用户名: 密码: 验证码:
山区风特性参数及钢桁架悬索桥颤振稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区桥梁抗风是风工程领域的难点。国内外针对山区桥梁抗风的研究很少,文献资料匮乏,桥址附近的实测气象资料也严重不足。本文针对目前桥梁抗风规范中比较薄弱山区桥梁抗风问题,以位于山区的贵州北盘江特大桥与湖北四渡河大桥所在周边地形为研究对象,开展了大型地形模拟风洞试验、桥位风观测和数值分析,探索了山区桥址风场分布规律。并在此基础上对山区桥梁的设计风速进行了合理的统计推断。并结合北盘江特大桥,对桁架加劲梁悬索桥的抗风性能开展研究。本文在理论和方法上的进步主要表现在以下几个方面:
     (1)通过一些山区桥址地形风特性试验研究和桥位风观测分析得到典型山区桥位风场的分布规律。
     (2)结合桥址地形模拟风洞试验结果,对附近气象台站的气象资料进行统计推断,提出一种确定山区桥位设计基准风速的梯度风速修正法。
     (3)基于FLUENT平台实现对山区地形风特性的CFD数值模拟。
     (4)在国内开展了桁架加劲梁悬索桥全桥气弹模型风洞试验,并在气弹模型设计中提出了一种采用单梁模拟桁架加劲梁的刚度且合理简化桁架加劲梁外衣的方法。
     (5)提出颤振发生两个必要条件:a.主梁断面气动力合力作用点位置不断左右交替偏离扭心,因此必然存在沿横桥向漂移的较大尺度的旋涡;b.旋涡沿下游漂移速度必须与断面运动速度存在相关性。
     (6)发展了用于分析大跨度桥梁气动耦合颤振方法,提出了一种实用的全模态分析方法—最小颤振频率法。
Wind-resistance of bridges in mountainous area is a difficulty in the wind engineering realm. The research on this area is deficient at home and abroad, so the relative literatures and the first hand meteorological data around the bridge sites are lack. The purpose of this paper is to solve the present problems in mountainous area which are weak in the wind-resistance code of bridges. Both the surrounding terrain around Beipan river Bridge sited in Guizhou Province and the Sidu river Bridge sited in Hubei Province are chosen for research, the wind tunnel tests of large domain terrain simulation are carried out to investigate the distribution of the wind field in mountainous area. As a result, the design wind speed of bridges located in mountainous area is reasonably deduced. On the basis of Beipan river Bridge, which is a suspension bridge with the truss stiffened girder, the wind-resistance performance of this kind of bridge is carried out by means of wind tunnel tests and numerical analysis. The progress of the dissertation in theory and method is expressed mainly as following aspects:
    (1) The distribution of wind characteristics is partially obtained through wind tunnel tests for some typical terrain around bridges sited in the mountainous area.
    (2) Depending on experimental results, a method to determine the design wind speed of bridges in mountainous area is put forward through statistically analyzing the meteorological data of the meteorological station nearby.
    (3) Numerical simulation of the wind characteristics in the large domain mountainous area is put into practice based on CFD.
    (4) The wind tunnel tests of full scale aeroelastic model of suspension bridge with
引文
[1] Toshio Miyata, Hitoshi Yamada ,Virote Boonyapinyo.Importance of wind load in buckling instability of super long cable stayed bridges, International conference A.I.P.C-F.I.P,1994:561~568.
    [2] Nagai M,Xie X,et al.Static and dynamic instability analysis of 1400 Meter long span cable stayed bridges, IABSE Symposium Kobe 1998 ,IABSE Reports, 1998,79:281~286.
    [3] Nagai M.Possibility and Limitations of Long span CablcOstayed Bridges Based on Static and Dynamic Instability Analysesl Japan, IABSE Symposium Kobe 1998, IABSE Reports, (Vol79, Kobe) 1998.
    [4] Jin Cheng, Jian-Jing Jiang, Ru-Cheng Xiao, Hal-Fan Xiang.Nonlinear aerostatie stability analysis of Jiang Yin suspension bridge, Engineering Structures 24 (2002) 773-781.
    [5] Theodorson T.General theory of aerodynamic instability and mechanism of flutter.. NACA report No.496, 1935.
    [6] Bleich F.Dynamic instability of truss-stiffened suspension bridges under wind action. Proc. ASCE 74(7), 1948, 1269-1314.
    [7] Van der Put.Rigidity of structure against aerodynamic forces. IABSE,1976.
    [8] Namini A., Albrecht P..Finite element-based flutter analysis of cable-suspended bridges. J. Structure Engineering, ASCE, 1992, 118(6), 1509-1526.
    [9] Jain, A., Jones, N.P., and Scanlan, R.H..Coupled flutter and buffeting analysis of long-span bridge·J. Structural Engineering, ASCE·1996·122(7)·716-725.
    [10] Scanlan R H..The action of flexible bridges under wind, Ⅰ :flutter theory. J. Sound and Vib., 1978, 60(2): 187-199.
    [11] Scanlan R H..The action of flexible bridges under wind, Ⅱ :buffeting theory. J. Sound and Vib., 1978, 60(2):201-211.
    [12] Gupta H., Sakar P. P., Mehta K. C.Identification of vortex-induced-response parameter in time domain. J. Engrg Mech.. Vol 122(11), 1996, 1031-1037.
    [13] C.B. Gurung., H. Yamaguchi., T. Yukino.Identification and characterization of galloping of Tsuruga test line based on multi-channel modal analysis of field data. Journal of Wind Engineering and Industrial Aerodynamics 91 (2003) 903-924.
    [14] Kiviluoma R.Coupled-mode buffeting and flutter analysis of bridge. Computers&structures, Vol 70(3), 1998. 219-228.
    [15] Liepmann H. W.On the Application of Statistical Concepts to the Buffeting Problem. J. Aeronaut. Science. 19,12, Dec. 1952, 793-800.
    [16] Davenport A. G. Buffeting of a suspension bridge by storm winds. J. Structural Division, ASCE·1962·88(ST3)·233-268.
    [17] Tanaka. H., and Davenport, A.G.Response of taut strip models to turbulent wind . J. Engineering Mechanics Division, ASCE·1982·108(EMI)·33-49.
    [18] Larsen A.Prediction of aeroelastic stability of suspension bridges during erection. J. Wind. Eng. Ind. Aerodyn. 72,1997,265-274.
    [19] Allan Larsen.Advances in aeroelastic analyses of suspension and cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 73-90.
    
    [20] Bucher, C. G and Lin. Y. K. (1988). "Effect of spanwise correlation of turbulence field on the motion stochastic stability of long-Span bridges." J. of Fluids and Structures. No.2.
    [21] Bucher, C. G and Lin, Y. K. (1990). "Effects of wind turbulence on motion stability of long-span bridges." J. of Wind Engrg. Indust. Aerodyn., Vol.36.
    [22] Scanlan R H.Problematic in formulation of wind-force model for bridge decks. J. of Struct. Engrg. ASCE 1993,119(7)1433-1446.
    
    [23] Katsuchi H., Jones N.P., and Scanlan R.H.Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge J. Structural Engineering 1999 125(1) - 60-70.
    [24] Lin Y.K.Stochastic analysis of bridge motion in large-scale turbulent winds Proc. Fifth International Conference on Wind Engineering Fort Collins, Colorado, USA July, 1979 - 2 887-897.
    [25] Lin Y.K., and Yang, J.N.Multimode bridge response to wind excitation J. Engineering Mechanics, ASCE 1983 109(2) 586-603.
    [26] Xu, Y.L., Sun, D.K., Ko, J.M., and Lin, J.H.Buffeting analysis of long span bridges: a new algorithm, Computers & Structures 1998 68 303-31.
    [27] M.Matsumoto.observed behavior of prototype cable vibration and its generation mechanism, 1998, Bridge Aerodynamics, Larsen & Esdahl (eds) Balkema, Rotterdam.
    [28] Spanos P D, Zeldin B A. Monte Carlo treatment of random fields: A broad perspective. Appl. Mech. Rev., 1998, 51(3): 219-237.
    [29] Shinozuka M, Jan C M. Digital simulation of random processes and its application. J. Sound Vibr., 1972, 25(1): 111-128.
    [30] Dijkerman R W and Mazumbar R R. Wavelet representation of stochastic processes and multiresolution stochastic models. IEEE Trans on Acoust, Speech Signal Processing, 1994,42(7): 1640-1652.
    [31] Q. Ding., P.K.K. Lee. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers and Structures 76 (2000) 787-797.
    [32] Chen, X.Z., Matsumoto, M., and Kareem.A Time domain flutter and buffeting response analysis of bridges J. Engineering Mechanics, ASCE 2000 - 126(1) 7-16.
    [33] Xu, Y.L., Sun, D.K.. Ko, J.M., and Lin, J.H.Fully coupled buffeting analysis of Tsing Ma suspension bridge J. Wind Engineering and Industrial Aerodynamics 2000 - 85(1) 97-117.
    [34] Augusti G, et al.On the time-domain analysis of wind response of structures. Journal of Wind Engineering and industrial Aerodynamics, Vol.23,1986.
    |35] Boonyapinyo V., Miyata T, Yamada H.Analysis of cable-supported bridges under wind load. Part 1 : ultimate strength
    [36] Boonyapinyo V, Miyata T, Yamada H.Analysis of cable-supported bridges under wind load. Part II: combined flutter and buffeting response in time domain.
    [37] L. Caracoglia., N.P. Jones.Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck sections. Journal of Wind Engineering and Industrial Aerodynamics 91 (2003) 371-402.
    [38] Stoyan Stoyanoff.A unified approach for 3-D stability and time domain response analysis with application of quasi-steady theory. Journal of Wind Engineering and Industrial Aerodynamics 89(2001) 1591-1606.
    [39] Xin Zhang., James Mark William Brownjohn., Piotr Omenzetter. Time domain formulation of self-excited forces on bridge deck for wind tunnel experiment. Journal of Wind Engineering and Industrial Aerodynamics 91 (2003) 723-736.
    [40] Xiang, H.F., Liu, C.H., Gu. M. Time-Domain analysis for coupled buffeting response of long span bridges. 9ICWE, 1995, New Delhi, India, 881-892.
    [41] Xinzhong Chen, Masaru Matsumoto, Ahsan Kareem, Time domain flutter and buffeting response analysis of bridges. J. Engineering Mechanics, Vol. 126(1), ASCE, 7-16.
    [42] Xinzhong Chen, Ahsan Kareem, Nonlinear response analysis of long-span bridges under turbulent winds. J. Wind Engineering and Industrial Aerodynamics, 89(2001), 1335-1350.
    [43] Cai C. S., Albrecht P., Bosch H. R., Flutter and buffeting analysis. I: finite-element and RPE solution. J. Bridge Engineering, Vol. 4(3), 1999,174-180.
    [44] Cai C. S., Albrecht P., Bosch H. R., Flutter and buffeting analysis. II: Luling and Deer Isle bridges. J. Bridge Engineering, Vol. 4(3), 1999,181-188.
    
    [45] Arakawa,S..A proposed mechanism of fall winds and dashikaze. Paper in Meteor and Geophys. 19(1)1968.
    [46] Arakawa, S.. On the Hidaka-Shimokaze-Studies on the fall wind. j.Met.Res., Tokyo, 12(1960), 911-919.
    [47] Suzuki.s. and K.Y.abuki, The air flow crossing over the mountain range. Geophys. Mag. 27( 1956),273-291.
    [48] oji Kitabayashi. Wind tunnel and field studies of stagnant flow upstream of a ridge. J.Met.Soc.Japan, 55(2), 1977.
    [49] Rushforth, J.M. and Pearce, R.P., Preliminary investigations into the air-flow over Bishop Hill.Kinross, using tail balloons, Weather,4(1960).
    
    [50] Gunn, D.M. and furmage, D.F., The effect of topography on surface wind. Mat.Mag., 105(1242), 1976.
    [51] H.K. Versteeg. W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York, 1995.
    [52] Fluent Inc., Fluent User's Guide. Fluent Inc., 2003
    [53] B. E. Launder, D.B.Spalding, Lectures in Mathematical Models of Turbulence. Academic Press, London. 1972.
    [54] L.di Mare, W.P. Jones. LES of turbulent flow past a swept fence. International Journal of Heat and Fluid Flow, 24(4): 605-615,2003.
    [55] Tamura, Yoshiyuki Ono. LES analysis on aeroelastic instability of prisms in turbulent flow. Journal of Wind Engineer and Industrial Aerodynamics, 91(12-15): 1827-1846, 2003.
    [56] Mary Ivan, Sagaut Pierre. Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 40(6): 1139-1145,2002.
    [57] Thompson J F. Thames F C. Mastin C W. Automatic numerical generation of body-fittd curvilinear coordinate system for field containing any number of arbitrary two dimensional bodyies. J Comput Phys, 1974. 15:299-319.
    
    [58] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere. Washington. 1980.
    [59] Forchtgott, J.wave streaming in the lee of mountain ridges. Bull. Met. cxech.Prague,3(1)1949.
    [60] Liou Y C. Jeng Y N. Algebraic grid ront marching methods. Numer Heat Transfer, Part B, 1995. 28:257-276
    [61] Steger J L. Chaussee D S. Generation of body-fitted coordinates using hyperbolic partial differential equations. SIAM J Sci Stat Comp. 1980. 1(4):431-437.
    [62] Thompson J F, Warsi Z U A, Mastin C W. Numerical grid generation, foundations and applications. New York: North-Holland, 1985.274.
    [63] Pirzadeh S. Structured background grids for generation of unstructured grid by advancing-front method. AIAA J, 1993. 31(0): 257-265.
    [64] Barton 1 E. Improved laminar predictons using a stabilized time dependent SIMPLE scheme. Int J Numer Methods Fluids, 1998.28:841-857.
    [65] Van Doormaal J P, Raithby G D. Enhancement of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Transfer, 1984. 7:147-163.
    
    [66] Hackbucsh W. Muti-grid methods and application. Berlin: Springer-Verlag, 1985.
    [67] T. Tamura. Reliability on CFD Estimation for Wind-Structure Interaction Problems. J. Wind Eng. Ind. Aerodyn. 1999,(81): 117-143.
    [68] R. Codina. Comparison of Some Finite Element Methods for Solving the Steady Convection-Reaction Equation. Comput. Meths. Appl. Mech. Engrg. 1998, (156): 185-210.
    [69] Q Grotzbach. Direct Numerical and Large-Eddy Simulation of Turbulent Channel Flows. Encyclopedia of fluid mechanics, Gulf pub., 1986:1337-139..
    [70] S. Murakami. Overview of Turbulence Models Applied in CWE-1997. J. Wind Eng. Ind. Aerodyn. 1998, 74(6): 1-24.
    [71] S. Murakami, A. Mochida and K. Hibi. Three-Dimensional Numerical Simulation of Air Flow Around a Cubic Model by Means of Large Eddy Simulation. J. Wind Eng. Ind. Aerodyn. 1987, (25): 291-305.
    [72] A.Maurizi,J.M.L.M.Palma,F.A.Castro. Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal. Journal of Wind Engineering and Industrial Aerodynamics 74-76(1998) 219-228.
    [73] Takanori Uchida, Yuji Ohya. Numerical simulation of atmospheric flow over complex terrain. Journal of Wind Engineering and Industrial Aerodynamics. 81(1999) 283-293.
    [74] David E.Neff, Robert N.Meroney. Wind-tunnel modeling of hill and vegetation influence on wind power availability. Journal of Wind Engineering and Industrial Aerodynamics.74-76(1998) 335-343.
    [75] C.A.Miller, A.GDavenport. Guidelines for the calculation of wind speed-ups in complex terrain. Journal of Wind Engineering and Industrial Aerodynamics.74-76( 1998) 189-197.
    [76] A.Naess,P.H.Clausen,R.Sandvik. Gust factors for locations downstream of steep mountain ridges. Journal of Wind Engineering and Industrial Aerodynamics.87(2000) 131-146.
    [77] Andrew A.Turnipseed, Dean E.Anderson, Peter D.Blanken. Willliam M.Baugh,Russell K.Monson. Airf lows and turbulent flux measurements in mountainous terrain Part I.Canopy and local effects. Agricultural and Forest Meteorology 119(2003)1-21.
    [78] J.E.Bullard,GF.S.Wiggs,D.J.Nash. Experimental study of wind directional variability in the vicinity of a model valley. Geomorphology 35(2000)127-143.
    [79] NIJS JAN DUIJM. Dispersion over complex terrain:wind tunnel modeling and analysis thchniques. Atmospheric Enviroment vol.30 ,No.16,pp.2839-2852,1996.
    [80] SCANLAN R. The action of flexible bridges under wind, 1 :flutter theory [J]. J.SoundandVib. 1978,60(2): 187-199.
    [81] MIYATA T, YAMADA H, etal. On a application of the direct flutter FEM analysis for long-span bridges [A]. Proc. 9thlnt. Conf.on Wind Engineering [C]. New Delhi, India, 1995.1033—1041.
    [82] DUNG N, MIYATAT, YAMADA H, etal. Flutter responses in long span bridges with wind induced displacement by the mode tracing method [J]. J.Wind.Eng.Ind.Aerodyn.,1998,78&79:367—379.
    [83] GE Y, TANAKA H,XIANG H. 3D flutter analysis of long-span cable-supported bridges with full-mode techniques[J].Wind and Structure into 21 th Century,2000, 1(1):656—667.
    [84] A.Jameson.空气动力学计算方法的进展.应用力学最新进展.美国机械工程师协会编.科学出版社,1988:257—307
    [85] 埃米尔.希缪,罗伯特.H.斯坎伦著,刘尚培,项海帆,谢霁明译.风对结构的作用—风工程导论.同济大学出版社,1992.
    [86] 李国豪.桥梁结构稳定与振动.中国铁道出版社,1996.
    [87] 项海帆等.现代桥梁抗风理论与实践,人民交通出版社,北京,1996.
    [88] 项海帆.21世纪世界桥梁工程展望[J],土木工程学报,Vol.33,No. 3(2000).
    [89] 项海帆.进入21世纪的桥梁风工程研究[J],同济大学学报(自然科学版),Vol.30,No. 5(2002),529—532.
    [90] 《公路桥梁抗风设计指南》编写组.公路桥梁抗风设计指南.人民交通出版社,1996.
    [91] 中交公路规划设计院.公路桥梁抗风设计规范,人民交通出版社,2004.12.
    [92] 风荷载计算,陈英俊等,北京:中国铁道出版社.2000
    [93] 严国敏,现代悬索桥[M],北京,:人民交通出版社,2002
    [94] 潘永仁.悬索桥的几何非线性静力分析及工程控制.同济大学博士学位论文,1996.
    [95] 方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论.同济大学博士学位论文,1997.
    [96] 程进.缆索承重桥梁非线性空气静力稳定性研究.同济大学博士学位论文,2000.
    [97] 王利娟.紊流对桥梁颤振特性影响的试验研究,同济大学硕士学位论文,2001.4
    [98] 张志田,葛耀君.大跨度悬索桥非线性静风稳定全过程分析法.第十一届全国结构风工程学术会议论文集,海南三亚,2003.11
    [99] 丁泉顺,陈艾荣,项海帆.大跨度桥梁结构气动耦合直接颤振分析(J).中国公路学报.2001,14(3)
    [100] 华旭刚,陈政清,祝志文.在ANSYS中实现颤振时程分析的方法.中国公路学报(J).2002,15(4)
    [101] 曹丰产.桥梁气动弹性问题的数值研究.同济大学博士学位论文.1999.
    [102] 周志勇.桥梁气动弹性问题的数值研究.同济大学博士后出站报告.1999.
    [103] 刘春华.多个互相关随机过程的计算机模拟及其应用.同济大学学报,1994.Vol.22(增),May
    [104] 曹映泓,项海帆,周颖.大跨度桥梁随机风场模拟.土木工程学报,1998.31(3):72-79.
    [105] 谢霁明.桥梁颤振理论与斜拉桥颤振特性研究.同济大学博士学位论文,1996.
    [106] 陈伟.大跨度桥梁抖振反映谱研究.同济大学博士学位论文,1993.
    [107] 杨詠昕.大跨度桥梁二维颤振机理极其应用研究.同济大学博士学位论文,2002.
    [108] 刘春华.大跨度桥梁抖振响应的非线性时程分析.同济大学博士学位论文,1995.
    [109] 项海帆,刘春华.大跨度桥梁耦合抖振响应的时域分析.同济大学学报.Vol.22(4),1994.
    [110] 刘春华,项海帆等.大跨度桥梁抖振响应的空间非线性时程分析法.同济大学学报,Vol.24(4).1996.
    [111] 曹映泓.大跨度桥梁非线性颤振和抖振时程分析.同济大学博士学位论文,1999.
    [112] 蒋永林.斜拉桥抖振响应分析.西南交通大学博士学位论文,2000.
    [113] 刘志文.大跨度桥梁抗风风险评估.同济大学博士学位论文,2004.
    [114] 卢伟.斜拉桥抖振响应的可靠度研究.西南交通大学博士学位论文,2000.
    [115] 丁泉顺.大跨度桥粱耦合颤抖振响应的精细化分析.同济大学博士学位论文,2001.
    [116] 张新军.大跨度桥梁三维非线性颤振分析.同济大学博士学位论文,2000.
    [117] 张志田.大跨度桥梁非线性抖振及其对抗风稳定性影响的研究.同济大学博士学位论文,2004
    [118] 孙绍东,孙炳楠.大跨度桥梁全耦合颤抖风振响应分析.浙江大学学报,1997,31(4):471-480.
    [119] 曹映泓,项海帆,周颖.大跨度桥梁颤振和抖振统一时程分析.土木工程学报,2000,33(5):57-61.
    [120] 项海帆.朱乐东.考虑约束扭转刚度影响的斜拉桥动力分析模型.全国桥梁结构学术大会论文集,武汉,1992.
    [121] 杨詠昕,陈艾荣,项海帆.桥梁结构动力特性分析中节点刚性区问题的处理.土木工程学报,2001,34(1).
    [122] 罗喜恒.复杂悬索桥施工过程精细化分析研究.同济大学博士学位论文,2004.
    [123] 同济大学土木工程防灾国家重点试验室,北盘江大桥抗风性能研究(报告之二)——北盘江大桥桥址风环境试验和数值模拟研究性分析[R],2005.
    [124] 同济大学土木工程防灾国家重点试验室,北盘江大桥抗风性能研究(报告之四)——主桥节段模型风洞试验研究[R],2006.
    [125] 同济大学土木工程防灾国家重点实验室,北盘江大桥抗风性能研究(报告之五)——主桥全桥气弹模型风洞试验研究[R],2006.
    [126] 葛耀君.桥梁结构风振可靠性理论及其应用.同济大学博士学位论文,1997.
    [127] 顾明,陈礼忠,项海帆.上海地区风速风向联合概率密度函数的研究[J],同济大学学报,Vol.25,No. 2(1997),166-170.
    [128] 李冀,杜行远,刘克武,叶驾正.背风波形成的非线性数值试验及其对阵水的影响.大气科学第2卷第3期,1978.
    [129] C.A.萨鲍日尼科娃.小气气候与地方气候.李怀瑾等译.科学出版社.1955.
    [130] 傅抱璞.山地气候.科学出版社.1983.北京.
    [131] 山区空气污染与气象.中国科学院大气物理研究所.科学出版社.1978.
    [132] 吴望一.流体力学(上、下册).北京大学出版社,1982.
    [133] 苏铭德、黄素逸.计算流体力学基础.北京:清华大学出版社,1998.
    [134] 刘导治.计算流体力学基础.北京:北京航空航天大学出版社,1989.
    [135] 王福军.计算流体动力学分析.北京:清华大学出版社,2004.
    [136] 朱自强.应用计算流体力学.北京:北京航空航天大学出版社,1998.
    [137] 吴子牛.计算流体力学基本原理.北京:科学出版社,2001.
    [138] 张亮,李云波.流体力学.哈尔滨:哈尔滨工程大学出版社,2002.
    [139] 倪浩清.工程湍流模式理论综述及展望.力学进展.1996(2):145-165.
    [140] ohn D.Anderson,JR..Computational Fluid Dynamics.影印本,清华大学出版社,2002.
    [141] 张涵信,沈孟育等.计算流体力学—差分方法的原理和应用.北京:国防工业出版社,2003.
    [142] 任安禄.不可压缩粘性流场计算方法.北京:国防工业出版社,2003.
    [143] 田瑞明.Monte-Carlo法模拟复杂地形对扩散的影响.大气科学.1994.
    [144] 陶闯,林宗坚,卢健.分形地形模拟.计算机辅助设计与图形学学报.1996.
    [145] 刘刚,洪冠新,金长江.复杂地形上空超低空风场的工程仿真方法.北京航空航天大学学报.2003.
    [146] 李富平,蔡秀云.基于迭代的中点位移法对山脉地形的模拟.华南理工大学学报(自然科学版).1999.
    [147] 刘罡,蒋维楣.深凹地形边界层风场与湍流场结构及扩散规律的数值研究.气候与环境研究,1998.
    [148] 彭家毅,肖静玢.重庆市区地面风场的数值研究.四川气象.1995.
    [149] 余兴,王晓玲,戴进等.复杂地形边界层结构的数值模拟.高原气象.1997.
    [150] 姜平,史润选等.平衡气球探测研究贵州山区流场特征和大气扩散参数.贵州气象.1994.
    [151] 王卫国,蒋维楣,余兴.深州海岸复杂地形气流和湍流特征的数值模拟.气象科学.1997.
    [152] 袁春红,杨振斌,薛桁,朱瑞兆.复杂地形风速数值模拟.太阳能学报.2002.
    [153] 石春娥,曹必铭,李子华,陆韬实.复杂地形上三维局地环流的模拟研究.南京气象学院学报.1996.
    [154] 王祖锋,彭家毅等.贵阳市地面风场的数值研究.贵州气象.1997.
    [155] 张牧.地形模拟的一种分形几何方法——中心辐射法.河海大学学报.2001.
    [156] 余琦,刘原中.复杂地形上的风场内插方法.辐射防护.2001.
    [157] 孙学金,曹文俊,李子华.复杂地形上稳定边界层二维流场的数值模拟.气象学报.1995.
    [158] 佘龙华,沈林成,常文森.基于FBM的分形地形模拟原理研究.宇航学报.1999.
    [159] 覃军,袁亚畅等.山区复杂地形条件下的风场分析.气候与环境研究.2001.
    [160] 贵州省山地环境气候研究所.北盘江大桥桥位气象观测与风参数研究报告[R],2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700