用户名: 密码: 验证码:
关于星际长碳链自由基l-CnH氧化反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前人们已经在星际介质中探测到了一系列碳链自由基CnH(n=1-8)的存在,这些自由基在有机化学、燃烧化学和星际化学中都发挥着重要作用。针对其中的一些自由基的化学反应活性和几何结构,已经有相关报道对此进行了研究。然而就在最近,人们在星际空间中又成功的观测到了分子氧的存在,这一振奋人心的消息使得对各种星际物质的氧化过程反应机理的研究变得更加有必要。在本文中,我们针对l-CnH+O2(n=3-6)系列反应的势能面(PES)进行了的详细的量子化学计算。同时,为定量评估不同产物间的反应动力学竞争性,我们还进行了主方程速率常数的计算。我们的研究结果将有助于增进人们对l-CnH系列自由基的化学性质的理解。
     本文的主要研究结果概括如下:
     1.我们首次报道了作为星际空间中已经探测到的碳链CnH系列自由基之一的链状l-C3H自由基的氧化反应机理。C3H+O2反应也是燃烧相关的过程,涉及到多种碳氢化物。我们在CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE水平下构建了详细的反应势能面(PES),该势能面中包括了多条解离通道。其中三条主要的解离通道分别为C-迁移过程产物P2(CO2+C2H),C,O-交换产物P1(CO+HC2O)和O-迁移产物P6(3O+HC3O)。不稳定的入口异构体1a HCCCOO可以经过直接O-解离过程生成产物P6(内禀能垒7.5kcal/mol)或者通过1,2-O-转移过程(能垒为0.8kcal/mol)生成稳定的低能异构体5HCCC(O)O。该异构体5可以进一步分解生成产物P1或者P2。从5分别生成这两种产物过程的能垒分别为29.1和23.6kcal/mol。很显然,生成入口1a的过程共放热26.6kcal/mol,足以引发随后的三种解离过程。为了定量的评价三种产物的动力学竞争性,我们进行了主方程速率常数的计算。结果表明,在298K时,最可行的产物是P2(64.8%),其次是P6(23.6%)和P1(11.6%)。有趣的是,随着温度的升高,P6的产率逐渐增加,而P2的产率却在降低,P1的产率变化不大。需要注意的是,在热力学上最稳定的产物P1在动力学上却是最不具竞争性的,这说明在研究过程中考虑动力学因素是很重要的。因为反应的主要产物为P2(CO2+C2H),说明这个重要的卡宾自由基l-C3H可以在有O2参与的条件下高效地降解为短链分子。此外,我们也对环形自由基c-C3H与氧气的反应进行了讨论。上述结果有助于丰富人们对这个最简单的C3-自由基在燃烧及星际过程中的化学行为的理解。
     2.碳链自由基的反应在燃烧和天体物理过程中都是非常重要的。近期,关于C4H自由基的动力学特性备受关注。虽然关于乙炔基自由基,C2H的氧化过程已经被广泛研究,然而有关更高的偶数碳自由基C2nH (n>1)的氧化机理还未被报道过。在本论文中,我们首次进行了关于C4H自由基氧化机理的理论研究。在CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE水平下构建的反应势能面,提出多条生成不同产物的反应通道,生成的产物包括P1(CO+HC3O),P2(C3H+CO2), P3(HCO+C3O), P4(HC4O+3O)和P5(OH+C4O)。同时,我们还进行了主方程速率常数的计算。尽管反应C4H+3O2和C2H+3O2的势能面相似,但两个反应的动力学性质却有着显著不同。对于C4H+3O2反应,产物几乎全部为O-提取产物P4(HC4O+3O),而能量最低的C,O-交换产物P1(CO+HC3O)等其它产物则没有什么意义。相比之下,C2H+3O2反应更趋向于生成C,O-交换产物HCO+CO。C4H+3O2反应作为全局无能垒过程,而且其主要过程是一个由分子氧→原子氧的转化过程,所以我们认为该反应在炭灰的形成和涉及C4H的星际化学中都发挥着重要的作用。
     3.为了更深入的理解长碳链自由基的反应特性,我们在CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE水平下,首次报道了l-C5H+O2和l-C6H+O2反应机理的理论研究。结果发现,在l-C5H+O2的反应中C-迁移是主要的反应路径,生成主产物P2(CO2+C4H)。然而,在反应l-C6H+O2中情况略有不同。C,O-交换过程(对应产物为P1(CO+HC5O))与O-迁移过程(对应产物P3(3O+HC6O))的能垒相差仅0.1kcal/mol,这说明这两条路径在反应中是共同起决定作用的。将该研究结果与之前的关于较短的l-CnH自由基与O2之间的反应进行比较,我们可以很容易得出结论:当l-C2n+1H自由基与氧发生反应时,主要反应路径应该是C-迁移过程,并且生成一种主要产物l-C2nH+CO2,但对于l-C2nH和O2的反应就有些复杂了。
     4.次甲基硅(SiCH)自由基一直被认为是重要的天体物理分子及具有代表性的有机硅化合物。目前已经有关于SiCH的结构和光谱信息方面的理论研究。早些年关于SiCH的基态结构和可能存在的异构体方面的研究已经证实,2Π态下的SiCH构型为其全局极小点,比CSiH构型的能量低约50kcal/mol。用激光诱导荧光(LIF)方法对SiCH和SiCD的光谱研究表明,该自由基中SiC键在基态时是1.693的双键,激发态时为1.612的三键。我们首次利用密度泛函理论对SiCH+O2反应进行了理论研究。在CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE水平下,我们共获得了[SiCHO2]体系中的28种异构体。基于这些异构体,我们构建了SiCH+O2反应的势能面,并找到一条通过多步异构化进行的最可行的反应路径。反应物经由异构体1SiC(H)OO转化为异构体5SiOC(H)O,然后5的解离可以最终生成产物P1(HCO+SiO)。另一条热力学上可行的次要通道为R→1→2→3→6→8→P2(HSi+CO2)。显然,产物P1中的两种碎片都是重要的星际分子。因此,我们的结果也许可以为未来星际探测中确认SiCH的存在提供关键的理论依据。
The carbon-chain radicals CnH(n=1-8) have been detected in the interstellar medium,and show their important roles in the organic chemistry, combustion chemistry andinterstellar chemistry. Some of them have been studied on their chemical reactivity andgeometries. The very recent observation of molecular oxygen in interstellar space appealsfor the great need of mechanistic understanding of the oxidation processes of variousinterstellar species. In this thesis, we carried out detailed quantum chemical investigationson the potential energy surfaces (PES) for a set of reactions i.e. l-CnH+O2(n=3-6). Toquantitatively evaluate the kinetic competition of different products in the reactions, wehave also performed the master equation rate constant calculations. Our results will enrichthe understanding of the chemistry of l-CnH radicals.
     The main results are summarized as follows:
     1. We report for the first time the oxidation mechanism of the chainlike l-C3H bymolecular oxygen, which is known as one of the interesting carbon-chain hydrocarbonseries CnH detected in space. This reaction is also relevant to the combustionprocesses where various carbon hydrides are involved. A detailed potential energysurface (PES) is constructed at theCCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE level including variousfragmentation channels. Three types of fragmentation channels are identified as theC-transfer product P2(CO2+C2H), the C,O-exchange product P1(CO+HC2O) and theO-transfer product P6(3O+HC3O). The initially entered unstable dioxygen isomer1aHCCCOO (-26.6) would either undergo the direct O-extrusion to give P6(the intrinsicbarrier7.5kcal/mol) or take a1,2-O-shift (0.8kcal/mol barrier) to give a stableisomer5HCCC(O)O (-139.2) that can either dissociate to P1or to P2. The intrinsicbarrier from5to P1and P2is29.1and23.6kcal/mol, respectively. Clearly, theentrance thermicity26.6kcal/mol of1a can sufficiently initiate the subsequent formation of all the three products. To quantitatively evaluate the kinetic competitionof the three products, we performed the master equation rate constant calculations. Itwas shown that at298K, the most favorable product is P2(64.8%) followed by P6(23.6%) and P1(11.6%). Interestingly, at elevated temperatures, the ratio of P6increases with the decrease of P2, whereas that of P1is little changed. Notably, thethermodynamically most stable product P1is kinetically the least favorable, indicativeof the importance of considering the kinetics. The dominant formation of P2(CO2+C2H) shows that the important carbyne radical l-C3H can be effectivelydegraded by O2via the chain-shortening step. The reactivity of the cyclic c-C3Hradical towards O2is also discussed. The results are expected to enrich ourunderstanding of the chemistry of the simplest C3-radical in both combustion andinterstellar processes.
     2. Reactions of the carbon-chain radicals are of great importance in the combustionand astrophysical processes. The kinetics of the butadiynyl radical, C4H, has receivedrecent attention. While there has been sufficient knowledge concerning the oxidationof the ethynyl radical, C2H, oxidation of the higher even-numbered members C2nH(n>1) is hardly known. In this work, to enrich the C4H-chemistry, we report the firststudy of the oxidation mechanism of C4H. At theCCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE level, the potential energysurface survey is presented covering various product channels P1(CO+HC3O),P2(C3H+CO2), P3(HCO+C3O), P4(HC4O+3O) and P5(OH+C4O) accompanied by themaster equation rate constant calculations. Despite the similarity in the potentialenergy surface, the kinetics of C4H+3O2differs dramatically from that of theanalogous C2H+3O2reaction. For the C4H+3O2reaction, the O-abstraction productP4(HC4O+3O) is almost the exclusive product, whereas the lowest C,O-exchangeproduct P1(CO+HC3O) and other products have little importance. By contrast, theC2H+3O2reaction favors the C,O-exchange product HCO+CO. Being overallbarrierless and mainly associated with the molecular→atomic oxygen conversion, theC4H+3O2reaction should play an important role in the soot formation and interstellarchemistry where C4H is involved.
     3. To further help understand the reaction properties of the long carbon chainradicals, we report the first theoretical survey of the l-C5H+O2and l-C6H+O2 reactions at the CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE level. The carbontransfer was found to be the main pathway in the l-C5H+O2reaction, giving the mainproduct P2(CO2+C4H). Yet, the case is a little different for l-C6H+O2. The energybarrier between the C,O-exchange (resulting in P1(CO+HC5O)) and the oxygentransfer (resulting in P3(3O+HC6O)) is only0.1kcal/mol, indicative of theirco-predominance. The present results were compared with the shorter l-CnH radicalswith O2. It’s easy to conclude: when the l-C2n+1H radicals react with oxygen, the mainpathway should be the C-trance process, with one main product l-C2nH+CO2, but thatis a little complex for the reactions of l-C2nH with O2.
     4. Silicon-methylidyne (SiCH) radical is considered to be important both as anastrophysical molecular and as the prototypical organosilicon compound. Severaltheoretical studies on various aspects of SiCH structure and spectroscopy have beenreported. The studies on the ground-state structure and the possibility of isomerizationin early years showing that SiCH(2Π) is the global minimum, with CSiH ca.50kcal/mol higher in energy. An investigation of the laser-induced fluorescence (LIF)spectra of SiCH and SiCD showed that the radical has a1.693SiC double bond inground state and a1.612triple bond in the excited state. We gave the firstdiscussion on the reaction of SiCH+O2using density functional theory. At theCCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE level, we found28isomersin the [SiCHO2] system. Based on these isomers we constructed the PES of the SiCH+O2reaction, and found the most feasible pathway is a multi-step isomerisation of1SiC(H)OO to5SiOC(H)O and the dissociation of5to P1(HCO+SiO). A minorthermodynamically pathway is R→1→2→3→6→8→P2(HSi+CO2). It’snoticeable that the two pieces of P1are both important interstellar molecules. So ourresults may be a key evidence to confirm the existence of SiCH radical in the outerspace for the future.
引文
[1] KOCHI J K, Free radicals [M]. in2Vols,1973.
    [2] HUANG R L, The chemistry of free radicals[M].1974.
    [3] HAY K H, WATERS W A, Some organic reactions involving the occurence offree radicals in solution [J]. Chemical Reviews,1937,21:169-208.
    [4] KHARASCH M S, MANSFIELD J V, MAYO F R, The Decomposition of2-Fluorenediazonium Chloride and2-Fluorenonediazonium Chloride in AceticAcid [J]. Journal of the American Chemical Society,1937,59:1155-1156.
    [5] WILSON S, Theoretical studies of interstellar radicals and ions [J]. ChemicalReviews,1980,80:263-267.
    [6] WALDEN P, AUDRIETH L F, Free inorganic radicals [J].Chemical Reviews,1928,5:339-359.
    [7] URI N, Inorganic Free radicals in solution [J].Chemical Reviews,1952,50:375-454.
    [8] GARCIS H, ROTH H D, Generation and reactions of organic radical cations inz e o l i t e s [J]. C h e m i c a l R e v i e w s,2002,103:3947-4008.
    [9] JOHNSTON L J, Photochemistry of radicals and biradicals [J].ChemicalReviews,1993,93:251-266.
    [10] MONROE B M, WEED G C, Photoinitiators for free-radical-initiatedphotoimaging systems [J].Chemical Reviews,1993,93:435-448.
    [11] SABLIER M, FUJII T, Mass spectrometry of free radicals [J].Chemical Reviews,2002,102:2855-2924.
    [12] ATKINSON R, Kinetics and mechanisms of the gas-phase reactions of thehydroxyl radical with organic compounds under atmospheric conditions[J].Chemical Reviews,1986,86:69-201.
    [13] BEDJANIAN Y, POULET G, Kinetics of halogen oxide radicals in thestratosphere [J].Chemical Reviews,2003,103:4639-4656.
    [14] ORLANDO J J, TYNDALL G S, WALLINGTON T J, The atmosphericchemistry of alkoxy radicals [J].Chemical Reviews,2003,103:4657-4690.
    [15] KURYLO M J, ORKIN V L, Determination of atmospheric lifetimes via themeasurement of OH radical kinetics [J].Chemical Reviews,2003,103:5049-5076.
    [16] HIMO F, SIEGBAHN P E M, Quantum chemical studies of radical-containingenzymes [J].Chemical Reviews,2003,103:2421-2456.
    [17] WHITTAKER J W, Free radical catalysis by galactose oxidase [J].ChemicalReviews,2003,103:2347-2364.
    [18]RAGSDALE S W, Pyruvate ferredoxin oxidoreductase and its radicalintermediate [J].Chemical Reviews,2003,103:2333-2346.
    [19] STUBBE J, NOCERA D G, Yee C S, et al, Radical initiation in the class Iribonucleotide reductase: long-range proton-coupled electron transfer?[J].Chemical Reviews,2003,103:2167-2202.
    [20] FONTECAVE M, OLLAGNIER-DE-CHOUDENS S, MULLIEZ E, Biologicalradical sulfur insertion reactions [J].Chemical Reviews,2003,103:2149-2166.
    [21] BANERJEE R, Introduction: radical enzymology [J].Chemical Reviews,2003,103:2081-2082.
    [22] MURPHY R C, Free-radical-induced oxidation of arachidonoyl plasmalogenphospholipids: antioxidant mechanism and precursor pathway for bioactiveeicosanoids [J].Chemical Research In Toxicology,2001,14:463-472.
    [23] STRBBE J, VAN DER DONK W A, Protein radicals in enzyme catalysis [J].Chemical Reviews,1998,98:2661-2662.
    [24] STRBBE J, VAN DER DONK W A, Protein radicals in enzyme catalysis [J].Chemical Reviews,1998,98:705-762.
    [25] HANSCH C, GAO H, Comparative QSAR: radical reactions of benzenederivatives in chemistry and biology [J].Chemical Reviews,1997,97:2995-3060.
    [26] EASTON C J, Free-radical reactions in the synthesis of α-amino acids andderivatives [J].Chemical Reviews,1997,97:53-82.
    [27] CHARLES GRISSOM B, Magnetic field effects in biology: a survey of possiblemechanisms with emphasis on radical-pair recombination [J].Chemical Reviews,1995,95:3-24.
    [28] FREY P A, Importance of organic radicals in enzymic cleavage of unactivatedcarbon-hydrogen bonds [J].Chemical Reviews,1990,90:1343-1357.
    [29] FOLLMANN H, Deoxyribonucleotides: the unusual chemistry and biochemistryof DNA precursors [J].Chemical Society Reviews,2004,33:225-233.
    [30] KHARASCH M S, MANSFIELD J V, MAYO F R, The Decomposition of2-fluorenediazonium chloride and2-fluorenonediazonium chloride in acetic acid[J].Journal of the American Chemical Society,1937,59:1155-1156.
    [31] GARDINER W C, Combustion Chemistry[M]. Springer-Verlag: New York,1984
    [32] PURI L K, Environmental Implications of Combustion Processes[M].CRC Press:Boca Raton, FL,1993.
    [33]HARRIS S J, WEINER A M, Chemical Kinetics of Soot Particle Growth[J].Annual Review of Physical Chemistry,1985,36:31-52.
    [34] MILLER J A, KEE R J, WESTBROOK C K, Chemical kinetics and combustionmodeling[J].Annual Review of Physical Chemistry,1990,41:345-387.
    [35] HERBST E, The Chemistry of Interstellar Space Angew[J].Chemie InternationalEdition in English,1990,29:595-608.
    [36] SMITH D, The ion chemistry of interstellar clouds[J].Chemical Reviews,1992,92:1473-1485.
    [37] WAKELAM V, SMITH I W M, HERBST E, TROE J, GEPPERT W,LINNARTZ H, BERG K, ROUEFF E, AGúNDEZ M, PERNOT P, CUPPENH M, LOISON J C, TALBI D, Reaction Networks for Interstellar ChemicalModelling:Improvements and Challenges[J].Space Science Reviews,2010,156:13-72.
    [38]ANDREW B H, Ed; LA U Symposium87, Interstellar Molecules[C].Reidel;Dordrecht, The Netherlands,1980.
    [39]LES HOUCHES WORKSHOP; Solid Interstellar Matter; The ISO Revolution; d’Hendecourt, L, Joblin, C, Jones, A[M].Eds, Springer/EDP Sciences; New York,1999.
    [40] SMITH I W M, ROWE B R, Reaction kinetics at very low temperatures:Laboratory studies and interstellar chemistry[J].Accounts of ChemicalResearch,2000,33:261-268.
    [41]BARRIENTOS C, REDONDO P, LARGO A, Recent Research Developments InPhysical Chemistry[J].1997,1:51-53.
    [42]PAPOULAR R, On water ice formation in interstellar clouds[J].Monthly Noticesof the Royal Astronomical Society,2005,362:489-497.
    [43]KAISER R I, Experimental Investigation on the Formation of Carbon-BearingMolecules in the Interstellar Medium via Neutral-Neutral Reaction [J].ChemicalReviews,2002,102:1309-1358.
    [44]SWINGS P, Rosenfeld L,Considerations regarding interstellarmolecules[J].Astrophysical Journal,1937,86:483-487.
    [45]TUCKER K D, KUTNER M L, THADDEUS P,The Ethynyl Radical C2H-ANew Interstellar Molecule[J].Astrophysical Journal,1974,193:L115-L119.
    [46]THADDEUS P, GOTTLIEB C A, HJALMARSON A, JOHANNSON L E B,IRVINE W M, FRIBERG P, LINKE R A,Astronomical identification of the C3Hradical[J].Astrophysical Journal,1985,294:L49-L53.
    [47]GUELIN M, GREEN S, THADDEUS P,Detection of the C4H radical towardIRC+10216[J].Astrophysical Journal,1978,224:L27-L28.
    [48]CERNICHARO J, KAHANE C, GOMEZ-GONZALEZ J,GUELIN M, TentativeDetection Of The C5h Radical[J]. Astron Astrophys,1986,164:L1-L4.
    [49]SUZUKI H, OHISHI M, KAIFU N, ISHIKAWA S I,KASUGA T, Detection OfThe Interstellar C6h Radical [J]. Publ. Astron. Soc. Jpn.,1986,38:911-917.
    [50]GUELIN M,CERNICHARO J,TRAVERS M J, MCCARTHY M C, GOTTLIEBC A, THADDEUS P, OHISHI M, SAITO S,YAMAMOTO S, Detection of anew linear carbon chain radical:C7H[J].Astron Astrophys,1997,317:L1-L4.
    [51]CERNICHARO J,GUELIN M, Discovery of the C8H radical[J].AstronAstrophys,1996,309:L27-L30.
    [52] WOON D E, A correlated ab initio study of linear carbon-chain radicalsCnH(n=2-7)[J].Chemical Physics Letters,1995,244:45-52.
    [53] DING H, PINO T, GüTHE F, MAIER J P, Electronic spectra of the C2n+1H (n=2–4) radicals in the gas phase[J].Journal of Chemical Physics,2002,117:8362-8367.
    [54]WU Y J, Structure, stability, electron affinity, and electronic spectra of isomers ofC6H[J].Computational and Theoretical Chemistry,2011,963:104-109.
    [55]HOSHINA K, KOHGUCHI H, OHSHIMA Y, ENDO Y, Laser-inducedfluorescence spectroscopy of the C4H and C4D radicals in a supersonicjet[J].Journal of Chemical Physics,1998,108:3465-3478.
    [56]SEVENT M L, HOCHLAF M, Ab initio characterization of C4, C4H and C4H-[J].Astrophysical Journal,2010,708:1452-1458.
    [57]PAUZAT F, ELLINGER Y, MCLEAN A D, Is interstellar detection of highermembers of the linear radicals CnCH and CnN feasible?[J].Astrophysical Journal,1991,369: L13-L16.
    [58]SOBOLEWSKI A L, ADAMOWICZ L, Ab-Initio Characterization OfElectronically Excited-States In Highlyunsaturated-Hydrocarbons[J]. Journal ofChemical Physics,1995,102:394-399.
    [59] BLANKSBY S J, MCANOY A M, DUA S, BOWIE J H, Cumulenic andheterocumulenic anions: potential interstellar species?[J]. Monthly Notices of theRoyal Astronomical Society,2001,328:89-100.
    [60]THADDEUS P, MCCARTHY M C, TRAVERS M J, GOTTLIEB C A, CHENW, New carbon chains in the laboratory and in interstellar space[J].FaradayDiscuss,1998,109:121-135.
    [61]BRUNKEN S, GUPTA H, GOTTLIEB C A, MCCARTHY M C, THADDEUS P,Detection of the carbon chain negative ion C8H-in TMC-1[J]. AstrophysicalJournal,2007,664: L43-L46.
    [62]TAYLOR T R, XU C S, NEUMARK D M, Photoelectron spectra of the C2nH-(n=1-4) and C2nD-(n=1-3) anions[J]. Journal of Chemical Physics,1998,108:10018-10026.
    [63]FULARA J, LESSEN D, FRELVOGEL P, MAIER J P, Laboratory evidence forhighly unsatueated hydrocarbons as carriers of some of the diffuse interstellarbands[J]. Nature,1993,366:439-441.
    [64]THADDEUS P, GOTTLIEB C A, HJALMARSON A, JOHANSSON E B,IRVINE W M, FRIBERG P, LINKE R A, Astronomical Identification of theC3H Radical[J].Astrophysical Journal,1985,294:L49-L53.
    [65]GOTTLIEB C A, VRTILEK J M, GOTTLIEB E W, THADDEUS P, Laboratorydetection of the C3H radical[J].Astrophysical Journal,1985,294:L55-L58.
    [66]YAMAMOTO S,SAITO S, OHISHI M,SUZUKI H, ISHIKAWA S I, KAIFU N,MURAKAMI A, Laboratory and astronomical detection of the cyclic C3Hradical[J].Astrophysical Journal,1987,322:L55-L58.
    [67]MANGUM J G, WOOTTEN A, Observations of the formaldehyde emission inOrion-KL-Abundances, distribution,and kinematics of the dense gas in the Orionmolecular ridge[J].Astronomy and Astrophysics,1990,239:319-325.
    [68]CERNICHARO J,KAHANE C, GONZáLEZ J G, GUéLIN M, TentativeDetection of the C5H Radical[J].Astronomy and Astrophysics,1986,164:L1-L4.
    [69]GOTTLIEB C A, GOTTLIEB E W, THADDEUS P, LABORATORYDETECTION OF THE C5H RADICAL[J].Astronomy and Astrophysics,1986,164:L5-L6.
    [70]GUéLIN M, CERNICHARO J, KAHANE C, GONZáLEZ J G, WALMSLEY CM, Detection of heavy radical in IRC+10216: The hexatriynyl radical C6H?[J].Astronomy and Astrophysics,1987,175:L5-L8.
    [71] GUéLIN M, CERNICHARO J, TRAVERS M J, MCCARTHY M C,GOTTLIEB C A, THADDEUS P, OHISHI M, SAITO S, YAMAMOTO S,Detection of a new linear carbon chain radical: C7H[J].Astronomy andAstrophysics,1997,317:L1-L4.
    [72]CERNICHARO J, GUéLIN M Discovery of the C8H radical[J].Astronomy andAstrophysics,1996,309:L27-L30.
    [73]CERNICHARO J, GUéLIN M, AGúNDEZ M, MCCARTHY M C,THADDEUS P Detection of C5N–and Vibrationally[J]. AstrophysicalJournal,2008,688:L83-L86.
    [74]WOON D E, HERBST E Quantum chemical predictions of the properties ofknown and postulated neutral interstellar molecules[J]. Astrophysical JournalSupplement Series,2009,185:273-288.
    [75]THKAHASHI J,Ab Initio Calculations for Detectable New Isomers of InterstellarCarbon–Chain Radicals CnH(n=2–8), Astron. Soc. Jpn.,2000,52:401-407.
    [76]CAO Z X, PEYERIMHOFF S D, Electronic spectra of linear isoelectronicspecies HC6H+, C6H, HC5N+[J]. Physical Chemistry Chemical Physics,2001,3:1403-1406.
    [77]GRAF S, GEISS J, LEUTWYLER S, Ab initio calculations of excited states inC4H and implications for ultraviolet photodissociation[J]. Journal of ChemicalPhysics,2001,114:4542-4551.
    [78]RORTENBERRY R C, KING R A, STANTON J F, CRAWFORD T D, Abenchmark study of the vertical electronic spectra of the linear chain radicalsC(2)H and C(4)H[J]. Journal of Chemical Physics,2010,132:144303-1-144303-10.
    [79] CRAWFORD T D, STANTON J F, SAEH J C, SCHAEFER H F, Structure andEnergetics of Isomers of the Interstellar Molecule C5H[J]. Journal of theAmerican Chemical Society,1999,121:1902-1911.
    [80]GUADAGNINI R, SCHATZ G C, WALCH S P, Ab initio and RRKM studies ofthe reactions of C, CH, and1CH2with acetylene[J]. Journal of PhysicalChemistry A,1998,102:5857-5866.
    [81]LI L, DENG P, TIAN A, XU M, WONG N B, Theoretical study on the reactionmechanisms of C2H with O2[J]. Journal of Physical Chemistry A,2004,108:4428-4432.
    [82]WALCH S P, Characterization of the Minimum Energy Paths for the Reactions ofCH(X2P) and1CH2with C2H2[J]. Journal of Chemical Physics,1995,103:7064-7071.
    [83]BOULLART W, DEVRIENDT K, BORMS R, PEETERS J, Identification of thesequence CH(2Π)+C2H2--> C3H2+H (and C3H+H2) followed by C3H2+O→C2H+HCO (or H+CO) as C2H source in C2H2/O/H atomic flame[J]. Journal ofChemical Physics,1996,100:998-1007.
    [84] JURSIC B S, Complete Basis Set ab Initio Study of the CH Insertion Reactionwith Water, Ammonia, and Hydrogen Fluoride[J]. Journal of Physical ChemistryA,1998,102:9255-9260.
    [85]ZHANG X B, LIU J J, LI Z S, LIU J Y, SUN C C, The oretical Study on theMechanism of the CH+CH3OH Reaction[J]. Journal of Physical Chemistry A,2002,106:3814-3818.
    [86]DING Y H, ZHANG X, LI Z S, HUANG X R, SUN C C,Is the C2H+H2OReaction Anomalous?[J]. Journal of Physical Chemistry A,2001,105:8206-8215.
    [87]STAHL F, SCHLEYER P v R, BETTINGER H F, KAISER R I, LEE Y T,SCHAEFER H F, Reaction of the ethynyl radical, C2H, with methylacetylene,CH3CCH, under single collision conditions: Implications for astrochemistry[J].Journal of Chemical Physics,2001,114:3476-3487.
    [88]CARL S A, NGUYEN H M T, NGUYEN M T, PEETERS J, An experimentaland theoretical study of the reaction of ethynyl radicals with nitrogen dioxide(HC≡C+NO2)[J]. Journal of Chemical Physics,2003,118:10996-11008.
    [89]SUMATHI R, PEETERS J, NGUYEN M T, Theoretical studies on the C2H+O2reaction: mechanism for HCO+CO, HCCO+O and CH+CO2formation[J].Chemical Physics Letters,1998,287:109-118.
    [90]LEE S, LEONE S R, Rate coefficients for the reaction of C2H with O2at90K and120K using a pulsed Laval nozzle apparatus[J]. Chemical Physics Letters,2000,329:443-449.
    [91]ELSAMRA R M I, VRANCKX S, CARL S A, CH(A2△) Formation inhydrocarbon combustion: The temperature dependence of the rate constant of thereaction C2H+O2→CH(A2△)+CO2[J]. Journal of Physical Chemistry A,2005,109:10287-10293.
    [92]ARROWSMITH A N, CHIKAN V, LEONE S R, Dynamics of the CH(A2△)product from the reaction of C2H with O2studied by fourier transform visiblespectroscopy[J]. Journal of Physical Chemistry A,2006,110:7521-7526.
    [93] FLORES J R, GOMEZ F J, A Theoretical Study of the S+C3H Rea ction:Potential Energy Surfaces[J]. The Journal of Physical Chemistry A,2001,105:10384-10392.
    [94] FLORES J R, MARTINEZ-NUNEZ E, VAZQUEZ S A, GOMEZ F J ATheoretical Study of the Dynamics of the S+c-C3H Reaction[J]. The Journal ofPhysical Chemistry A,2002,106:8811-8819.
    [95]XIE H B, DING Y H, SUN C C, Radical Reaction C3H+NO: A MechanisticStudy[J].Journal of Computational Chemistry,2006,27:641-660.
    [96]DONG H, DING Y H, SUN C C, Radical-molecule reaction C3H+H2O: Amechanistic study[J]. Journal of Chemical Physics,2005,122:064303-1-064303-13.
    [97]XIE H B, SHI G S, DING Y H, Chemical Behavior of PolycyanoacetyleneRadicals on Gaseous and Ice water: A Computational Perspective[J].Astrophysical Journal,2007,662:758-770.
    [98]BERTELOITE C, LE PICARD S D, BIRZA P, GAZEAU M C, BéNILAN Y,CANOSA A, SIMS I R, Low temperature (39-298K) kinetics study of thereactions of the C4H radical with various hydrocarbons observed in Titan’satmosphere[J].Icarus,2008,194:746-757.
    [99] BERTELOITE C, LE PICARD S D, BALUCANI N, CANOSA A, SIMS I R,Low temperature rate coefficients for reactions of the butadiynyl radical, C4H,with various hydrocarbons Part I: reactions with alkanes (CH4, C2H6, C3H8,C4H10)[J]. Physical Chemistry Chemical Physics,2010,12:3363-3924.
    [100] BERTELOITE C, LE PICARD S D, BALUCANI N, CANOSA A, SIMS I R,Low temperature rate coefficients for reactions of the butadiynyl radical, C4H,with various hydrocarbons Part II: reactions with alkenes (ethylene, propene,1-butene), dienes (allene,1,3-butadiene) and alkynes (acetylene, propyne and1-butyne)[J]. Physical Chemistry Chemical Physics,2010,12:3677-3689.
    [101]LARSSON B, Molecular oxygen in the ρ Ophiuchi cloud[J]. Astronomy andAstrophysics,2007,466:999-1003.
    [102]WLODEK S, FOX A, BOHME D K, Gas-Phase Reactions of Si+(2P) withSmall Hydrocarbon Molecules: Formation of Silicon-Carbon Bonds[J]. Journalof the American Chemical Society,1991,113:4461-4468.
    [103]BETTENS R P A, LEE H H, HERBST E, The importance of classes ofneutral-neutral reactions in the production of complex interstellar molecules[J].Astrophysical Journal,1995,443:664-674.
    [104] ADLER D, FRITZSCHE H, Eds: Tetrahedrally-Bonded AmorphousSemiconductors [M]. Plenum: New York,1985.
    [105] SMITH T C, LI H, CLOUTHIER D J, Spectroscopic Characterization of Siliconand Germanium Methylidyne, Basic Astrophysical and Main GroupOrganometallic Building Blocks[J]. Journal of the American ChemicalSociety,1999,121:6080-6089.
    [106] SMITH T C, LI H, CLOUTHIER D J, KINGSTON C T, MERER A J, Theelectronic spectrum of silicon methylidyne (SiCH), a molecule with asilicon-carbon triple bond in the excited state [J]. Journal of ChemicalPhysics,2000,112:3662-3670.
    [107]WILSON S, Molecular evolution of contracting clouds-Basic methods andinitial results[J]. Astrophysical Journal,1978,224:1077-1087.
    [108] BUENKER R J, BRUNA P J, PETERIMHOFF S D, Ab Initio MRD-CICalculations for HAB Molecules I Isomerization Energies for HOS, HNP andHCSi and Their Positive Ions,Isr. J. Chem.,1980,19:309-316.
    [109] DE B R, BHATTACHARJEE S, SANNIGRAHI A B, CNDO/2and INDOstudies of structure and relative stability of a serie s of HAB–HBA systems ofmixed first-and second-row composition[J].Int. J. Quantum. Chem.,1982,21:665-669.
    [110] ALLENDORF M D, MELIUS C F, Theoretical Study of the Thermochemistryof Molecules in the Si-C-H System[J]. Journal of Physical Chemistry,1992,96:428-437.
    [111]LAVENDY H, ROBBE J M, DUFLOT D, FLAMENT J P, MCSCF‐CI studyof the isomerization reaction→H HCSSiiC[J].AIP. Conf. Proc.,1994,312:343-348.
    [112]KETVIRTIS A E, BOHME D K, HOPKINSON A C, Theoretical Enthalpies ofFormation of Compounds SiCHn(n=0–4), SiC2Hn(n=0–4,6), SiCHn+(n=0–5), and SiC2Hn+(n=0–5,7)[J]. Journal of Physical Chemistry,1995,99:16121-16127.
    [113]ROBBE J M,LAVENDY H, FLAMENT J P, CHAMBAUD G, Ro-vibronicspectrum of the HCSi radical [J]. Chemical Physics Letters,1997,267:91-97.
    [114]SARI L, GONZALES J M, YAMAGUCHI Y, SCHAEFER III H F, The X2Πand2Σ+electronic states of the HCSi radical: Characterization of theRenner–Teller effect in the ground state [J]. Journal of Chemical Physics,2001,114:4472-4478.
    [115] BORN M, OPPENHEIMER R, Zur Quantentheorie der Molekeln [J].1927,389:457-484.
    [116](a)唐敖庆,杨忠志,李前树,量子化学[M].北京,科学出版社,1982。(b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M].北京,科学出版社,1985。(c)王志中,现代量子化学计算方法[M].长春,吉林大学出版社,1998。
    [117](a) HEHRE W J, RADOM L, SCHLEYER P R, et al, Ab Initio molecularorbital theory [M].John Wiley&Sons Inc,1986(b) MCQUARRIE D A,Quantum Chemistry University Science [M].Mill Vally CA,1983.
    [118] HOHENBERG P, KOHN W, Inhomogeneous electron gas [J].Physical Review,1964,136:B864-B871.
    [119] KOHN W, SHAM L J, Self-consistent equations including exchange andcorrelation effects [J].Physical Review,1965,140:A1133-A1138.
    [120]SLATER J C, Quantum Theory of Molecular and Solids Vol4: TheSelf-Consistent Field for Molecular and Solids[M].McGraw-Hill: New York,1974.
    [121] SALAHUB D R, ZERNER M C, eds: The Challenge of d and fElectrons[M].ACS: Washington D C,1989.
    [122]PARR R G, YANG W, Density-functional theory of atoms andmolecules[M].Oxford Univ Press: Oxford,1989.
    [123]POPLE J A, GILL P M W, JOHNSON B G, Kohn–Sham density-functionaltheory within a finite basis set [J].Chemical Physics Letters,1992,199:557-560.
    [124]JOHNSON B G, FRISCH M J, An implementation of analytic secondderivatives of the gradient-corrected density functional energy [J].Journal ofChemical Physics,1994,100:7429-7442.
    [125]LABANOWSKI J K, ANDZELM J W, eds:Density Functional Methods inChemistry [M].Springer-Verlag: New York,1991.
    [126]LOWDIN P O, A classic review on electron correlation [J].Advances inChemical Physics,1959,2:207.
    [127] POPLE J A, SEEGER R, KRISHNAN R, Variational configuration interactionmethods and comparison with perturbation theory [J].International journal ofquantum chemistry Sympos,1977,11:149-163.
    [128] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al, Toward a systematicmolecular orbital theory for excited states [J].Journal of Physical Chemistry,1992,96:135-149.
    [129]KRISHNAN R, SCHLEGEL H B, POPLE J A, Derivative studies inconfiguration–interaction theory [J].Journal of Chemical Physics,1980,72:4654-4655.
    [130]BROOKS B R, LAIDIG W D, SAXE P, et al, Analytic gradients from correlatedwave functions via the two-particle density matrix and the unitary groupapproach [J].Journal of Chemical Physics,1980,72:4652-4653.
    [131]SALTER E A, TRUCKS G W, BARTLETT R J, Analytic energy derivatives inmany-body methods I First derivatives [J].Journal of Chemical Physics,1989,90:1752-1756.
    [132] RAGHAVACHARI K, POPLE J A, Specificity and molecular mechanism ofabortificient action of prostaglandins [J].International Journal of QuantumChemistry,1981,20:167-178.
    [133]POPLE J A, HEAD-GORDON M, RAGHAVACHARI K, Quadraticconfiguration interaction A general technique for determining electroncorrelation energies [J].Journal of Chemical Physics,1987,87:5968-5975.
    [134]SHAVITT I, lecture Notes in Chemistry, vol22, Eds, BERTHIER G, etal[M].Springer-Verlag, New York1981,51.
    [135]SUTCLIFFE B T, Matrix elements between bonded functions [J].Journal ofChemical Physics,1966,45:235-239.
    [136]EADE R H E, ROBB M A, Direct minimization in mc scf theory thequasi-newton method [J].Chemical Physics Letters,1981,83:362-368.
    [137]HEGARTY D, ROBB M A, Application of unitary group methods toconfiguration interaction calculations [J].Molecular Physics,1979,38:1795-1812.
    [138]SCUSERIA G E, SCHAEFER III H F, Is coupled cluster singles and doubles(CCSD) more computationally intensive than quadratic configuration interaction(QCISD)?[J].Journal of Chemical Physics,1989,90:3700-3703.
    [139]PURVIS G D, BARTLETT R J, A full coupled-cluster singles and doublesmodel: The inclusion of disconnected triples [J].Journal of Chemical Physics,1982,76:1910-1918.
    [140]SCUSERIA G E, JANSSEN C L, Schaefer III H F, An efficient reformulation ofthe closed-shell coupled cluster single and double excitation (CCSD) equations[J].Journal of Chemical Physics,1988,89:7382-7387.
    [141] POPLE J A, HEAD-GORDON M, FOX D J, et al, Gaussian-1theory: A generalprocedure for prediction of molecular energies [J].Journal of Chemical Physics,1989,90:5622-5629; CURTISS L A, RAGHAVACHARI K, TRUCKS G W, etal, Gaussian-2theory for molecular energies of first-and second-row compounds[J].Journal of Chemical Physics,1991,94:7221-7230; CURTISS L A,RAGHAVACHARI K, POPLE J A, Gaussian-2theory using reducedM ller–Plesset orders [J].Journal of Chemical Physics,1993,98:1293-1298;SMITH B J, RADOM L, Calculation of Proton Affinities Using theG2(MP2,SVP) Procedure [J].The Journal of Physical Chemistry,1995,99:6468-6471; MEBEL A M, MOROKUMA K, LIN M C, Modification of thegaussian2theoretical model: The use of coupled-cluster energies,density-functional geometries, and frequencies [J].Journal of Chemical Physics,1995,103:7414-7421; CURTISS L A, RAGHAVACHARI K, REDFERN P C, etal, Gaussian-3(G3) theory for molecules containing first and second-row atoms[J].Journal of Chemical Physics,1998,109:7764-7776; the G3large basis set isdownloaded from the website http://chemistry anl gov/compmat/g3theory htm;CURTISS L A, REDFERM P C, RAGHAVACHARI K, et al, Gaussian-3theoryusing reduced M ller-Plesset order [J].Journal of Chemical Physics,1999,110:4703-4709; BAUSCHLICHER C W, PARTRIDGE H, A modification of theGaussian-2approach using density functional theory [J].Journal of ChemicalPhysics,1995,103:1788-1791; HAHN D K, KLIPPENSTEIN S J, MILLER J A,A theoretical analysis of the reaction between propargyl and molecular oxygen[J].Faraday Discuss,2001,119:79-100.
    [142] BABOUL A G, CURTISS L A, REDFERN P C, et al, Gaussian-3theory usingdensity functional geometries and zero-point energies [J].Journal of ChemicalPhysics,1999,110:7650-7657.
    [143]MELIUS C F, BINKLEY J S, The20th Symposium (International) onCombustion[C]. The Combustion Institute Pittsburgh,1984, p575.
    [144]SIEGBAHN P E M, BLOMBERG M R A, SVENSSON M, PCI-X, aparametrized correlation method containing a single adjustable parameter X[J].Chemical Physics Letters,1994,223:35-45.
    [145]HENRY D J, SULLIVAN M B, RADOM L, G3-RAD and G3X-RAD: modifiedGaussian-3(G3) and Gaussian-3X (G3X) procedures for radicalthermochemistry [J].Journal of Chemical Physics,2003,118:4849-4860.
    [146]HENRY D J, PARKINSON C J, RADOM L, On the electronic structure ofbis(η5-cyclopentadienyl) titanium [J].The Journal of Physical Chemistry A,2002,106:7921-7926.
    [147]KLIPPENSTEIN S J, MILLER J A, From the time-dependent, multiple-wellmaster equation to phenomenological rate coefficients [J].The Journal ofPhysical Chemistry A,2002,106:9267-9277.
    [148] MILLER J A, KLIPPENSTEIN S J, ROBERTSON S H, A Theoretical analysisof the reaction between vinyl and acetylene: quantum chemistry and solution ofthe master equation [J].The Journal of Physical Chemistry A,2000,104:7525-7536.
    [149]PILLING M J, ROBERTSON S H, Master equation models for chemicalreactions of importance in combustion [J].Annual Review of Physical Chemistry,2003,54:245-275.
    [150]FRANKCOMBE T J, SMITH S C, Fast, scalable master equation solutionalgorithms IV Lanczos iteration with diffusion approximation preconditionediterative inversion [J].Journal of Chemical Physics,2003,119:12741-12748.
    [151]GILBERT R G, SMITH S C, Theory of Unimolecular and RecombinationReactions[M].Blackwell Scientific, Carlton, Australia,1990.
    [152]PEDERSEN J O P, OPANSKY B J, LEONE S R, Laboratory studies of lowtemperature reactions of C2H with C2H2and implications for atmospheric modelsTitan [J]. Journal of Physical Chemistry,1993,97:6822-6829.
    [153]OPANSKY B J, LEONE S R, Rate coefficients of C2H with C2H4, C2H6, and H2from150-359K[J]. Journal of Physical Chemistry,1996,100:19904-19910.
    [154]HERBST E, WOON D E, The rate of the reaction between C2H and C2H2atinterstellar temperatures[J]. Astrophysical Journal,1997,489:109-112.
    [155]CHASTAING D, JAMES P L, SIMS I R, SMITH I W M, Neutral-neutralreactions at the temperatures of interstellar clouds-Rate coefficients forreactions of C2H radicals with O2, C2H2, C2H4and C3H6down to15K[J].Faraday Discuss,1998,109:165-181.
    [156]CARTY D, LE PAGE V, SIMS I R, SMITH I W M, Low temperature ratecoefficients for the reactions of CN and C2H radicals with allene (CH2-C-CH2)and methyl acetylene (CH3C-CH)[J]. Chemical Physics Letters,2001,344:310-316.
    [157]VAKHTIN A B, HEARD D E, SMITH I W M, LEONE S R, Kinetics ofreactions of C2H radical with acetylene, O2, methylacetylene, and allene in apulsed Laval nozzle apparatus at T=103K[J]. Chemical Physics Letters,2001,344:317-324.
    [158]VAKHTIN A B, HEARD D E, SMITH I W M, LEONE S R, Kinetics of C2Hradical reactions with ethene, propene and1-butene measured in a pulsed Lavalnozzle apparatus at T=103and296K[J]. Chemical Physics Letters,2001,348:21-26.
    [159]STAHL F,SCHLEYER P V R, BETTINGER H F, KAISER R I, LEE Y T,Reaction of the ethynyl radical, C2H, with methylacetylene, CH3CCH, undersingle collision conditions: Implications for astrochemistry[J]. Journal ofChemical Physics,2001,114:3476-3487.
    [160]STAHL F, SCHLEYER P V R, SCHAEFERIII H F, KAISER R I,Reactions ofethynyl radicals as a source of C4and C5hydrocarbons in Titan's atmosphere[J].Planetary and Space Science,2002,50:685-692.
    [161] KAISER R I, The final frontier in chemical reaction dynamics[J]. Balucani N,Int. J. Astrobiol,2002,1:15-23.
    [162]WOON D E, Modeling chemical growth processes in Titan's atmosphere:1Theoretical rates for reactions between benzene and the ethynyl (C2H) and cyano(CN) radicals at low temperature and pressure[J]. Chemical Physics,2006,331:67-76.
    [163]WOON D E, PARK J Y, Modeling chemical growth processes in Titan'satmosphere2Theoretical study of reactions between C2H and ethene,propene,1-butene,2-butene, isobutene, trimethylethene, andtetramethylethene[J].Icarus,2009,202:642-655.
    [164]FAURE A,VUITTON V,THISSEN R WIESENFELD L, A SemiempiricalCapture Model for Fast Neutral Reactions at Low Temperature[J]. Journal ofPhysical Chemistry A,2009,113:13694-13699.
    [165]BERTELOITE C, LE PICARD S D, BIRZA P,GAZEAU M C, CANOSA A,ENILAN Y B, kinetics study of the reactions of the C4H radical with varioushydrocarbons observed in Titan's atmosphere[J].Icarus,2008,194:746-755.
    [166]GOULAY F,TREVITT A J, MELONI G, SELBY T M, OSBORN D L,TAATJES C A, VEREECKEN L, LEONE S R, Cyclic versus linear isomersproduced by reaction of the methylidyne radical (CH) with small unsaturatedhydrocarbons[J]. Journal of the American Chemical Society,2009,131(3):993-1005.
    [167] BERTELOITE C, LE PICARD S D, BALUCANI N, CANOSA A, SIMS I R,Low temperature rate coefficients for reactions of the butadiynyl radical, C4H,with various hydrocarbons Part I: reactions with alkanes (CH4, C2H6, C3H8,C4H10)[J]. Physical Chemistry Chemical Physics,2010,12:3666-3676.
    [168] BERTELOITE C, LE PICARD S D, BALUCANI N, CANOSA A, SIMS I R,Low temperature rate coefficients for reactions of the butadiynyl radical, C4H,with various hydrocarbons Part II: reactions with alkenes (ethylene, propene,1-butene), dienes (allene,1,3-butadiene) and alkynes (acetylene, propyne and1-butyne)[J]. Physical Chemistry Chemical Physics,2010,12:3677-3689.
    [169] Herbst E, Chemistry in the Interstellar Medium[J]. Annu Rev Phys Chem,1995,46:27-53.
    [170]THADDEUS P, GOTTLIEB C A, HJALMARSON A, JOHANNSON L E B,IRVINE W M, FRIBERG P,LINKE R A,Astronomical identification of the C3Hradical[J]. Astrophysical Journal,1985,294: L49-L53.
    [171]YAMAMOTO S, SAITO S,Microwave spectrum and molecular structure of thecyclic C3H radical[J]. Journal of Chemical Physics,1994,101:5484-5483.
    [172]YAMAMOTO S, SAITO S, SUZUKI H, DEGUCHI S, KAIFU N, ISHIKAWAS, OHISHI M,, Astrophysical Journal,1990,348:363.
    [173]KANADA M, YAMAMOTO S, SAITO S, OSAMURA Y,Molecular structureof the linear C3H radical: Microwave spectrum of the13C substituted species[J].Journal of Chemical Physics,1996,104:2192-2201.
    [174]MCCARTHY M,THADDEUS P,Rotational spectrum and carbon-13hyperfinestructure of the C3H, C5H, C6H, and C7H radicals[J]. Journal of ChemicalPhysics,2005,122:174308-.
    [175]DING H, PINO T, G€UTHE F, MAIER J P,Gas phase electronic spectrum ofC3H in the visible[J]. Journal of Chemical Physics,2001,115:6913-6919.
    [176]JIANG Q, RITTBY C M L, GRAHAM W R M Vibrational spectrumof linear C3H in solid argon[J].J Chem Phys1993,99:3194-3199.
    [177]CLARY D C, BUONOMO E, SIMS I R, SMITH I W M, GEPPERT W D,NAULIN C, COSTES M, CARTECHINI L, CASAVECCHIA P,C+C2H2: AKey Reaction in Interstellar Chemistry[J]. Journal of Physical ChemistryA,2002,106:5541-5552.
    [178]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al:Gaussian03, Revision D01, Gaussian, Inc: Wallingford CT,2004.
    [179]ZHANG S W,TRUONG T N, VKLAB, Version10;[M]. University of Utah,2001.
    [180]MILLER J A,KLIPPENSTEIN S J,ROBERTSON S H, A Theoretical Analysisof the Reaction between Vinyl and Acetylene: Quantum Chemistry and Solutionof the Master Equation[J]. Journal of Physical Chemistry A,2000,104:7525-7536.
    [181]KLIPPENSTEIN S J,MILLER J A, From the Time-Dependent, Multiple-WellMaster equation to Phenomenological Rate Coefficients[J]. Journal of PhysicalChemistry A,2002,106:9267-9277.
    [182]PILLING M J, ROBERSTON S H, Master equation madels for chemicalreactions of importance in combustion[J]. Annual Review of PhysicalChemistry,2003,54:245-275.
    [183]FRANKCOMBE T J,SMITH S C, Fast, scalable master equation solutionalgorithms IV Lanczos iteration with diffusion approximation preconditionediterative inversion[J]. Journal of Chemical Physics,2003,119:12741-12748.
    [184]GILBERT R G,SMITH S C, Theory of Unimolecular and RecombinationReactions; Blackwell Scientific:[M]. Carlton, Australia,1990.
    [185]MILLER J A,KLIPPENSTEIN S J, The reaction between ethyl and molecular oxygen II:Further analysis[J]. Int. J. Chem. Kinet.,2001,33:654-668.
    [186]FITZGERALD M,BOWIE J H,SCHR DER D, SCHWARZ H, The formationof neutral CCCO2H and HCCCO2molecules from anionic precursors in the gasphase: a joint experimental and theoretical study[J].Rapid Common MassSpectrom,2005,19(24):3705-3712.
    [187]TUCKER K D,KUTNER M L,THADDEUS P, The ethynyl radical C2H—Anew interstellar molecule[J]. Astronomy and Astrophysics,1974,193:L115-L119.
    [188]HOMANN K H,WAGNER H G, Chemistry of Carbon Formation inFlames[J].Proc. R. Soc. London, Ser. A1967,307:141-152.
    [189]PETY J, TEYSSIER D, FOSSE D, GERIN M, ROUEFF E,ABERGELA,HABART E, CERNICHARA J, Are PAHs precursors of small hydrocarbonsin photo-dissociation regions? The Horsehead case[J]. Astronomy andAstrophysics,2005,435:885-900.
    [190]FRENKLACH M, Reaction mechanism of soot formation in flames[J]. PhysicalChemistry Chemical Physics,2002,4:2028-2037.
    [191]RICHTER H, HOWARD J B, Formation of polycyclic aromatic hydrocarbonsand their growth to soot—a review of chemical reaction pathways[J]. Prog.Energy Combust. Sci,2000,26:565-608.
    [192]VIOLI A, Modeling of soot particle inception in aromatic and aliphaticpremixed flames[J].Combust Flame,2004,139:279-287.
    [193]LEBONNOIS S, Benzene and aerosol production in Titan and Jupiter'satmospheres: a sensitivity study [J]. Planetary and Space Science,2005,53:486-497.
    [194]LEBONNOIS S, BAKES E L O,MCKAY C P,Transition from GaseousCompounds to Aerosols in Titan's Atmosphere[J]. Icarus,2002,159:505-517.
    [195]WILSON E H, ATREYA S K, Chemical Sources of Haze Formation in Titan'sAtmosphere[J]. Planetary and Space Science,2003,51:1017-1033.
    [196]WILSON E H, ATREYA S K, COUSTENIS A, Mechanisms for the formationof benzene in the atmosphere of Titan[J].J. Geophys Res, Planets,2003,108:5014-5024.
    [197]KRESTININ A V, Detailed Modeling of Soot Formation in HydrocarbonPyrolysis[J].Combust Flame,2000,121:513-524.
    [198] FRIEDSON A J, WONG A S, YUNG Y L, Models for polar haze formation inJupiter's stratosphere[J].Icarus,2002,158:389-400.
    [199]FOSSE D, CERNICHARO J, GERIN M, COX P,Molecular Carbon Chains andRings in TMC-1[J]. Astrophysical Journal,2001,552:168-191.
    [200]SMITH I W M, HERBST E, CHANG Q, Rapid neutral-neutral reactions at lowtemperatures: a new network and first results for TMC-1[J].Mon. Not R. Astron.Soc.,2004,350:323-330.
    [201]GEISS J, ALTWEDD K, BALSIGER H, GRAF S, Rare atoms, molecules andradicals in the coma of P/Halley[J].Space Sci. Rev.,1999,90:253-268.
    [202]BERGEAT A, CALVO T, CARALP F, FILLION J H, DORTHE G, LOISON JC, Determination of the CH+O2product channels[J].Faraday Discuss,2001,119:67-77.
    [203]ZHU W W, JIN L, CUI Z H, ZHANG S W, DING Y H, Understanding theoxidation of the tricarbon radical C3H: A potential energy surface survey[J].Int. J.Quantum Chem.,2013,113:2506–2513.
    [204]ZHU W W, ZHANGS W, DING Y H,Oxidation mechanism of the butadiynylradical, C4H: Analogue of C2H or not?[J].J. Theor. Comput. Chem.,2013,12:1340002.
    [205]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al, Gaussian09, Revision A01, Gaussian, Inc, Wallinford CT,2009.
    [206]ZIURYS, LUCY M,The chemistry in circumstellar envelopes of evolved stars:Following the origin of the elements to the origin of life[C].Proceedings of theNational Academy of Sciences,2006,103(33):12274–12279.
    [207]PASCOLI G, COMEAU M,Silicon Carbide in Circumstellar Environment[J].Astrophysics and Space Science,1995,226:149–163.
    [208]HERBST E, MILLAR T J, WLODEK S,BOHME D K, The chemistry of siliconin dense interstellar clouds[J]. Astron Astrophys,1989,222:205-210.
    [209]IZUHA M, YAMAMOTO S, AND SAITO S, Microwave spectrum of silylideneH2CSi[J]. Journal of Chemical Physics,1996,105:4923-4926.
    [210]SCHENEWERK M S, SNYDER L E, Hjalmarson A Interstellar HCO-Detection of the missing3millimeter quartet[J].Astrophysical Journal, Part2-Letters to the Editor,1986,303: L71–L74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700