., van Vliet T., & Prins A.. Strain hardening properties and extensibility of flour and gluten doughs in relation to breadmaking performance [J]. Journal of Cereal Science. 1996, 24(3): 199-214.
    [25] Schofield, J.D., Bottomley, R.C., Timms M.F., et al. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions [J]. Journal of Cereal Science. 1983, 1: 241-253.
    [26] Lagrain B., Brijs K., Veraverbeke W. S., et al. The impact of heating and cooling on the physico-chemical properties of wheat gluten-water suspensions [J]. Journal of Cereal Science. 2005, 42: 327-333.
    [27] Lkowicz J. R.. Principles of Fluorescence Spectroscopy, 2nd ed: Kluwer Academic/Plenum Publishers: New York, 1999.
    [28] Minussi R.C., Pastore G.M.& DurnáN. Potential applications of laccase in the food industry [J]. Trends in Food Science & Technology. 2002, 13: 205–216.
    [1]王学东.新型酶制剂改良小麦粉烘焙品质的机理及其应用研究[D]: [博士学位论文].武汉:华中农业大学, 2003.
    [2] Baker J.C., Parker H.K., & Mize M.D. The pentosans of wheat flour [J]. Cereal Chemistry. 1943, 20: 267-280.
    [3] Lamsal B.P., Faubion J.M. Effect of an enzyme preparation on wheat flour and dough color, mixing, and test baking, LWT - Food Science and Technology [J]. 2009, doi: 10.1016/ j.lwt.2009.04.003.
    [4]周素梅.阿拉伯木聚糖在烘焙制品中的功能性质的研究[D]: [博士学位论文].无锡:无锡轻工大学, 2000.
    [5] Lante A., Crapisi A., Krastanov A., et al. Biodegradation of phenols by laccase immobilised in a membrane reactor [J]. Process Biochemistry. 2000, 36(2): 51-58.
    [6] Minussi R.C., Gláucia M., Pastore et al. Potential applications of laccase in the food industry [J]. Trends in Food Science & Technology. 2002, 13: 205-216.
    [7]严晓鹏.麸皮面包改良剂的研制[D]: [硕士学位论文].无锡:江南大学, 2007.
    [8] Guohua H., Shaohua H., Shuwen C. Effect of enrichment with hemicellulose from rice bran on chemical and functional properties of bread [J]. Food Chemistry. 2009, 115: 839-842.
    [9]张超,卢艳,黄卫宁等.面包老化抑制因素的研究[J].中国食品添加剂. 2005, 5: 26-29.
    [10]陈晨.影响面包老化因素及抗老化途径[J].粮食与油脂. 2007, 12:16-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700