用户名: 密码: 验证码:
煤炭高精度地震波阻抗反演智能算法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭资源西多东少,煤炭生产的重点正逐步西移。相对于东部而言,西部地区煤田虽然构造简单,但是煤层结构较为复杂,对比解释困难。因此,在我国西部地震勘探中由构造勘探向岩性勘探转变势在必行,而波阻抗反演技术是实现岩性勘探和解释的重要手段。波阻抗反演属于典型的非线性优化问题,常规反演算法如广义线性反演、最大似然反演等均采用非线性问题的线性化或拟线性化处理方法,导致反演结果严重依赖于初始模型,并且易陷入局部最优以及具有多解性等不可避免的缺陷。而随着前沿学科的交叉渗透,新技术、新方法的引入以及计算机软硬件技术的飞速发展,将智能计算方法应用于非线性波阻抗反演已逐渐成为地球物理领域研究的热点问题之一。本文针对单一模拟退火、遗传算法等智能算法在进行波阻抗反演时存在的早熟收敛、计算量大以及计算结果不够稳定等困难,将不同智能算法相结合并将一些新颖的智能算法引入到波阻抗反演问题中,开展了混合智能算法的改进及其在波阻抗反演中的应用研究。本文的主要研究成果及创新点如下:
     (1)研究了提高反演精度的小波分频和声波测井曲线重构技术。提出了用于煤田声波测井曲线重构的GA-BP混合优化算法。GA-BP混合优化算法综合了密度、视电阻率曲线信息,通过GA训练神经网络的权值和阈值和引入能够增加收敛速度的BP算子,提高了声波测井曲线重构的准确性,为波阻抗反演提供了可靠的数据保证。
     (2)建立了约束条件下智能计算反演方法的目标函数。为提高无约束条件目标函数的反演效果,在目标函数中加入测井曲线所提供的先验波阻抗信息和边界波阻抗差值与振幅响应的关系作为约束条件,从而限定解的取值范围,以提高收敛速度和减少运算时间。同时根据波阻抗反演问题的具体特点,对智能计算反演方法中参数的编码和适应度函数的定义等关键问题进行了分析和研究。
     (3)提出了改进的遗传退火算法。针对波阻抗反演问题的特点,采用十进制对反演参数进行编码,避免了十进制和二进制进行相互转换的环节,提高了算法收敛速度。定义了波阻抗反演问题的个体适应度函数,并引入模拟退火机制进行适应度拉伸,进一步改善了算法的收敛性能。计算结果表明,在无噪声情况下的反演结果与真实模型完全吻合;随着地层数的增加以及噪声的增强,反演误差有所增大;但其反演精度明显优于遗传算法和模拟退火算法。
     (4)提出了改进的混合粒子群优化算法。为克服基本粒子群算法在进化后期收敛速度慢和易陷于局部极值的缺陷,引入浓度选择和免疫记忆机制,实现免疫算法和粒子群算法的有机结合;综合考虑全局搜索能力和局部搜索能力,提出两阶段搜索策略;提出克隆选择和Logistic序列相结合的最优粒子变异机制。通过理论模型反演实例表明,改进的混合粒子群优化算法反演精度高,收敛速度快,具有良好的抗噪性能;通过间距40m的2m和3m两个薄煤层理论模型反演实例表明,改进算法能够识别2m以下薄煤层。
     (5)设计了能够更好地模拟现实世界免疫行为的免疫选择、免疫变异、种群重组、混沌增殖等免疫优化算子,在此基础上提出了免疫遗传优化算法。针对波阻抗反演问题的实际特点,为解决全局搜索能力和种群多样性之间的矛盾,在进化过程中动态调整抗体群规模。通过理论模型反演实例表明,改进算法反演精度高,抗噪性能强;通过层间距小于波长的2m、3m和5m三个薄煤层理论模型反演实例表明,改进算法能够很好的反演出2m、3m和5m三个薄煤层。
     最后,通过改进的混合粒子群和免疫遗传算法在阳泉二矿和成庄煤矿实际资料反演中的应用,证明两种新的混合智能优化方法所得反演剖面的纵向分辨率与实际地震剖面相比有较大提高,弱反射波的连续性和可检测性得到增强,为研究下组煤分布提供了有效方法,能够应用于煤炭领域岩性勘探研究。
The focus of coal production in our country is shifting from east to west, for the west occupies most of coal resources. Compared to the east, in the west the formation of the coal field is simple, but the fabric of coal seam is much complicated leading to difficult comparison interpretation. So it is necessary to realize lithology interpretation from structure interpretation. Wave impedance inversion is a key method to achieve lithology interpretation and it plays a key role in geophysical prospecting. Wave impedance inversion belongs to nonlinear optimization. However, conventional inversion methods such as generalized linear inversion and so on are based on linear theory or quasi-linear theory, which results in sensitive to initial model and local extreme and multi-extreme. With the development of computer technology and the introduction of new leading subjects, new methods based on intelligent computation are becoming the focus in geophysical domain. In order to improve premature convergence and reduce calculation cost of the current commonly used intelligent inversion methods,in this dissertation hybrid intelligent algorithms and novel intelligent computation methods are introduced and to be applied to wave impedance inversion. In this paper, the main research works and the achievement obtained include the following contents.
     (1) GA-BP optimization algorithm was proposed to reconstruct sonic logging curve in coal field. Combining density and resistance, GA-BP algorithm improved the accuracy of reconstruction of the sonic logging curve, which provided reliable data for inversion.
     (2) The object function with restriction in wave impedance inversion was constructed. To improve the effect of inversion under the object function without restriction, sonic logging information and the relation between the wave impedance difference in the boundary and the amplitude were added to the object function. So the inverted impedance was limited in a certain range and the convergence speed was greatly increased. Considered the characteristic of wave impedance inversion the encoding and fitness function was also discussed.
     (3) Improved GASA optimization method was proposed by combing modified genetic operators and simulated annealing. According to the characteristic of wave impedance inversion, decimal encoding system was adopted to avoid the transformation from binary system to decimal system and speed the convergence. Fitness function was defined and drawn by simulated annealing mechanism. Computation results showed that without noise the inverted results were consistent to the real model and with the increase of noise and the inverted parameters the precision of inversion were decreased, but the precision were better than GA and SA.
     (4) Improved hybrid particle swarm optimization (PSO) algorithm was proposed. To avoid the premature convergence of particles and slow convergence in the late process, the immune memory idea and the selection strategy based on antibody density were introduced into PSO and the proposed two-stage search strategy took the global search ability and the local search ability into account. Furthermore, the proposed cloning selection operator accelerated the best particle away from the local extreme and Logistic sequence was adopted to extend the search scope and further the best particle mutation. The simulation results indicated that the improved hybrid PSO had better efficiency and higher accuracy. The theoretical model of two thin coal seam with 40 meters interval was constructed and the inverted results showed that the thickness of less 2m coal seam was identified.
     (5) Based on immune optimization operators such as immune selection, immune mutation, population recombination and chaos multiplication, an improved immune genetic algorithm was proposed. According to the wave impedance inversion, the size of population was dynamic adjusted to improve population diversity and global convergence. The simulation results indicated that the improved immune genetic algorithm had a better efficiency and a little higher accuracy than immune hybrid PSO algorithm. The theoretical model of three thin coal seam with intervals less than wave length was constructed and the inverted results showed that the thickness of 2m, 3m and 5m coal seams were identified.
     Finally, the proposed immune hybrid PSO and immune genetic algorithm were applied to Yangquan and Chengzhuang coalfield. The inversion results showed that the inversion resolution were obviously higher than the seismic resolution, the continuity and the detection capability of weak reflection were improved greatly, which provided an effective method for study lower group coal and lithology interpretation.
引文
[1]孙升林.努力提高三维地震勘探精度,为西部煤炭工业做出新贡献[J].中国煤田地质, 2008, 20(6): 1-5.
    [2]杨文采.非线性地球物理反演方法—回顾与展望[J].地球物理学进展, 2002, 17(2): 255-261.
    [3]杨文采.评地球物理反演的发展趋向[J].地学前缘, 2002, 9(4): 389-396.
    [4]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社, 1993: 73-80.
    [5]王家映.地球物理反演理论(第二版)[M].北京:高等教育出版社, 2002.
    [6]刘光鼎.地球物理引论[M].上海:上海科学技术出版社, 2005.
    [7]杨文采.地球物理反演的理论与方法[M].北京:地质出版社, 1997.
    [8]张霖斌,姚振兴,纪晨等.快速模拟退火算法及其应用[J].石油地球物理勘探, 1997, 32(5): 654-660.
    [9]顾汉明,江涛,王家映.改进快速模拟退火方法及其在AVO叠前参数反演中的应用[J].地球科学, 1999, 24(4): 418-422.
    [10]蒋龙聪,刘江平.模拟退火算法及其改进[J].工程地球物理学报, 2007, 4(2):135-140.
    [11]霍凤斌.混沌模拟退火在储层参数反演中的应用[D].成都:成都理工大学, 2007.
    [12]王宝珍,杨文采.用改进的遗传算法进行地震波阻抗反演研究[J].石油地球物理勘探, 1998, 33(2): 258-264.
    [13]李晶,邹强,钟本善.波阻抗遗传算法反演方法的研究及其应用[J].物探化探计算技术. 2001, 23(1): 16-21.
    [14]潘成欣.用混沌遗传优化方法反演岩性参数变化率的研究[D].青岛:中国海洋大学, 2006.
    [15]成琥,赵宪生,王红霞.基于BP网络和遗传算法的波阻抗混合反演[J].石油物探, 2006, 45(6): 574-579.
    [16]彭真明.地震反演中的非线性优化方法及应用研究[D].成都:成都理工大学, 2001.
    [17]赵宪生,严刚峰,吴宁萍.基于遗传算法的波阻抗混合反演[J].天然气工业, 2005, 25(7): 32-34.
    [18]路鹏飞,杨长春,郭爱华.改进的模拟退火算法及其在叠前储层参数反演中的应用[J].地球物理学进展, 2008, 23(1): 104-109.
    [19]魏培君,章梓茂,韩华.流体饱和孔隙介质参数反演的模拟退火算法[J].工程力学,2002, 19(2): 128-131.
    [20]戴勇.致密碎屑岩储层裂缝地震预测与评价方法研究[D].成都:成都理工大学, 2007.
    [21]郑庆生,韩大匡.高阶神经网络在储层分布参数定量预测中的应用[J].地球物理学进展, 2007, 22(2): 552-555.
    [22]蔡涵鹏,贺振华,黄德济.基于粒子群优化算法波阻抗反演研究与应用[J].石油地球物理勘探,2008, 3(5): 535-539.
    [23]袁三一,陈晓宏.一种新的地震子波与层速度反演方法[J].地球物理学进展, 2008, 23(1): 198-205.
    [24]罗红明.量子遗传算法及其在地球物理反演中的应用研究[D].武汉:中国地质大学, 2007.
    [25]罗红明,王家映,朱培民.基于免疫算法的地球物理反演研究[J].石油地球物理勘探, 2008, 43(2): 222-228.
    [26]朱仕军,孙建库,文中平.混合优化波阻抗反演方法研究[J].天然气工业, 2006, 26(7): 46-49.
    [27]姚姚.地球物理非线性反演模拟退火法的改进[J],地球物理学报, 1995, 38(5): 643-646.
    [28]姚姚.蒙特卡洛非线性反演方法及应用[M],冶金工业出版社, 1997.
    [29]师学明,王家映,易远元.一种新的地球物理反演方法——模拟原子跃迁反演[J].地球物理学报, 2007, 50(l): 305-312.
    [30]魏超,朱培民,王家映.量子退火反演的原理和实现[J].地球物理学报, 2006, 49(2): 577-583.
    [31]魏超.量子退火及其在地震波阻抗反演中的应用研究[D].武汉:中国地质大学, 2005.
    [32]易远元.地震波阻抗反演的粒子群算法实现[J].石油天然气学报, 2007, 29(3): 79-81.
    [33]吴媚,符力耘,李维新.高分辨率非线性储层参数反演方法和应用[J].地球物理学报, 2008, 51(2): 546-557.
    [34]贾豫葛,李小凡,张美根.地震波非线性反演方法研究综述[J].防震减灾工程学报, 2005, 25(3): 345-351.
    [35]吕铁良.波阻抗约束反演中的约束方法研究[D].北京:中国石油大学, 2007.
    [36] Stoffa P L, Sen M K. Nonlinear multiparameter optimization using genetic algorithms: inversion of plane wave seismograms. Goephys, 1991, 56:1794-1810.
    [37] Gallagher K, Sambridge M S, Drijkoningen G. Genetic algorithms: an evolution on Monte Carlo methods in strongly nonlinear geophysical Optimization Problems. Geophys. Res. Lett., 1991, 18: 2177-2180.
    [38] Wilson W G, Vasudevan K. Application of the Genetic Algorithm to Residual Statics Estimation. Geophys. Res. Lett., 1991, 18:2181-2184.
    [39] Sambrigde M S, Drijkoningen G. Genetic algorithms in seismic waveform inversion. GeoPhys., 1992, 50:2784-2796.
    [40]何樵登,熊维纲.应用地球物理教程—地震勘探.北京:地质出版, 1991.
    [41]何樵登.地震勘探原理和方法.北京:地质出版社, 1986.
    [42]姚姚,詹正彬,钱绍湖.地震勘探新技术与新方法.武汉:中国地质大学出版社, 1991.
    [43]杨辉,戴世坤,宋海斌,等.综合地球物理联合反演综述[J].地球物理学进展, 2002, 17(2):262-271.
    [44]李庆忠.论地震约束反演的策略[J].石油地物理勘探, 1998, 33(4):423-438.
    [45]陆基孟.地震勘探原理(上册)[M],北京:石油大学出版社, 1993.
    [46]赵秋亮.基于非线性方法的地震子波提取及波阻抗反演[D].成都:成都理工大学, 2005.
    [47]张学庆.测井属性的地震测井智能联合反演[D].成都:成都理工大学, 2002.
    [48]穆星.地震波阻抗反演适用条件与参数设置研究[D].东营:中国石油大学, 2006.
    [49]穆星.稀疏脉冲波阻抗反演参数对反演效果的影响研究.工程地球物理学报. 2005, 2(2): 104-108.
    [50]梁光河.地震子波提取方法研究[J].石油物探, 1998, 37(1): 31-39.
    [51] Stoffa P L, Sen M K. Nonlinear multiparameter optimization using genetic algorithms: inversion of plane wave seismograms[J]. Goephys, 1991, 56:1794-1810.
    [52] Gallagher K, Sambridge M S, Drijkoningen G. Genetic algorithms: an evolution on Monte Carlo methods in strongly nonlinear geophysical Optimization Problems[J]. Geophys. Res. Lett., 1991, 18:2177-2180.
    [53] Wilson W G, Vasudevan K. Application of the Genetic Algorithm to Residual Statics Estimation[J]. Geophys. Res. Lett., 1991, 18, 2181-2184.
    [54] Sambrigde M S, Drijkoningen G. Genetic algorithms in seismic waveform inversion[J]. GeoPhys., 1992, 50: 2784-2796.
    [55] Carloz Calderon-Macias, Mrinal K Sen and Paul L Stoffa. Artificial neural networks for parameter estimation in Geophysics[J].Geophysical Prospecting, 2000, 48: 21-47.
    [56]马劲风.声波测井与地震数据匹配的新方法[J].西北大学学报(自然科学版), 1998, 28(3): 229-232.
    [57]李振春,张军华.地震数据处理方法[M].山东东营:石油大学出版社, 2004.
    [58]尹成.非线性全局最优化反演剩余静校正研究[D].成都:成都理工大学, 1997.
    [59]杨文采.非线性反演方法的补充比较[J].石油物探1995, 34(4).
    [60]彭真明等,基于演化神经网络学习的储层参数预测方法[C],中国地球物理学会年刊.武汉,中国地质大学出版社, 2000.
    [61]王凌.智能计算算法及其应用[M].北京:清华大学出版社, 2001.
    [62]陈国良,王煦法.遗传算法及其应用[M].北京:人民邮电出版社, 1996.
    [63]徐宗本,陈志平,章祥荪.遗传算法基础理论研究的新近进展.数学进展.2001, 29(2) .
    [64]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社, 2002: 93-99.
    [65] Xiaosong N, A J Surkan. Genetic Algorithms: Hints From Biological Science[C], Proc of IEEE Inter. Joint conf on Neural Networks, 1999:426-429.
    [66] D E Goldberg. Genetic Algorithms in search, Optimization and Machine learning[M], Addsion Weisley Publishing Company, 1997.
    [67] Bornholdt. General Asymmetric Neural Network and Structure Design By Genetic Algorithm[J], NeuralNetwork. 2001, 5(2): 327-334.
    [68] Whitley D, Starkweather T. Genetic Algorithm and Neural Networks: Optimizing Connecting and Connectivity[J], Parallel Computing.2002, 14(5):347-361.
    [69] Me1nerney M, Dhawan AP. Use of Genetic Algorithm with Back Progatation in Training of Feed Forward Neural Networks[C]. Proeeedings of IEEE International Conference on Neural Networks, San Franeisco, 1993, 203-208.
    [70] K1tanoH.Design in general networks using genetic algorithms with graph generation system[J]. Complex Systems, 1990, 4 (1): 461-476.
    [71]李守巨,刘迎曦等.基于模拟退火算法的边坡最小安全系数全局搜索方法[J].岩石力学与工程学报, 2003, 22(2): 236-240.
    [72]邹广电,陈永平.滑坡和边坡稳定性分析的模拟退火-随机搜索耦合算法[J].岩石力学与工程学报, 2004, 23(12): 2032-2037.
    [73] Melanie M. An Introduction to Genetic Algorithms [M]. MIT Press, Cambridge, MA, 1999.
    [74] Petridis V, Kazarlis S, Bakirtzis A. Varying Fittness Function in Genetic Algorithms Constrained Optimization: The Cutting Stock and Unit Commitment Problems [J]. IEEE Transaction on SMC Part B:Cybernetics (S1083-4419).1998, 28(5): 629-639.
    [75] Shaunna M, Tom L, Abdulla H. A Genetic Algorithm Environment for Star Pattern Recognition[J]. Journal of Intelligent and Fuzzy Systems (S1064-1246).1998, 6(1): 3-16.
    [76] Bhandarkar S M, Zhang H. Image Segment Using Evolutionary Computation[J]. IEEE Transactions and Evolutionary Computation(S1089-778X). 1999, 3(1): 1-21.
    [77] Michalewicz Z.Genetic Algorithms + Data Structures = Evolutionary Programs [M].New York: Springer Verlag, 1996.
    [78] Goldberg D E, Deb K, et al. Rapid, Accurate Optimization of Difficult Problems Using Genetic Algorithms, IlliGAl [J]. Technical Report No.93003, University of Illinois at Urbana- Champaign, 1993.
    [79] Grefenstette J J. Optimization of Control Parameters for Genetic Algorithms [J]. IEEE Transactions on Systems, Man, and Cybernetics(S0018-9472). 1986, 16(1): 122-128.
    [80] Goldberg D E. Sizing Populations for Serial and Parallel Genetic Algorithms[C].Proceedings of the 3rd International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1989, 70-79.
    [81] Simth R E. Adaptively Resizing Populations: An Algorithm and Analysis[C].Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1993, 653.
    [82] Arabas J, Michalewics Z, Mulawka J. GavaPS——a Genetic Algorithm with Varing Population Size.Proceedings of the First IEEE International Conference on Evolutionary Computation, IEEE Service Center, Piscataway, NJ,1994, 73-78.
    [83] Schaffer J. Proceedings of the Third International Conference on Genetic Algorithms.Morgan Kaufmann Publishers, San Mateo,CA, 1989.
    [84] Liang J J, Suganthan P N.Dynamic Multi-Swarm Particle Swarm Optimizer[J]. Proceedings of the IEEE International Swarm Intelligence Symposium, California, USA. USA: IEEE, 2005: 124-129.
    [85] Mohais A S, Mendes R, Ward C, Posthoff C. Neighborhood Re-Structuring in Particle Swarm Optimization[J]. NAustralian Conference on Artificial Intelligence. Heidelberg, Germany: SpringerBerlin, 2005: 776-785.
    [86] Mendes R. Population Topologies and Their Influence in Particle Swarm Performance[D]. Lisbon, Portugal: University of Minho, 2004.
    [87] Kennedy J, Eberhart RC. Particle swarm optimization[C]. In: Proc. of the IEEE Int’l Conf. on Neural Networks. Perth Australia: IEEE Press, 1995. 1942-1948. http://www.engr.iupui.edu/~shi/Coference /psopap4.html.
    [88] Parsopoulos KE, Vrahatis MN. On the computation of all global minimizers through particle swarm optimization[J]. IEEE Trans. On Evolutionary Computation, 2004, 8(3): 211-224.
    [89] Krink T, Vesterstrom JS, Riget J. Particle swarm optimization with spatial particle extension[C]. In: Proc. of the IEEE Int’l Conf. on Evolutionary Computation. Honolulu: IEEE Inc., 2002: 1474-1497.
    [90] Kazemi BAL, Mohan CK. Multi-Phase generalization of the particle swarm optimization algorithm[C]. In: Proc. of the IEEE Ist Conf. on Evolutionary Computation. Honolulu: IEEE Inc., 2002:489-494.
    [91] Hu XH, Eberhart RC. Adaptive particle swarm optimization: Detection and response to dynamic system[C]. In: Proc. of the IEEE Ist Conf. on Evolutionary Computation. Honolulu: IEEE Inc., 2002: 1666-1670.
    [92] Xie XF, Zhang WJ, Yang ZL. A dissipative particle swarm optimization[C]. In: Proc. of the IEEE Int’l Conf. on Evolutionary Computation. Honolulu: IEEE Inc., 2002: 1456-1461.
    [93] Kennedy J. Bare bones particle swarms[C]. In: Proc. of the IEEE Swarm Intelligence Symp. Indianapolis: IEEE Press, 2003: 53-57.
    [94] Zhang WJ, Xie XF. DEPSO: Hybrid particle swarm with differential evolution operator[C]. In: Proc. of the IEEE Int’l Int’l Conf. on Systems, Man and Cybernetics. Washington: IEEE Inc., 2003: 3816-3821.
    [95] Lovbjerg M, Krink T. Extending particle swarm optimizers with self-organized critically[C]. In: Proc. of the IEEE Int’l Conf. on Evolutionary Computation. Honolulu: IEEE Inc., 2002: 1588-1593.
    [96] Ratnaweera A, Halgamuge SK, Watson HC. Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEETrans. on Evolutionary Computation, 2004, 8(3):240-255.
    [97] Ozcan E, Mohan CK. Particle swarm optimzation: Surfing the waves[C]. In: Proc. of the IEEE Int’l Conf. on Evolutionary Computation. Washington: IEEE Inc., 1999: 1939-1944.
    [98] Clerc M, Kennedy J. The particle swarm——Explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans. on Evolutionary Computation, 2002, 6(1): 58-73.
    [99] Cristian TI. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325.
    [100] Li H, Tang HW, Guo CH. The convergence analysis of a class of evolution strategies[J]. OR Trans., 1999, 3(4): 79-83.
    [101] Guo CH, Tang HW. Global convergence properties of evolution strategies[J]. Mathematica Numerica Sinica, 2001, 23(1): 105-110.
    [102] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8 (3): 256-279.
    [103] Ratnaweera A, Halgamuge S K, Wat son H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Trans on Evolutionary Computation, 2004,8 (3): 240-255.
    [104] Schott J. Fault tolerant design using single and multicriteria genetic algorithm optimization [D]. Cambridge: Massachusett’s Institute of Technology, 1995.
    [105] Kennedy J, Eberhart R. Particle swarm op timization [C].Proceedings of IEEE International Conference on Neural Networks. 1995, 4: 1942-1948.
    [106] Vanden Bergh F, Engelbrecht A P. Training p roduct unit networks using cooperative particle swarm op timization[C].IEEE International Joint Conference on Neural Networks. Washington DC, USA. 2001: 126-131.
    [107] Shi Y, Eberhart R C. A modified particle swarm op timizer[C]. IEEEWorld Congress on Computational Intelligence. 1998: 69-73.
    [108] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm op timization [C].Proceedings of the IEEE Conference on Evolutionary Computation. ICEC, 2001: 84-88.
    [109] L vbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C].Third Genetic and Evolutionary Computation Conference.Piscataway, NJ: IEEE Press, 2001:469-476.
    [110] NoelM M, Jeannette T C. Simulation of a new hybrid particle swarm optimization algorithm [C].Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory.2004: 150-153.
    [111] Li Binyu, Xiao Yunshi, Wu Qidi. Hybrid algorithm based on particle swarm op timization for solving constrained op timization p roblems [J]. Control and Decision, 2004(07) : 804-807.
    [112]李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报, 2004(07): 897-903.
    [113]徐雪松.基于人工免疫系统的函数优化研究及其在复杂系统的应用[D].杭州:浙江大学, 2004.
    [114]刘若辰,杜海峰,焦李成.一种免疫单克隆策略算法.电子学报, 2004, 32(10): 1880-1884.
    [115]刘若辰,杜海峰,焦李成.免疫多克隆策略.计算机研究与发展, 2004, 41(4): 571-576.
    [116]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望.计算机学报, 2002, 25(12): 1281-1293.
    [117]王磊,潘进,焦李成.免疫规划.计算机学报, 2000, 23(8): 806-812.
    [118]罗小平,韦巍.一种基于生物免疫遗传学的新优化方法.电子学报, 2003, 31(l): 59-62.
    [119]曹先彬,刘克胜,王煦法.基于免疫遗传算法的装箱问题求解[J].小型微型计算机系统, 2000, 4: 361-363.
    [120]罗文坚,曹先彬,王煦法.用一种免疫遗传算法求解频率分配问题[J].电子学报, 2003, 31(6): 915-917.
    [121]王瑞明,曾玉金等.基于免疫遗传算法的模糊神经网络在交流伺服系统中的应用[J].浙江大学学报(工学版), 2005, 39(8):1 156-1159.
    [122]王熙法,张显俊,曹先彬等.一种基于免疫原理的遗传算法[J].小型微型计算机系统, 1999, 20(2): 17-20.
    [123]王磊,潘进,焦李成.免疫算法[J].电子学报, 2000, 28(7): 74-78.
    [124]郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策, 2005, 20(2): 161-164.
    [125]赵俊忠,黄厚宽,田盛丰.免疫机制在计算机网络入侵检测中的应用研究[J].计算机研究与发展, 2003, 40 (9) :1293-1298.
    [126] De Castro L N, Von Zuben F J. The Clonal Selection Algorithm with Engineering Applications[C]. In Workshop Proc. f GECC’00,Workshop on Artificial Immune Systems and their Applications, Las Vegas, USA, July 2000: 36-37.
    [127] De Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Principle[J] IEEE Transaction on Evolutionary Computation, 2002, 6(3): 239-251.
    [128] WierzchońS T. Function Optimization by the immune Metaphor[J]. ASK QUARTERLY, 2002,6(3):1-16
    [129] Costa A M, Vargas P A, et al. Makespan Minimization on Parallel Processors: An Immune-Based Approach. Evolutionary Computation[C], CEC’02.Proceedinds of the 2002 Congress, 12-17 May 2002, 1: 920-925.
    [130] CHUN J S,KIM M K,JUNG H K. Shape optimization of electromagnetic devices using immune algorithm[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1876-1879.
    [131] De Castro L N.Von Zuben F J. Clonal selection algorithm with engineering applications[C]. In: Proc GECCO’00, Las Vegas, Nevada, CSA, 2000, 36-37.
    [132] Castro L N de, Femando J, Zuben V. L earning and Optimization Using the Clonal Selection Principle [J]. IEEE Trans on Evolutionary Computation, 2002, 6 (3): 239-251.
    [133] Karanikas C, P roio s G. A Nonlinear Discrete Transform for Pattern Recognition of Discrete Chaotic System [J]. Chaos, Solition and Fractals, 2003, 5(17): 195-201.
    [134] Hong J, Lim W, Lee S. An Efficient Production Algorithm for Multihead Surface Mounting Machines Using Biological Immune Algorithm [J]. International Journal of Fuzzy Systems, 2000, 2(1): 45-53.
    [135] SungLing Chen, MingTong T Say, HongJey Gow. Scheduling of Cogeneration Plants Considering Electricity Wheeling Using Enhanced Immune Algorithm[J]. Electrical Power and Energy System, 2005, 27(1): 31-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700