用户名: 密码: 验证码:
转胶蛋白Transgelin诱导人前列腺癌细胞系LNCaP凋亡和衰老的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分观察转胶蛋白对肌动蛋白更新的影响
     研究目的
     研究转胶蛋白对肌动蛋白更新、细胞ROS水平的影响,并进一步观察其对DNA损伤传导途径和细胞衰老的影响。
     材料和方法
     将转胶蛋白转染至人前列腺癌细胞株LNCaP,检测细胞丝状肌动蛋白(F-actin)和球状肌动蛋白(G-actin)的变化,并检测细胞内ROS水平的变化。通过8-OH-dG、phospho-ATM和γH2AX免疫荧光染色观察DNA损伤情况,进一步通过Western blotting检测DNA损伤传导途径ATM (Ataxia-Telangiectasia Mutated)-Chk2 (checkpoint kinase 2)-p53的变化。
     通过Heterochromatin protein1 (HP1)免疫荧光染色、western blotting和半乳糖苷酶细胞(β-gal)化学染色等方法,观察外源性转胶蛋白和内源性转胶蛋白分别对LNCaP和MRC5细胞染色质重构及细胞衰老的影响。
     同时,通过SiRNA抑制人骨肉瘤细胞株U2OS内源性转胶蛋白的表达,观察细胞F-actin、G-actin的变化和ROS的变化。
     结果
     转染转胶蛋白至LNCaP细胞后24h,细胞F-actin增加明显,G-actin无明显变化,细胞内ROS水平升高;转染U20S细胞Si-transgelin RNA48h后,转胶蛋白水平明显下降,细胞F-actin下降,ROS水平下降。
     LNCaP转染转胶蛋白后,免疫荧光染色提示细胞核出现8-OH-dG阳性染色,phospho-ATM荧光强度增加及yH2AX簇集的增多。Western blotting提示ATM-Chk2-p53途径的激活。HP1免疫荧光染色提示LNCaP细胞转染转胶蛋白后,细胞衰老相关的异染色质簇集(Senescence-associated heterochromatin Foci, SAHF)增多,western blotting提示HP1γ表达水平上升较明显,acetyl-H3表达下降。β-半乳糖苷酶细胞化学染色提示转染转胶蛋白36h后,阳性细胞数增多。
     HP1免疫荧光染色和western blotting提示MRC5高代细胞转胶蛋白表达量较低代细胞多,同时SAHF也较低代细胞多。低代MRC5细胞转染转胶蛋白后,p-半乳糖苷酶阳性细胞增加。
     结论
     转胶蛋白通过促进LNCaP细胞F-actin聚集,可使细胞发生DNA氧化损伤和DNA断裂,激活DNA损伤信号传导通路。
     转染转胶蛋白使LNCaP细胞发生细胞衰老。
     内源性转胶蛋白和MRC5细胞衰老有关,若使MRC5过度表达转胶蛋白,可导致细胞衰老。
     第二部分观察转胶蛋白和p53之间的相互作用
     研究目的
     研究转染转胶蛋白至LNCaP细胞后,p53的表达及其分布的变化,并且研究转胶蛋白和p53之间的相互作用。
     材料和方法
     转染转胶蛋白至LNCaP细胞,在不同时间点提取全细胞裂解产物和胞浆、胞核细胞裂解产物进行western blotting检测p53表达情况,并使用转胶蛋白和p53免疫荧光染色检测p53分布情况。
     随后,我们采用哺乳类细胞双杂交和免疫共沉淀方法研究转胶蛋白和p53蛋白之间的相互作用。
     结果
     转染转胶蛋白后,Western blotting提示LNCaP细胞p53表达增加,磷酸化p53(Ser46)也相应增加;胞浆中p53增加,而胞核中p53变化不明显。转胶蛋白和p53双免疫荧光染色也提示胞浆中p53水平增加。哺乳类细胞(人前列腺癌PC-3细胞)双杂交实验提示转胶蛋白和p53相互结合,免疫共沉淀实验显示外源性、内源性转胶蛋白和p53分别在LNCaP细胞和BJ细胞(成纤维细胞)共沉淀。
     结论
     转染转胶蛋白使LNCaP细胞p53表达增高,而且p53胞浆转位增加。转胶蛋白和p53在哺乳类细胞内相互作用,并稳定p53蛋白。转胶蛋白和p53免疫共沉淀。
     第三部分转胶蛋白对p53下游基因及内源性凋亡途径的影响研究目的
     研究转胶蛋白对p53下游基因表达的影响,以及转胶蛋白诱导LNCaP细胞凋亡的机理。
     材料和方法
     转染转胶蛋白至LNCaP细胞,在不同时间点收集细胞裂解产物,使用western blotting检测PUMA (p53 upregulated modulator of apoptosis)、Bax、Bcl-2和caspase-3的表达情况,然后分别将转胶蛋白转染HCT116 p53-/-和p53+/+细胞株,western blotting检测p53下游PUMA的表达情况。最后,采用细胞计数、脱氧核苷酸末端转移酶dUTP标记方法(Terminal deoxynucleotidyl transferase dUTP nick end labeling,TUNEL)和流式细胞计数等方法观察转胶蛋白对LNCaP细胞凋亡的影响。
     结果
     转染转胶蛋白后,LNCaP细胞促凋亡因子Bax和PUMA表达量升高,而抗凋亡因子Bcl-2表达水平下降,caspase-3的表达上升。分别转染转胶蛋白至HCT116p53-/-和p53+/+细胞株,p53阴性细胞株PUMA无明显变化;而p53阳性细胞株PUMA表达升高。细胞计数提示转染转胶蛋白后细胞活力下降,TUNEL染色提示转胶蛋白导致TUNEL阳性细胞数量升高,而流式细胞计数亦提示转染转胶蛋白后早期细胞凋亡增多。
     结论
     转胶蛋白通过上调促凋亡因子(PUMA、Bax)及抑制抗凋亡因子Bcl-2诱导内源性凋亡途径的激活;而且,转胶蛋白激活PUMA的作用依赖于p53。因此,转胶蛋白激活内源性凋亡途径依赖p53的功能。细胞计数、TUNEL染色和流式细胞计数也证实了转胶蛋白诱导LNCaP细胞凋亡。
Part I Transgelin impacts turnover of actin
     Actin turnover is influenced by various actin-binding proteins (ABPs), and it confers crucial effects on cellular ROS (Reactive oxygen species) and apoptosis. Transgelin is the mammalian homologue of Scpl, which can cause inappropriate actin clumping in yeast. To address transgelin affects turnover of actin and cellular ROS in mammalian cell, human prostate cancer LNCaP cells were transfected with pCDNA3.1-transgelin or vector, followed by detecting turnover of F-actin at 24 h after transfection. Simultaneously, cellular ROS was determined by parallel experiment. We have found that ectopic expression of transgelin leads to aggregation of F-actin and increase of cellular ROS. Conversely, knocking down endogenous transgelin of U2OS cells resulted in increase of F-actin turnover and decrease of cellular ROS. To investigate the effects of transgelin on DNA damage response pathway following the induction of ROS,8-OH-dG, phospho-ATM and yH2AX immunofluorescence stained were performed. We found ectopic expression of transgelin caused oxidative stress, characterized by DNA base damage and double strand break. Western blotting indicates activation of DNA damage response, especially ATM (Ataxia-Telangiectasia Mutated)- Chk2 (checkpoint kinase2)-p53 pathway is caused by introduction of ectopic transgelin through elevation of ROS. Finally, immunofluorescence staing for heterochromatin protein 1(HP1), histochemical staing for P-galactosidase (β-gal) and western blotting were carried out to address the induction of chromatin modeling and cell senescence were caused by ectopic expression of transgelin. Our findings reveal that transgelin can lead to decrease of F-actin turnover, and induce cellular ROS, thereby activating ATM-Chk2-p53 pathway and inducing cell senescence.
     Part II Transgelin interacts with p53
     Transgelin, known as an ARA54-associated AR inhibitor, can suppress ARA54-enhaced AR transaction in LNCaP cells. Part I experiment suggests that transgelin activates DNA damage response pathway by induction of cellular ROS. In addition to these effects, we aimed to elucidate the pro-apoptotic effects of the protein on LNCaP and its underlying mechanisms, especially the interaction between transgelin and p53. Using western blotting of p53 and double immunofluorescence staining of p53 with transgelin, we have shown that transfection of transgelin resulted in increasing cytoplasmic translocation of p53 and upregulation of p53 expression. We also found an interaction between transgelin and p53 in vivo by mammalian two-hybrid. To futher confirm the interaction, we found both ectopic and endogenous transgelin coimmunoprecipitated with p53 by coimmunoprecipitation assay.
     Par tⅢEffects of transgelin on p53 downstream target and intrinsic apoptosis pathway
     The mitochondrial membrane constitutes the battleground on which pro-and anti-apoptotic factors induce or prevent apoptosis. Cytosolic p53 has function to activate intrinsic apoptosis by induction of mitochondrial outer membrane permeabilization (MOMP). PUMA (p53 upregulated modulator of apoptosis), as p53 downstream target, enhances cytosolic p53 function. Using western blotting, we found that ectopic expression of transgelin resulted in downregulation of Bcl-2, and up-regulation of PUMA and Bax, therefore triggering apoptosis. Additionally, we found the effect was dependent of functional p53 by introduction of transgelin to HCT116 p53-/- and p53+/+ cell lines. Futher, Cell counting, flow cytometric analysis and terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) assays were applied to measure the pro-apoptotic effect of transgelin. These results suggest the activation of mitochondria-associated apoptosis pathway of LNCaP cells transfected with transgelin. These results are indicative of p53-mediated mitochondria-associated apoptotic effects of transgelin on LNCaP cells in addition to its known suppressive effects on AR pathway.
引文
[1]Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M. J. Cancer statistics, 2009. CA Cancer J Clin,59:225-249,2009.
    [2]Crawford, E. D., Eisenberger, M. A., McLeod, D. G, Spaulding, J. T., Benson, R., Dorr, F. A., Blumenstein, B. A., Davis, M. A., and Goodman, P. J. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med,321:419-424,1989.
    [3]Denmeade, S. R. and Isaacs, J. T. A history of prostate cancer treatment. Nat Rev Cancer,2:389-396,2002.
    [4]Heinlein, C. A. and Chang, C. Androgen receptor (AR) coregulators:an overview. Endocr Rev,23:175-200,2002.
    [5]Kang, H. Y, Yeh, S., Fujimoto, N., and Chang, C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem,274:8570-8576,1999.
    [6]Yang, Z., Chang, Y. J., Miyamoto, H., Ni, J., Niu, Y., Chen, Z., Chen, Y. L., Yao, J. L., di Sant'Agnese, P. A., and Chang, C. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol,21:343-358,2007.
    [7]Lees-Miller, J. P., Heeley, D. H., Smillie, L. B., and Kay, C. M. Isolation and characterization of an abundant and novel 22-kDa protein (SM22) from chicken gizzard smooth muscle. J Biol Chem,262:2988-2993,1987.
    [8]Goetinck, S. and Waterston, R. H. The Caenorhabditis elegans muscle-affecting gene unc-87 encodes a novel thin filament-associated protein. J Cell Biol,127: 79-93,1994.
    [9]Ayme-Southgate, A., Lasko, P., French, C., and Pardue, M. L. Characterization of the gene for mp20:a Drosophila muscle protein that is not found in asynchronous oscillatory flight muscle. J Cell Biol,108:521-531,1989.
    [10]Lawson, D., Harrison, M., and Shapland, C. Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motil Cytoskeleton,38:250-257,1997.
    [11]Assinder, S. J., Stanton, J. A., and Prasad, P. D. Transgelin:an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol,41:482-486,2009.
    [12]Fu, Y., Liu, H. W., Forsythe, S. M., Kogut, P., McConville, J. F., Halayko, A. J., Camoretti-Mercado, B., and Solway, J. Mutagenesis analysis of human SM22: characterization of actin binding. J Appl Physiol,89:1985-1990,2000.
    [13]Danninger, C. and Gimona, M. Live dynamics of GFP-calponin:isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences. J Cell Sci,113 Pt 21:3725-3736,2000.
    [14]Gourlay, C. W. and Ayscough, K. R. The actin cytoskeleton:a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol,6:583-589,2005.
    [15]Gourlay, C. W. and Ayscough, K. R. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res,5:1193-1198,2005.
    [16]Camoretti-Mercado, B., Forsythe, S. M., LeBeau, M. M., Espinosa, R.,3rd, Vieira, J. E., Halayko, A. J., Willadsen, S., Kurtz, B., Ober, C., Evans, G. A., Thweatt, R., Shapiro, S., Niu, Q., Qin, Y, Padrid, P. A., and Solway, J. Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics,49:452-457,1998.
    [17]Green, D. R. and Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature,458:1127-1130,2009.
    [18]Kastan, M. B. Wild-type p53:tumors can't stand it. Cell,128:837-840,2007.
    [19]Wang, W. and El-Deiry, W. S. Restoration of p53 to limit tumor growth. Curr Opin Oncol,20:90-96,2008.
    [20]Isaacs, W., De Marzo, A., and Nelson, W. G. Focus on prostate cancer. Cancer Cell,2:113-116,2002.
    [21]Navone, N. M., Labate, M. E., Troncoso, P., Pisters, L. L., Conti, C. J., von Eschenbach, A. C., and Logothetis, C. J. p53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential. J Urol,161:304-308,1999.
    [22]Cohen, M. B. and Rokhlin,O.W. Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem,106:363-371,2009.
    [1]Lees-Miller, J. P., Heeley, D. H., and Smillie, L. B. An abundant and novel protein of 22 kDa (SM22) is widely distributed in smooth muscles. Purification from bovine aorta. Biochem J,244:705-709,1987.
    [2]Assinder, S. J., Stanton, J. A., and Prasad, P. D. Transgelin:an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol,41:482-486,2009.
    [3]Gourlay, C. W. and Ayscough, K. R. The actin cytoskeleton:a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol,6:583-589,2005.
    [4]Gourlay, C. W. and Ayscough, K. R. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res,5:1193-1198,2005.
    [5]Zheng, B., Han, M., Bernier, M., and Wen, J. K. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. Febs J,276: 2669-2685,2009.
    [6]Tsujimoto, Y. and Shimizu, S. The voltage-dependent anion channel:an essential player in apoptosis. Biochimie,84:187-193,2002.
    [7]Camoretti-Mercado, B., Forsythe, S. M., LeBeau, M. M., Espinosa, R.,3rd, Vieira, J. E., Halayko, A. J., Willadsen, S., Kurtz, B., Ober, C., Evans, G. A., Thweatt, R., Shapiro, S., Niu, Q., Qin, Y, Padrid, P. A., and Solway, J. Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics,49:452-457,1998.
    [8]Prinjha, R. K., Shapland, C. E., Hsuan, J. J., Totty, N. F., Mason, I. J., and Lawson, D. Cloning and sequencing of cDNAs encoding the actin cross-linking protein transgelin defines a new family of actin-associated proteins. Cell Motil Cytoskeleton,28:243-255,1994.
    [9]Winder, S. J., Jess, T., and Ayscough, K. R. SCP1 encodes an actin-bundling protein in yeast. Biochem J,375:287-295,2003.
    [10]Blagosklonny, M. V. Aging:ROS or TOR. Cell Cycle,7:3344-3354,2008.
    [11]Park, M. J., Park, J. H., Hahm, S. H., Ko, S. I., Lee, Y. R., Chung, J. H., Sohn, S. Y., Cho, Y, Kang, L. W., and Han, Y. S. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. DNA Repair (Amst),8: 1190-1200,2009.
    [12]Cowell, I. G, Sunter, N. J., Singh, P. B., Austin, C. A., Durkacz, B. W., and Tilby, M. J. gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One,2:e1057,2007.
    [13]Harper, J. W. and Elledge, S. J. The DNA damage response:ten years after. Mol Cell,28:739-745,2007.
    [14]Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J. M., Lukas, C., Orntoft, T., Lukas, J., and Bartek, J. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature,434:864-870,2005.
    [15]Toussaint, O., Dumont, P., Dierick, J.F., Pascal, T., Frippiat, C., Chainiaux, F., Sluse, F., Eliaers, F., and Remacle, J. Stress-induced premature senescence. Essence of life, evolution, stress, and aging. Ann N Y Acad Sci,908:85-98, 2000.
    [16]Zhang, R. and Adams, P. D. Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle,6:784-789,2007.
    [17]Santos-Rosa, H. and Caldas, C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer,41:2381-2402,2005.
    [18]Nielsen, A. L., Oulad-Abdelghani, M., Ortiz, J. A., Remboutsika, E., Chambon, P., and Losson, R. Heterochromatin formation in mammalian cells:interaction between histones and HP1 proteins. Mol Cell,7:729-739,2001.
    [19]Maison, C. and Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol,5:296-304,2004.
    [20]Letavayova, L., Markova, E., Hermanska, K., Vlckova, V., Vlasakova, D., Chovanec, M., and Brozmanova, J. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair (Amst),5: 602-610,2006.
    [21]Hopfner, K. P. DNA double-strand breaks come into focus. Cell,139:25-27, 2009.
    [22]Jackson, S. P. and Bartek, J. The DNA-damage response in human biology and disease. Nature,461:1071-1078,2009.
    [23]Dumont, P., Burton, M., Chen, Q. M., Gonos, E. S., Frippiat, C., Mazarati, J. B., Eliaers, F., Remacle, J., and Toussaint, O. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med,28:361-373,2000.
    [24]Nair, R. R., Solway, J., and Boyd, D. D. Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem,281:26424-26436,2006.
    [25]Yang, Z., Chang, Y. J., Miyamoto, H., Ni, J., Niu, Y., Chen, Z., Chen, Y L., Yao, J. L., di Sant'Agnese, P. A., and Chang, C. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol,21:343-358,2007.
    [1]Culig, Z. Role of the androgen receptor axis in prostate cancer. Urology,62: 21-26,2003.
    [2]Culig, Z., Klocker, H., Bartsch, G, and Hobisch, A. Androgen receptor mutations in carcinoma of the prostate:significance for endocrine therapy. Am J Pharmacogenomics,1:241-249,2001.
    [3]Vousden, K. H. and Lane, D. P. p53 in health and disease. Nat Rev Mol Cell Biol, 8:275-283,2007.
    [4]Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. p53 has a direct apoptogenic role at the mitochondria. Mol Cell,11: 577-590,2003.
    [5]Kastan, M. B. Wild-type p53:tumors can't stand it. Cell,128:837-840,2007.
    [6]Wang, W. and El-Deiry, W. S. Restoration of p53 to limit tumor growth. Curr Opin Oncol,20:90-96,2008.
    [7]Kiviharju-af Hallstrom, T. M., Jaamaa, S., Monkkonen, M., Peltonen, K., Andersson, L. C., Medema, R. H., Peehl, D. M., and Laiho, M. Human prostate epithelium lacks WeelA-mediated DNA damage-induced checkpoint enforcement. Proc Natl Acad Sci USA,104:7211-7216,2007.
    [8]Isaacs, W., De Marzo, A., and Nelson, W. G. Focus on prostate cancer. Cancer Cell,2:113-116,2002.
    [9]Navone, N. M., Labate, M. E., Troncoso, P., Pisters, L. L., Conti, C. J., von Eschenbach, A. C., and Logothetis, C. J. p53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential. J Urol,161:304-308,1999.
    [10]Girinsky, T., Koumenis, C., Graeber, T. G, Peehl, D. M., and Giaccia, A. J. Attenuated response of p53 and p21 in primary cultures of human prostatic epithelial cells exposed to DNA-damaging agents. Cancer Res,55:3726-3731, 1995.
    [11]Cohen, M. B. and Rokhlin,O. W. Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem,106:363-371,2009.
    [12]Yang, Z., Chang, Y. J., Miyamoto, H., Ni, J., Niu, Y, Chen, Z., Chen, Y. L., Yao, J. L., di Sant'Agnese, P. A., and Chang, C. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol,21:343-358,2007.
    [13]Tang, D. G. and Porter, A. T. Target to apoptosis:a hopeful weapon for prostate cancer. Prostate,32:284-293,1997.
    [14]Riley, T., Sontag, E., Chen, P., and Levine, A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol,9:402-412,2008.
    [15]Green, D. R. and Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature,458:1127-1130,2009.
    [16]Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y, and Taya, Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell,102:849-862,2000.
    [17]Koya, R. C., Fujita, H., Shimizu, S., Ohtsu, M., Takimoto, M., Tsujimoto, Y, and Kuzumaki, N. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem,275: 15343-15349,2000.
    [18]Kusano, H., Shimizu, S., Koya, R. C., Fujita, H., Kamada, S., Kuzumaki, N., and Tsujimoto, Y. Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene,19:4807-4814,2000.
    [1]Green, D. R. and Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature,458:1127-1130,2009.
    [2]Riley, T., Sontag, E., Chen, P., and Levine, A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol,9:402-412,2008.
    [3]Moll, U. M., Marchenko, N., and Zhang, X. K. p53 and Nur77/TR3-transcription factors that directly target mitochondria for cell death induction. Oncogene,25:4725-4743,2006.
    [4]Sot, B., Freund, S. M., and Fersht, A. R. Comparative biophysical characterization of p53 with the pro-apoptotic BAK and the anti-apoptotic BCL-xL. J Biol Chem,282:29193-29200,2007.
    [5]Marchenko, N. D., Wolff, S., Erster, S., Becker, K., and Moll, U. M. Monoubiquitylation promotes mitochondrial p53 translocation. Embo J,26: 923-934,2007.
    [6]Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D., and Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science,309:1732-1735,2005.
    [7]Isaacs, W., De Marzo, A., and Nelson, W. G. Focus on prostate cancer. Cancer Cell,2:113-116,2002.
    [8]Culig, Z. Role of the androgen receptor axis in prostate cancer. Urology,62: 21-26,2003.
    [9]Culig, Z., Klocker, H., Bartsch, G, and Hobisch, A. Androgen receptor mutations in carcinoma of the prostate:significance for endocrine therapy. Am J Pharmacogenomics,1:241-249,2001.
    [10]Denmeade, S. R. and Isaacs, J. T. A history of prostate cancer treatment. Nat Rev Cancer,2:389-396,2002.
    [11]Heemers, H. V. and Tindall, D. J. Androgen receptor (AR) coregulators:a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev,28:778-808,2007.
    [12]Heinlein, C. A. and Chang, C. Androgen receptor (AR) coregulators:an overview. Endocr Rev,23:175-200,2002.
    [13]Hopfner, K. P. DNA double-strand breaks come into focus. Cell,139:25-27, 2009.
    [14]Wallen, M. J., Linja, M., Kaartinen, K., Schleutker, J., and Visakorpi, T. Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol,189:559-563,1999.
    [15]Yang, Z., Chang, Y. J., Miyamoto, H., Ni, J., Niu, Y., Chen, Z., Chen, Y., L., Yao, J. L., di Sant'Agnese, P. A., and Chang, C. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol,21:343-358,2007.
    [16]Cohen, M. B. and Rokhlin, O. W. Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem,106:363-371,2009.
    [1]Lees-Miller, J. P., Heeley, D. H., Smillie, L. B., and Kay, C. M. Isolation and characterization of an abundant and novel 22-kDa protein (SM22) from chicken gizzard smooth muscle. J Biol Chem,262:2988-2993,1987.
    [2]Goetinck, S. and Waterston, R. H. The Caenorhabditis elegans muscle-affecting gene unc-87 encodes a novel thin filament-associated protein. J Cell Biol,127: 79-93,1994.
    [3]Ayme-Southgate, A., Lasko, P., French, C., and Pardue, M. L. Characterization of the gene for mp20:a Drosophila muscle protein that is not found in asynchronous oscillatory flight muscle. J Cell Biol,108:521-531,1989.
    [4]Lawson, D., Harrison, M., and Shapland, C. Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motil Cytoskeleton,38:250-257,1997.
    [5]Camoretti-Mercado, B., Forsythe, S. M., LeBeau, M. M., Espinosa, R.,3rd, Vieira, J. E., Halayko, A. J., Willadsen, S., Kurtz, B., Ober, C., Evans, G. A., Thweatt, R., Shapiro, S., Niu, Q., Qin, Y., Padrid, P. A., and Solway, J. Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics,49:452-457,1998.
    [6]Assinder, S. J., Stanton, J. A., and Prasad, P. D. Transgelin:an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol,41:482-486,2009.
    [7]Fu, Y., Liu, H. W., Forsythe, S. M., Kogut, P., McConville, J. F., Halayko, A. J., Camoretti-Mercado, B., and Solway, J. Mutagenesis analysis of human SM22: characterization of actin binding. J Appl Physiol,89:1985-1990,2000.
    [8]Danninger, C. and Gimona, M. Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences. J Cell Sci,113 Pt 21:3725-3736,2000.
    [9]Wehrens, X. H., Mies, B., Gimona, M., Ramaekers, F. C., Van Eys, G. J., and Small, J. V. Localization of smoothelin in avian smooth muscle and identification of a vascular-specific isoform. FEBS Lett,405:315-320,1997.
    [10]Lees-Miller, J. P., Heeley, D. H., and Smillie, L. B. An abundant and novel protein of 22 kDa (SM22) is widely distributed in smooth muscles. Purification from bovine aorta. Biochem J,244:705-709,1987.
    [11]Lepore, J. J., Cheng, L., Min Lu, M., Mericko, P. A., Morrisey, E. E., and Parmacek, M. S. High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22alpha-Cre transgenic mice. Genesis,41:179-184, 2005.
    [12]Gimona, M., Kaverina, I., Resch, G. P., Vignal, E., and Burgstaller, G. Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell,14:2482-2491,2003.
    [13]Nair, R. R., Solway, J., and Boyd, D. D. Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem,281:26424-26436,2006.
    [14]Yang, Z., Chang, Y. J., Miyamoto, H., Ni, J., Niu, Y., Chen, Z., Chen, Y. L., Yao, J. L., di Sant'Agnese, P. A., and Chang, C. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol,21:343-358,2007.
    [15]Shields, J. M., Rogers-Graham, K., and Der, C. J. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J Biol Chem,277:9790-9799,2002.
    [16]Wulfkuhle, J. D., Sgroi, D. C., Krutzsch, H., McLean, K., McGarvey, K., Knowlton, M., Chen, S., Shu, H., Sahin, A., Kurek, R., Wallwiener, D., Merino, M. J., Petricoin, E. F.,3rd, Zhao, Y., and Steeg, P. S. Proteomics of human breast ductal carcinoma in situ. Cancer Res,62:6740-6749,2002.
    [1]Frohlich, K. U. and Madeo, F. Apoptosis in yeast:a new model for aging research. Exp Gerontol,37:27-31,2001.
    [2]Jin, C. and Reed, J. C. Yeast and apoptosis. Nat Rev Mol Cell Biol,3:453-459, 2002.
    [3]Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., Kohlwein, S., Dawes, I., Frohlich, K. U., and Breitenbach, M. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol,39: 1166-1173,2001.
    [4]Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S., and Madeo, F. Chronological aging leads to apoptosis in yeast. J Cell Biol,164:501-507,2004.
    [5]Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol,166: 1055-1067,2004.
    [6]Gourlay, C. W. and Ayscough, K. R. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res,5:1193-1198,2005.
    [7]Gourlay, C. W. and Ayscough, K. R. The actin cytoskeleton:a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol,6:583-589,2005.
    [8]Gourlay, C. W., Carpp, L. N., Timpson, P., Winder, S. J., and Ayscough, K. R. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol,164: 803-809,2004.
    [9]Du, G., Mouithys-Mickalad, A., and Sluse, F. E. Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic Biol Med,25:1066-1074,1998.
    [10]Mandavilli, B. S., Santos, J. H., and Van Houten, B. Mitochondrial DNA repair and aging. Mutat Res,509:127-151,2002.
    [11]Broughton, B. R., Reutens, D. C., and Sobey, C. G. Apoptotic mechanisms after cerebral ischemia. Stroke,40:e331-339,2009.
    [12]Pinkoski, M. J., Waterhouse, N. J., and Green, D. R. Mitochondria, apoptosis and autoimmunity. Curr Dir Autoimmun,9:55-73,2006.
    [13]Ueda, N., Kaushal, G. P., and Shah, S. V. Apoptotic mechanisms in acute renal failure. Am J Med,108:403-415,2000.
    [14]Yang, Y., Sharma, R., Sharma, A., Awasthi, S., and Awasthi, Y. C. Lipid peroxidation and cell cycle signaling:4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol,50:319-336,2003.
    [15]Kim, H. A. and Blanco, F. J. Cell death and apoptosis in osteoarthritic cartilage. Curr Drug Targets,8:333-345,2007.
    [16]Perrone, G. G., Tan, S. X., and Dawes, I. W. Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta,1783:1354-1368,2008.
    [17]Taylor, C. T. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J,409:19-26,2008.
    [18]Winder, S. J., Jess, T., and Ayscough, K. R. SCP1 encodes an actin-bundling protein in yeast. Biochem J,375:287-295,2003.
    [19]Camoretti-Mercado, B., Forsythe, S. M., LeBeau, M. M., Espinosa, R.,3rd, Vieira, J. E., Halayko, A. J., Willadsen, S., Kurtz, B., Ober, C., Evans, G. A., Thweatt, R., Shapiro, S., Niu, Q., Qin, Y, Padrid, P. A., and Solway, J. Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics,49:452-457,1998.
    [20]Prinjha, R. K., Shapland, C. E., Hsuan, J. J., Totty, N. F., Mason, I. J., and Lawson, D. Cloning and sequencing of cDNAs encoding the actin cross-linking protein transgelin defines a new family of actin-associated proteins. Cell Motil Cytoskeleton,28:243-255,1994.
    [21]Odaka, C., Sanders, M. L., and Crews, P. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin Diagn Lab Immunol,7:947-952,2000.
    [22]Posey, S. C. and Bierer, B. E. Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. J Biol Chem,274:4259-4265,1999.
    [23]Kwiatkowski, D. J. Functions of gelsolin:motility, signaling, apoptosis, cancer. Curr Opin Cell Biol,11:103-108,1999.
    [24]Koya, R. C., Fujita, H., Shimizu, S., Ohtsu, M., Takimoto, M., Tsujimoto, Y., and Kuzumaki, N. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem,275: 15343-15349,2000.
    [25]Harms, C., Bosel, J., Lautenschlager, M., Harms, U., Braun, J. S., Hortnagl, H., Dimagl, U., Kwiatkowski, D. J., Fink, K., and Endres, M. Neuronal gelsolin prevents apoptosis by enhancing actin depolymerization. Mol Cell Neurosci,25: 69-82,2004.
    [26]Endres, M., Fink, K., Zhu, J., Stagliano, N. E., Bondada, V., Geddes, J. W., Azuma, T., Mattson, M. P., Kwiatkowski, D. J., and Moskowitz, M. A. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest,103: 347-354,1999.
    [27]Chua, B. T., Volbracht, C., Tan, K. O., Li, R., Yu, V. C., and Li, P. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol,5: 1083-1089,2003.
    [28]Utsumi, T., Sakurai, N., Nakano, K., and Ishisaka, R. C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett,539:37-44, 2003.
    [29]Mashima, T., Naito, M., and Tsuruo, T. Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene,18:2423-2430,1999.
    [30]Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T. J., Kirschner, M. W., Koths, K., Kwiatkowski, D. J., and Williams, L. T. Caspase-3-generated fragment of gelsolin:effector of morphological change in apoptosis. Science,278:294-298,1997.
    [31]Kusano, H., Shimizu, S., Koya, R. C., Fujita, H., Kamada, S., Kuzumaki, N., and Tsujimoto, Y. Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene,19:4807-4814,2000.
    [32]Tsujimoto, Y. and Shimizu, S. The voltage-dependent anion channel:an essential player in apoptosis. Biochimie,84:187-193,2002.
    [33]Xu, X., Forbes, J. G, and Colombini, M. Actin modulates the gating of Neurospora crassa VDAC. J Membr Biol,180:73-81,2001.
    [34]Rosenmund, C. and Westbrook, G. L. Calcium-induced actin depolymerization reduces NMD A channel activity. Neuron,10:805-814,1993.
    [35]Furukawa, K., Fu, W., Li, Y, Witke, W., Kwiatkowski, D. J., and Mattson, M. P. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci,17:8178-8186,1997.
    [36]Wang, Y, Mattson, M. P., and Furukawa, K. Endoplasmic reticulum calcium release is modulated by actin polymerization. J Neurochem,82:945-952,2002.
    [37]Hajnoczky, G., Csordas, G., and Yi, M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium,32:363-377,2002.
    [38]Gincel, D., Zaid, H., and Shoshan-Barmatz, V. Calcium binding and translocation by the voltage-dependent anion channel:a possible regulatory mechanism in mitochondrial function. Biochem J,358:147-155,2001.
    [39]Rolland, F., Winderickx, J., and Thevelein, J. M. Glucose-sensing and-signalling mechanisms in yeast. FEMS Yeast Res,2:183-201,2002.
    [40]Gourlay, C. W. and Ayscough, K. R. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci,118: 2119-2132,2005.
    [41]Li, J., Li, Q., Xie, C., Zhou, H., Wang, Y., Zhang, N., Shao, H., Chan, S. C., Peng, X., Lin, S. C., and Han, J. Beta-actin is required for mitochondria clustering and ROS generation in TNF-induced, caspase-independent cell death. J Cell Sci,117:4673-4680,2004.
    [42]Daniel, J. L., Molish, I. R., Robkin, L., and Holmsen, H. Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets. Eur J Biochem,156:677-684,1986.
    [43]Bernstein, B. W. and Bamburg, J. R. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci,23:1-6,2003.
    [44]Atkinson, S. J., Hosford, M. A., and Molitoris, B. A. Mechanism of actin polymerization in cellular ATP depletion. J Biol Chem,279:5194-5199,2004.
    [45]Bamburg, J. R. and Wiggan, O. P. ADF/cofilin and actin dynamics in disease. Trends Cell Biol,12:598-605,2002.
    [1]Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ 2004 Cancer statistics,2004. CA Cancer J Clin 54:8-29.
    [2]Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, Blumenstein BA, Davis MA, Goodman PJ 1989 A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Eng J Med 321:419-24.
    [3]Denmeade SR, Isaacs JT 2002 A history of prostate cancer treatment. Nat Rev Cancer 2:389-96.
    [4]Roy AK, Lavrovsky Y, Song CS, Chen S, Jung MH, Velu NK, Bi BY, Chatterjee B 1999 Regulation of androgen action. Vitam Horm 55:309-352.
    [5]Sheckter CB, Matsumoto AM, Bremmer WJ 1989 Testosterone administration inhibits gonadotropin secretion by an effect directly on the human pituitary. J Clin Endocrinol Metab 68:397-401.
    [6]McLachlan RI, Wreford NG, O'Donnell L, de Kretser DM, Robertson DM 1996 The endocrine regulation of spermatogenesis:independent roles for testosterone and FSH. J Endocrinol 148:1-9.
    [7]Keller ET, Ershler WB, Chang C 1996 The androgen receptor:a mediator of diverse responses. Front Biosci 1:d59—d71.
    [8]Chang C, Kokontis J, Liao S 1988 Molecular cloning of the human and rat complementary DNA encoding androgen receptors. Science 240:324-326.
    [9]Chang C, Kokontis J, Liao S 1988 Structural analysis of complementary DNA and amino acid sequences of the human and rat androgen receptors. Proc Natl Acad Sci USA 85:7211-7215.
    [10]Tilley WD, Marcelli M, Wilson JD, McPhaul MJ 1989 Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci USA 86:327-331.
    [11]Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM 1988 Cloning of the human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327-330.
    [12]Trapman J, Klaasen P, Kuiper GGJM, van der Korput JAGM, Faber PW, van Rooij HCJ, Geurts van Kessel A, Voorhorst MM, Mulder E, Brinkman AO 1988 Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Commun 153:241-248.
    [13]Gottlieb B, Beitel LE, Trifiro MA 2001 Variable expressivity and mutation databases:the androgen receptor gene mutations database. Hum Mutat 17:382-388.
    [14]Quigley CA, De Bellis A, Marschke KB, El-Awady MK, Wilson EM, French FS 1995 Androgen receptor defects:historical, clinical, and molecular perspectives. Endocr Rev 16:271-321.
    [15]De Bellis A, Quigley CA, Marschke KB, El-Awady M, Lane MV, Smith EP, Sar M, Wilson EM, French FS 1994 Characterization of mutant androgen receptors causing partial androgen insensitivity syndrome. J Clin Endocrinol Metab 78:513-522.
    [16]Mowszowicz I, Lee HJ, Chen HT, Mestayer C, Portois MC, Cabrol S, Mauvais-Jarvis P, Chang C 1993 A point mutation in the second zinc finger of the DNA binding domain of the androgen receptor gene causes androgen insensitivity in two siblings with receptor positive androgen resistance. Mol Endocrinol 7:861-869.
    [17]Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A 1998 Mechanisms of progesterone receptor export from nuclei:role of nuclear localization signal, nuclear export signal, and Ran guanosine triphosphate. Mol Endocrinol 12:1684-1695.
    [18]Bentel JM, Tilley WD 1996 Androgen receptors in prostate cancer. J Endocrinol 151:1-11.
    [19]McKenna NJ, Lanz RB, O'Malley BW 1999 Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321-344.
    [20]Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME 1997 Androgenic induction of prostate specific antigen is repressed by protein-protein interaction between the androgen receptor and AP-1/c-jun in the human prostate cancer cell line LNCaP. J Biol Chem 272:17485-17494.
    [21]Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, SunZ 2001 Smad 3 represses androgen-receptor mediated transcription. Cancer Res 61:2112-2118.
    [22]Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Janne OA 1996 Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271:24151-24156.
    [23]Panet-Raymand V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA 2000 Interactions between androgen and estrogen receptors and the effects on their transcriptional activities. Mol Cell Endocrinol 167:139-150.
    [24]Chen S, Wang J, Yu G, Liu W, Pearce D 1997 Androgen and glucocorticoid receptor heterodimer formation:a possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem 272:14087-14092.
    [25]Ogryzko VV, Schlitz RL, Russanova V, Howard BH, Nakatani Y 1996 The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953-959.
    [26]Yeh S, Chang C 1997 The effect of androgens and 17beta estradiol on the androgen receptor transcriptional activity in the presence of the androgen receptor coactivator ARA70 in human prostate DU145 cells. In:Waites GMH, Frick J, Baker GWH, eds. Current advances in andrology. Bologna:Monduzzi Editore; 17-22.
    [27]Ozanne DM, Brady ME, Cook S, Gaugham L, Neal DE, Robson CN 2000 Androgen receptor nuclear translocation is facilitated by the f-actin cross-linking protein filamin. Mol Endocrinol 14:1618-1626.
    [28]Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM 1995 The nuclear receptor superfamily:the second decade. Cell 83:835-839.
    [29]Chang C, Kokontis J 1988 Identification of a new member of the steroid receptor super-family by cloning and sequence analysis. Biochem Biophys Res Commun 155:971-977.
    [30]Chang C, Da Silva SL, Ideta R, Lee YF, Yeh S, Burbach JPH 1994 Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc Natl Acad Sci USA 1994:6040-6044.
    [31]Tremblay A, Tremblay GB, Labrie F, Giguere V 1999 Ligand-independent recruitment of SRC-1 to estrogen receptor through phosphorylation of activation function AF-1. Mol Cell 3:513-519.
    [32]Bunone G, Briand P-A, Miksicek RJ, Picard D 1996 Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174-2183.
    [33]Jenster G, van der Korput HAGM, Trapman J, Brinkman AO 1995 Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem 270:7341-7346.
    [34]Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P 1989 The human estrogen receptor has two independent non-acidic transcriptional activation functions. Cell 59:477-487.
    [35]Daniellian PS, White R, Lees JA, Parker MG 1992 Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11:1025-1033.
    [36]Simental JA, Sar M, Lane MV, French FS, Wilson EM 1991 Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 266:510-518.
    [37]Jenster G, van der Korput HAGM, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkman AO 1991 Domains of the androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396-1404.
    [38]Hardy DO, Scher HI, Bogenreider T, Sabbatini P, Zhang Z, Nanus DM, Catterall JF 1996 Androgen receptor CAG repeat lengths in prostate cancer:correlation with age of onset. J Clin Endocrinol Metab 81:4400-4405.
    [39]Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL 1997 Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab 82:3777-3782.
    [40]Hsiao PW, Lin D, Nakao R, Chang C 1999 The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J Biol Chem 274:20229-20234.
    [41]Gottlieb B, Vasiliou DM, Lumbroso R, Beitel LK, Pinsky L, Trifiro MA 1999 Analysis of exon 1 mutations in the androgen receptor. Hum Mutat 14:527-539.
    [42]Ahmed SF, Cheng A, Dovey L, Hawkins JR, Martin H, Rowland J, Shimura N, Tait AD, Hughes IA 2000 Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J Clin Endocrinol Metab 85:658-665.
    [43]Zhou Z, Corden JL, Brown TR 1997 Identification and characterization of a novel androgen response element composed of a direct repeat. J Biol Chem 272:8227-8235.
    [44]Schoenmakers E, Alen P, Verrijdt G, Peeters B, Verhoeven G, Rombauts W, Claessens F 1999 Differential DNA binding by the androgen and glucocorticoid receptors involves the second Znfinger and a C-terminal extension of the DNA binding domain. Biochem J 341:515-521.
    [45]Jenster G, Trapman J, Brinkmann AO 1993 Nuclear import of the androgen receptor. Biochem J 293:761-768.
    [46]Zhou Z-X, Sar M, Simental JA, Lane MV, Wilson EM 1994 A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. J Biol Chem 269:13115-13123.
    [47]Fang Y, Fliss AE, Robins DM, Caplan AJ 1996 Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem 271:28697-28702.
    [48]Bocquel MT, Kumar V, Chambon P, Gronemeyer H 1989 The contribution of the N-and C-terminal regions of the steroid receptors to activation of transcription is both receptor and cell specific. Nucleic Acids Res 17:2581-2595.
    [49]Weiss RE, Xu J, Ning G, Pohlenz J, O'Malley BW, Refetoff S 1999 Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J 18:1900-1904.
    [50]Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW 2000 The steroid receptor coactivator SRC-3 (p/CIP/RAC-3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97:6379-6384.
    [51]Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M 2000 Cofactor dynamics and sufficiency in estrogen-receptor regulated transcription. Cell 103:843-852.
    [52]Kang H-Y, Yeh S, Fujimoto N, Chang C 1999 Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem 274:8570-8576.
    [53]Miyamoto H, Rahman M, Takatera H, Kang H-Y, Yeh S, Chang H-C, Nishimura K, Fujimoto N, Chang C 2002 A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor mediated prostate cancer growth. J Biol Chem 277:4609-4617.
    [54]Yao TP, Ku G, Zhou N, Scully R, Livingston DM 1996 The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 93:10626-10631.
    [55]Hong H, Kohli K, Garabedian MJ, Stallcup MR 1997 GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17:2735-2744.
    [56]Tan J-A, Hall SH, Petrusz P, French FS 2000 Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator. Endocrinology 141:3440-3450.
    [57]Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K 1997 Specific inhibition of STAT3 signal transduction by PIAS3. Science 278:1803-1805.
    [58]Wu L, Wu H, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R 1997 Mizl, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 65:3-17.
    [59]Tan J, Hall SH, Hamil KG, Grossman G, Petrusz P, Liao J, French FS 2000 Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1) is a nuclear receptor coregulator expressed in human testes. Mol Endocrinol 14:14-26.
    [60]Moilanen A-M, Karvonen U, Poukka H, Janne OA, Palvimo JJ 1998 Activation of androgen receptor function by a novel nuclear protein kinase. Mol Biol Cell 9:2527-2543.
    [61]Willert K, Nusse R 1998-Catenin:a key regulator of Wnt signaling. Curr Opin Genet Dev 8:95-102.
    [62]Brannon M, Gomperts M, Sumoy L, Moon R, Kimelman D 1997 β-Catenin/XTcf-3 complex binds the Siamois promoter to regulate dorsal axis formation in Xenopus. Genes Dev 11:2359-2370.
    [63]Janmay PA, Stossel TP 1987 Modulation of gelsolin by phosphatidylinositol 4,5-bisphosphate. Nature 325:362-364.
    [64]Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, Mcgarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT 1997 Caspase-3 generated fragment of gelsolin:effector of morphological change in apoptosis. Science 178:294-298.
    [65]Ting H-J, Teh S, Nishimura K, Chang C 2002 Supervilin associates with androgen receptor and modulates its transcriptional activity. Proc Natl Acad Sci USA 99:661-666.
    [66]Pestonjamasp KN, Pope RK, Wulfkuhle JD, Luna EJ 1997 Supervillin (p205):a novel membrane-associated, F-actin binding protein of the villin/gelsolin superfamily. J Cell Biol 139:1255-1269.
    [67]Heinlein CA, Chang C 2001 Role of chaperones in nuclear translocation and transactivation of steroid receptors. Endocrine 14:143-149.
    [68]Zhou Z, Lane MV, Kemppainen JA, French FS, Wilson EM 1995 Specificity of ligand-dependent androgen receptor stabilization:receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol 9:208-218
    [69]Froesch BA, Takayama S, Reed JC 1998 BAG-1L protein enhances androgen receptor function. J Biol Chem 273:11660-11666.
    [70]Martin MB, Voeller HJ, Gelman EP, Lu J, Stoica EG, Hebert EJ, Danielsen M, Pentecost E, Stoica A 2001 Role of cadmium in the regulation of androgen receptor gene expression and activity. Endocrinology 143:263-275.
    [71]Abraham GE 1974 Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J Clin Endocrinol Metab 39:340-346.
    [72]Ganjam VK, Amann RP 1976 Steroids in fluids and sperm entering and leaving the bovine epididymis, epididymal tissue, and accessory sex gland secretions. Endocrinology 99:1618-1630.
    [73]Tekur S, Lau KM, Burnstein K, Ho SM 2001 Expression of RFG/ELE1α/ARA70 in normal and malignant prostatic epithelial cell cultures and lines:regulation by methylation and sex steroids. Mol Carcinog 30:1-13.
    [74]Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS 1998 Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58:5718-5724.
    [75]Chen Y, Chen PL, Chen CF, Sharp ZD, Lee WH 1999 Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus. Proc Natl Acad Sci USA 96:4443-4448.
    [76]Kim HJ, Yi JY, Sung HS, Moore DD, Jhun BH, Lee YC, Lee JW 1999 Activating signal cointegrator 1, a novel transcription coactivator of nuclear receptors, and its cytosolic localization under conditions of serum disruption. Mol Cell Biol 19:6323-6332.
    [77]Yeh S, Kang HY, Miyamoto H, Nishimura K, Chang HC, Ting HJ, Rahman M, Lin HK, Fujimoto N, Hu YC, Mizokami A, Huang KE, Chang C 1999 Differential induction of androgen receptor trans-activation by different androgen receptor coactivators in human prostate DU145 cells. Endocrine 11:195-202.
    [78]Gorlich D, Kutay U 1999 Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607-660.
    [79]Boonyaratanakornkit V, Melvin V, Prendergast P, Altmann M, Ronfani L, Bianchi ME, Taraseviciene L, Nordeen SK, Allegretto EA, Edwards DP 1998 High-mobility group proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 18:4471-7787.
    [80]Workman JL, Kingston RE 1998 Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545-579.
    [81]Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H 2001 The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J 20:4935-4943.
    [82]Huang N, vom Baur E, Gamier J-M, Lerouge T, Vonesch J-L, Lutz Y, Chambon P, Losson R 1998 Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J 17:3398-3412.
    [83]Wang X, Yeh S, Wu G, Hsu C-L, Wang L, Chiang T, Yang Y, Guo Y, Chang C 2001 Identification and characterization of a novel androgen receptor coregulator ARA267-ain prostate cancer cells. J Biol Chem 276:40417-40423.
    [84]Djakiew D 2000 Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 42:150-160.
    [85]Russell PJ, Bennett S, Stricker P 1998 Growth factor involvement in the progression of prostate cancer. Clin Chem 44:705-723.
    [86]Matsuda T, Junicho A, Yamamoto T, Kishi H, Korkmaz K, Saatcioglu F, Fuse H, Muraguchi A 2001 Cross-talk between signal transducer and activator of transcription 3 and androgen receptor. signaling in prostate carcinoma cells. Biochem Biophys Res Commun 283:179-187.
    [87]Chen T, Wang LH, Farrar WL 2000 Interleukin 6 activates androgen receptor mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 60:2132-2135.
    [88]Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai M-J, O'Malley BW 1999 The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19:1182-1189.
    [89]Ito K, Adachi S, Iwakami R, Yasuda H, Muto Y, Seki N, Okano Y 2001 N-terminally extended human ubitquitin-conjugating enzymes (E2 s) mediate the ubiquitination of RING-finger proteins. ARA54 and RNF8. Eur J Biochem 268:2725-2732.
    [90]Huibregtse JM, Scheffner M, Howley PM 1993 Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13:4918-4927.
    [91]Knudsen KE, Cavenee WK, Arden KC 1999 D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59:2297-2301.
    [92]Roderick HL, Campbell AK, Llewellyn DH 1997 Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett 405:181-185.
    [93]Iizuka M, Stillman B 1999 Histone acetyltransferase HBOI interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274:23027-23034.
    [94]Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS,Wilson EM 2001 A mechanism for androgen receptor mediated prostate cancer after androgen deprivation therapy. Cancer Res 61:4315-4319.
    [95]Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B, Balk SP 1999 Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511-5.
    [96]Miyamoto H, Yeh S, Lardy H, Messing E, Chang C 1998 Delta 5-Androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proc Natl Acad Sci USA 95:11083-11088.
    [97]Harris KA,Weinberg V, Bok RA, Kakefuda M, Small EJ 2002 Low dose ketoconazole with replacement doses of hydrocortisone in patients with progressive androgen independent prostate cancer. J Urol 168:542-5.
    [98]Hu YC, Yeh S,Yeh D, Sampson ER, Huang J, Li P, Hsu CL, Ting HJ, Lin Hk, Wang L, Kim E, Ni J, Chang C 2004 Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J Bio Chem 279:33438-46.
    [99]Fujimoto N, Yeh S, Kang HY, Inui S, Chang HC, Mizokami A, Chang C 1999 Cloning and characterization of androgen receptor coactivator,ARA55, in human prostate. J Biol Chem 274:8316-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700