用户名: 密码: 验证码:
五轴数控加工中无碰刀具轨迹生成算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由曲面在国防、航空航天、汽车、消费品等领域获得了广泛应用,由于形状复杂、精度要求高,其加工比较困难。鉴于五轴加工的优越性,越来越多的自由曲面采用五轴数控机床进行加工。然而无论从研究的深度与广度来说我国的五轴联动数控技术均落后于发达国家。因此以高速、高精度为方向,对五轴联动数控技术进行持续深入的研究具有极其重要的理论与实际意义。
     本文在总结国内外最新理论研究成果的基础上,对自由曲面五轴加工中的几个关键技术:刀具轨迹规划中的刀轴矢量规划、全局干涉检查算法、RTCP算法、高速高精微线段插补算法做了一些有益的研究和探索,并设计开发了具有自主知识产权的嵌入式五轴数控系统,论文的主要研究成果总结如下:
     提出了一种多目标优化的平底刀刀轴矢量规划算法,可以规划出加工效率高、切削条件稳定、机床运动平稳的刀轴矢量。现有算法在确定最优刀+轴矢量时,多以材料去除率最大作为优化目标,然而加工效率最高的刀轴矢量不一定是刀具最优姿态,还需要考虑加工质量、刀具刚度、刀轴光顺等因素。本文从这几个方面建立了单个刀轴矢量优劣、相邻刀轴矢量光顺性的度量指标,并以度量指标加权和最小作为优化目标建立了刀轴矢量优化模型,将多目标规划问题转化为力学平衡问题,高斯球面上运动节点的平衡位置就是最优刀轴矢量。
     提出了一种基于人工势场法的全局干涉检查算法,提高了算法的计算效率和鲁棒性。该算法通过求解复杂NURBS曲面间的最小距离判断干涉与否,并对干涉刀位给出了刀位修正算法。通过构建人工势场模型,分析虚拟小球受力情况,模拟其运动过程,获取平衡位置,将非线性方程组的求解转化为运动学中平衡位置的求取问题,可应用于NURBS、三角片或数学解析式表示的点、线、面间最小距离的求解。
     提出了一种基于旋转轴插补的RTCP插补算法,减小了非线性误差,保证了插补过程中机床旋转轴的运动平稳性;当刀具长度变化时无需重新通过后置处理生成数控程序,提高了加工效率。针对刀轴矢量变化较大时该算法在插补过程中可能出现的全局干涉现象,推导了RTCP插补过程中的刀杆偏差系数公式,避免了碰撞现象的发生。
     提出了一种实时前瞻的微线段直接插补算法,可以解决目前直接插补法在微线段加工中出现频繁加减速、不能精确到位的问题,实现微线段的高速高精加工。在精插补器中设计的匀变速DDA精插补算法能根据待插补直线段的始末速度在给定的插补周期内实现匀变速运动,可以减小机床冲击,改善零件表面加工质量。粗插补任务通过正向速度规划和反向速度修正,计算各微线段允许的最大拐角速度,再根据前瞻数据量和微线段允许速度实时调整实际拐角速度,最后调用匀变速DDA精插补算法实现脉冲输出。
     设计开发了具有自主知识产权的嵌入式五轴数控系统。通过实际加工,验证了文中所提无碰刀具轨迹生成算法的正确性和有效性。
Free-form surfaces have been used in a wide variety of applications in the national defense, aerospace, automotive and aesthetically pleasing products. It is difficult to be machined with high accuracy due to its complicated shape. Five-axis machining offers some advantages and is widely applied for free-form surfaces. The research and development of five-axis machining lag behind developed countries. Therefore pursuing in-depth research and development in high-speed and high-accuracy five-axis machining technology has far-reaching implications.
     According to the latest research achievements, some research and exploration in several key technologies of five-axis NC machining of free-form surfaces are conducted in this dissertation, including tool orientation planning, global tool interference avoidance, RTCP and the high speed machining of consecutive micro lines. A five-axis embedded NC system with self-owned intellectual property rights is designed.
     A multi-objective algorithm to determine the optimal tool orientation for five-axis flat-end cutter machining is proposed aiming at high efficiency, stable machining and smooth movement. Most existing algorithms only pursue the maximum material removal rate without taking into account other factors, such as the machining quality, cutter rigidity and the smoothness between adjacent tool orientations, etc. The metrics of tool orientation considering all above are established in this dissertation. Aiming at the minimal weighted metrics, a spring model on Gaussian Map (SMGM) is established, and the problem of finding optimal tool orientation is treated as the mechanical equilibrium problem. The fixed point at Gaussian Map will converge to locus of the optimal tool orientation.
     A global tool interference detection algorithm based on artificial potential field (APF) is proposed with robustness and high performance. The minimum distance between two Non-Uniform Rational B-Splines (NURBS) surfaces is calculated to determine interference or not. By constructing APF model, simulating the movements and obtaining the equilibrium positions, the solution of the nonlinear equations is converted to the kinematics problems. It can be applied to the computation of the minimum distance among points, curves, and surfaces represented by NURBS, triangles and the exact expressions. Finally, an interference avoidance method is given.
     A rotation tool center point (RTCP) algorithm based on angle interpolation is proposed. It can effectively reduce the nonlinear error, ensure the rotation axes moving smoothly, improve the machining efficiency by ensuring that CNC codes needn't to be generated by postprocessing software when tool length changes. The global interference may occur while interpolating two tool orientations which change largely. RTCP interpolation error factor formula is derived to avoid collision.
     A real-time look-ahead direct interpolation algorithm for small lines is proposed aiming at the problems of frequent acceleration/deceleration and the interpolation error of endpoint. A uniformly accelerated DDA interpolation algorithm is proposed which can achieve uniform variable motion in an interpolation period according to the start velocity and end velocity of a line. It can significantly reduce the impact of motor and enhance the machining quality. Rough interpolation is made up of two parts: velocity planning and real-time looking-ahead. It calculates the maximum allowable transition velocity, adjusts the actual velocity in accordance with look-ahead data, and then uses the uniformly accelerated DDA interpolation algorithm to output pulses.
     A five-axis embedded NC system with self-owned intellectual property rights is designed. Examples of actual cutting are presented to demonstrate the validity and effectiveness of the proposed algorithms of interference-free tool path generation in free-form surface machining.
引文
[1]孟书云.高精度开放式数控系统复杂曲线曲面插补关键技术研究[博士学位论文].南京航空航天大学,2006.
    [2]林胜.5轴数控机床发展与应用[J].航空精密制造技术,2005,41(4):1-6.
    [3]Lee Y S. Non-isoparametric tool path planning by machining strip evaluation for5-axis sculptured surface machining[J]. Computer-Aided Design,1998,30(7):559-570.
    [4]董伯麟.高速、高精度五轴联动数控系统关键技术研究[博士学位论文].合肥工业大学,2007.
    [5]周济,周艳红.数控加工技术[M].国防工业出版社,2002.
    [6]杨长祺.复杂曲面多轴加工的高精度、高效率数控编程系统研究[博士学位论文].重庆大学,2004.
    [7]Cox J J, Takezaki Y, Ferguson H R P, et al. Space-filling curves in tool-path applications [J]. Computer-Aided Design,1994,26(3):215-224.
    [8]Chen C C A, Juang Y S, Lin W Z. Generation of fractal toolpaths for irregular shapes of surface finishing areas [J]. Journal of Materials Processing Technology,2002,127(2):146-150.
    [9]Yang J, Bin H, Zhang X, et al. Fractal scanning path generation and control system for selective laser sintering (SLS)[J]. International Journal of Machine Tools and Manufacture,2003,43(3):293-300.
    [10]Rao A, Sarma R. On local gouging in five-axis sculptured surface machining using flat-end tools[J]. Computer-Aided Design,2000,32(7):409-420.
    [11]Warkentin A, Ismail F, Bedi S. Comparison between multi-point and other5-axis tool positioning strategies [J]. International Journal of Machine Tools and Manufacture,2000,40(2):185-208.
    [12]Lee Y S. Non-isoparametric tool path planning by machining strip evaluation for5-axis sculptured surface machining[J]. Computer-Aided Design,1998,30(7):559-570.
    [13]Sarma R. Flat-ended tool swept sections for five-axis NC machining of sculptured surfaces[J]. Journal of Manufacturing Science and Engineering,2000,122(1):158-165.
    [14]丁汉,毕庆贞,朱利民,等.五轴数控加工的刀具路径规划与动力学仿真[J].科学通报,2010,55(25):2510-2519.
    [15]Wang Q H, Li J R, Gong H Q. Graphics-assisted cutter orientation correction for collision-free five-axis machining[J]. International Journal of Production Research,2007,45(13):2875-2894.
    [16]Kersting P, Zabel A. Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms[J]. Advances in Engineering Software,2009,40(6):452-463.
    [17]吴宝海,罗明,张莹,等.自由曲面五轴加工刀具轨迹规划技术的研究进展[J].机械工程学报,2008,44(10):9-18.
    [18]杨勇生.数控加工编程中刀具干涉的研究现状及存在问题[J].计算机辅助工程,1999(4):41-47.
    [19]蔡永林,席光,樊宏周,等.曲面5轴加工中全局干涉检查与刀位修正[J].机械工程学报,2002,38(9):131-135.
    [20]Cai Y L, Xi G. Global tool interference detection in five-axis machining of sculptured surfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002,216(10):1345-1353.
    [21]Tsay D M, Yan W F, Ho H C. Generation of five-axis cutter paths for turbomachinery components [J]. Journal of Engineering for Gas Turbines and Power,2001,123(1):50-56.
    [22]Jensen C G, Red W E, Pi J. Tool selection for five-axis curvature matched machining [J]. Computer-Aided Design,2002,34(3):251-266.
    [23]杨勇生.五轴数控加工中刀具干涉处理的特征投影法[J].工程图学学报,2003,24(1):15-22.
    [24]Gilbert E G, Johnson D W, Keerthi S S. A fast procedure for computing the distance between complex objects in three-dimensional space[J]. IEEE Journal of Robotics and Automation,1988,4(2):193-203.
    [25]Lin M C, Canny J F. A fast algorithm for incremental distance calculation[C].//Proceedings of the1991IEEE International Conference on Robotics and Automation. Sacramento:IEEE,1991:1008-1014.
    [26]周之平.面向虚拟装配的干涉检测关键技术研究[博士学位论文].东南大学,2006.
    [27]Chen X D, Yong J H, Wang G, et al. Computing the minimum distance between a point and a NURBS curve[J]. Computer-Aided Design,2008,40(10-11):1051-1054.
    [28]Chen X D, Xu G, Yong J H, et al. Computing the minimum distance between a point and a clamped B-spline surface[J]. Graphical Models,2009,71(3):107-112.
    [29]Chen X D, Chen L Q, Wang Y G, et al. Computing the minimum distance between two Bezier curves[J]. Journal of computational and applied mathematics,2009,229(1):294-301.
    [30]Xu J T, Liu W J. Accurate and Efficient Algorithm for the Closest Point on a Parametric Curve[C].//Proceedings of the2008International Conference on Computer Science and Software Engineering. Wuhan, China:IEEE,2008:1000-1002.
    [31]Ma Y L, Hewitt W T, Turner M. A high-performance method for calculating the minimum distance between two2D and3D NURBS curves[J]. Journal of Graphics, GPU,&Game Tools,2006,11(1):37-50.
    [32]He P, Zhang C, Zhou J, et al. Calculating the minimum distance between two NURBS curves[C].//Proceedings of the10th IEEE International Conference on Computer-Aided Industrial Design&Conceptual Design (CAID&CD'09). Wenzhou:IEEE,2010:643-648.
    [33]Kim K J. Minimum distance between a canal surface and a simple surface[J]. Computer-Aided Design,2003,35(10):871-879.
    [34]Sohn K A, Juttler B, Kim M S, et al. Computing distances between surfaces using line geometry[C].//Proceedings of the10th Pacific Conference on Computer Graphics and Applications. IEEE Computer Society,2002:236-245.
    [35]Chen X D, Yong J H, Zheng G Q, et al. Computing minimum distance between two implicit algebraic surfaces[J]. Computer-Aided Design,2006,38(10):1053-1061.
    [36]刘浩,唐月红,廖文和.双二次NURBS曲面间的最短距离[J].计算机辅助设计与图形学学报,2003,15(10):1298-1302.
    [37]陈丽萍,陈燕,胡德金.一种快速完备的自由曲线和曲面间最短距离求取算法[J].上海交通大学学报,2003,37(z1):41-44.
    [38]席光,蔡永林.用改进遗传算法求取曲面间最小距离[J].计算机辅助设计与图形学学报,2002,14(3):209-213.
    [39]Johnson D E, Cohen E. A framework for efficient minimum distance computations[C].//Proceedings of the1998IEEE International Conference on Robotics and Automation. Leuven:IEEE,1998:3678-3684.
    [40]Limaiem A, Trochu F. Geometric algorithms for the intersection of curves and surfaces[J]. Computers&Graphics,1995,19(3):391-403.
    [41]Hartmann E. On the curvature of curves and surfaces defined by normalforms[J]. Computer Aided Geometric Design,1999,16(5):355-376.
    [42]Patoglu V, Gillespie R B. Extremal distance maintenance for parametric curves and surfaces[C].//Proceedings of the2002IEEE International Conference on Robotics and Automation. Washington, DC:IEEE,2002:2817-2823.
    [43]Piegl L, Tiller W. The NURBS book[M].2ed. Berlin: Springer-Verlag,1996.
    [44]Piegl L, Tiller W. Parametrization for surface fitting in reverse engineering[J]. Computer-Aided Design,2001,33(8):593-603.
    [45]Ma Y L, Hewitt W T. Point inversion and projection for NURBS curve and surface:control polygon approach [J]. Computer Aided Geometric Design,2003,20(2):79-99.
    [46]Thomas F, Turnbull C, Ros L, et al. Computing signed distances between free-form objects[C].//Proceedings of the2000IEEE International Conference on Robotics and Automation. San Francisco: IEEE,2000:3713-3718.
    [47]Lee Y, Chang T.2-phase approach to global tool interference avoidance in5-axis machining[J]. Computer-Aided Design,1995,27(10):715-729.
    [48]钟建琳,米思南.曲面加工中避免全局刀具干涉的方法[J].华中理工大学学报,1998,26(12):19-21.
    [49]Van Den Bergen G. Efficient collision detection of complex deformable models using AABB trees[J]. Journal of Graphics Tools,2005,2(4):131-144.
    [50]Palmer I J, Grimsdale R L. Collision detection for animation using sphere-trees[J]. Computer Graphics Forum,1995,14(2):105-116.
    [51]Klosowski J T, Held M, Mitchell J, et al. Efficient collision detection using bounding volume hierarchies of k-DOPs[J]. IEEE Transactions on Visualization and Computer Graphics,1998,4(1):21-36.
    [52]Gottschalk S, Lin M C, Manocha D. OBBTree:a hierarchical structure for rapid interference detection[C].//Proceedings of the23rd Annual Conference on Computer Graphics and Interactive Techniques, Siggraph. New Orleans:ACM,1996:171-180.
    [53]Jimehnez P, Thomas F, Torras C.3D collision detection:a survey[J]. Computers&Graphics,2001,25(2):269-285.
    [54]Ding S, Mannan M A, Poo A N. Oriented bounding box and octree based global interference detection in5-axis machining of free-form surfaces[J]. Computer-Aided Design,2004,36(13):1281-1294.
    [55]Ho S, Sarma S, Adachi Y. Real-time interference analysis between a tool and an environment[J]. Computer-Aided Design,2001,33(13):935-947.
    [56]Balasubramaniam M, Ho S, Sarma S. Generation of collision-free5-axis tool paths using a haptic surface[J]. Computer-Aided Design, 2002,34(4):267-279.
    [57]彭芳瑜,苏永春,邹孝明,等.大型螺旋桨五轴加工中基于方向包围盒层次树的全局干涉碰撞检测[J].中国机械工程,2007,18(3):304-307.
    [58]Saito T, Takahashi T. NC machining with G-buffer method[J]. Acm Siggraph Computer Graphics,1991,25(4):207-216.
    [59]吴明华,余勇翔.采用空间分割技术的八叉树干涉检验算法[J].计算机学报,1997,20(9):849-854.
    [60]Menon J, Marisa R J, Zagajac J. More powerful solid modeling through ray representations[J]. IEEE Computer Graphics and Applications,1994,14(3):22-35.
    [61]Oleg I, Gershon E, Dan H, et al. Precise global collision detection in multi-axis NC-machining[J]. Computer-Aided Design,2005,37(9):909-920.
    [62]Ron W, Gershon E. Continuous path verification in multi-axis NC-machining[J]. International Journal of Computational Geometry and Applications,2005,15(4):351-377.
    [63]Hauth S, Murtezatoglu Y, Linsen L. Extended linked voxel structure for point-to-mesh distance computation and its application to NC collision detection[J]. Computer-Aided Design,2009,41(12):896-906.
    [64]Jung J Y, Ahluwalia R. NC tool path generation for5-axis machining of free formed surfaces[J]. Journal of Intelligent Manufacturing,2005,16(1):115-127.
    [65]谭光宇,袁哲俊,姚英学.加工过程碰撞干涉的矢量法检验[J].中国机械工程,1999,10(5):513-516.
    [66]Zhou L, Lin Y J. An effective global gouge detection in tool-path planning for freeform surface machining [J]. The International Journal of Advanced Manufacturing Technology,2001,18(7):461-473.
    [67]何雪明,张荣,李成刚,等.带角圆柱铣刀对自由曲面3轴NC加工的刀具干涉检测[J].机械科学与技术,2005,24(10):1209-1213.
    [68]Jerard R B, Hussaini S Z, Drysdale R L, et al. Approximate methods for simulation and verification of numerically controlled machining programs[J]. The Visual Computer,1989,5(6):329-348.
    [69]Lee R S, Lee J N. Interference-free tool orientation determination by a virtual enveloping element for five-axis machining of a freeform surface[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2001,215(12):1683-1693.
    [70]Lee Y S, Chiou J. Swept tool envelope and machining potential field for5-axis sculptured surface machining[J]. Computer-Aided Design,2006,3(6):751-760.
    [71]方向,彭群生.多轴数控加工中刀具包络面的计算[J].计算机辅助设计与图形学学报,2000,12(8):609-613.
    [72]王哲,王知行,钟诗胜.刀具扫描体生成新算法及在数控加工仿真中的应用[J].机械工程学报,2001,37(1):28-31.
    [73]严思杰,周云飞,陈学东.五轴NC加工中刀具运动包络面的计算[J].中国机械工程,2005,16(23):2120-2124.
    [74]徐芝琦,陈志杨,叶修梓,等.通用刀具扫描体的快速造型[J].机械工程学报,2009,45(9):136-143.
    [75]朱利民,郑刚,张小明,等.刀具空间运动扫掠体包络面建模的双参数球族包络方法[J].机械工程学报,2010,46(5):145-149.
    [76]Bi Q Z, Wang Y H, Ding H. A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter[J]. International Journal of Production Research,2010,48(4):1105-1124.
    [77]Wang Q H, Li J R, Zhou R R. Graphics-assisted approach to rapid collision detection for multi-axis machining[J]. The International Journal of Advanced Manufacturing Technology,2006,30(9):853-863.
    [78]Tang T D, Bohez E, Koomsap P. The sweep plane algorithm for global collision detection with workpiece geometry update for five-axis NC machining[J]. Computer-Aided Design,2007,39(11):1012-1024.
    [79]Cho I, Lee K, Kim J. Generation of collision-free cutter location data in five-axis milling using the potential energy method[J]. The International Journal of Advanced Manufacturing Technology,1997, 13(8):523-529.
    [80]杨长祺,贾维,刘海江.多轴机床加工复杂自由曲面的刀底干涉避免[J].机械工程学报,2006,42(6):174-178.
    [81]杨长祺,刘海江,贾维.多轴机床加工自由曲面的干涉避免与刀轴优化[J].同济大学学报(自然科学版),2007,35(11):1530-1534.
    [82]杨勇生,左敦稳.消隐算法在5轴NC加工干涉检查中的应用[J].应用科学学报,1998,16(4):385-391.
    [83]Morishige K, Kase K, Takeuchi Y. Collision-free tool path generation using2-dimensional C-space for5-axis control machining[J]. The International Journal of Advanced Manufacturing Technology,1997,13(6):393-400.
    [84]Morishige K, Takeuchi Y, Kase K. Tool path generation using C-space for5-axis control machining [J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,1999,121(1):144-149.
    [85]Jun C S, Cha K, Lee Y S. Optimizing tool orientations for5-axis machining by configuration-space search method[J]. Computer-Aided Design,2003,35(6):549-566.
    [86]闫光荣,赵罡.应用构形空间理论处理自由曲面加工的干涉问题[J].计算机辅助设计与图形学学报,2002,14(1):44-49.
    [87]Elber G, Cohen E. A unified approach to verification in5-axis freeform milling environments [J]. Computer-Aided Design,1999,31(13):795-804.
    [88]Balasubramaniam M, Sanjay E S, Marciniak K. Collision-free finishing toolpaths from visibility data[J]. Computer-Aided Design,2003,35(4):359-374.
    [89]Balasubramaniam M, Laxmiprasad P, Sarma S, et al. Generating5-axis NC roughing paths directly from a tessellated representation[J]. Computer-Aided Design,2000,32(4):261-277.
    [90]Lauwers B, Dejonghe P, Kruth J P. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation [J]. Computer-Aided Design,2003, 35(5):421-432.
    [91]张莹,张定华,吴宝海,等.复杂曲面环形刀五轴加工的自适应刀轴矢量优化方法[J].中国机械工程,2008,19(8):945-948.
    [92]毕庆贞,王宇晗,朱利民,等.刀触点网格上整体光顺五轴数控加工刀轴方向的模型与算法[J].中国科学:技术科学,2010,40(10):1159-1168.
    [93]Wang N, Tang K. Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath[J]. Computer-Aided Design,2007,39(10):841-852.
    [94]闫蓉,彭芳瑜,李斌,等.多轴数控加工刀具姿态优化及其刚度性能指标分析[J].中国机械工程,2008,19(22):2699-2702.
    [95]Castagnetti C, Duc E, Ray P. The domain of admissible orientation concept:a new method for five-axis tool path optimisation[J]. Computer-Aided Design,2008,40(9):938-950.
    [96]姬俊锋,周来水,安鲁陵,等.一类开式整体叶轮五坐标数控加工刀轴矢量生成及其光顺方法的研究[J].中国机械工程,2009,10(2):202-206.
    [97]罗明,吴宝海,李山,等.自由曲面五轴加工刀轴矢量的运动学优化方法[J].机械工程学报,2009,45(9):158-163.
    [98]周艳红,周济.五坐标数控加工的理论误差分析与控制[J].机械工程学报,1999,35(5):54-57.
    [99]吴大中,王宇晗,冯景春,等.五坐标数控加工的非线性运动误差分析与控制[J].上海交通大学学报,2007,41(10):1608-1612.
    [100]王丹,陈志同,陈五一.五轴加工中非线性误差的检测和处理方法[J].北京航空航天大学学报,2008,34(9):1003-1006.
    [101]郑飂默,林浒,张晓辉,等.基于实时插补的五轴加工非线性误差控制[J].小型微型计算机系统,2010,31(7):1389-1392.
    [102]赵薇,高春,马跃,等.通用RTCP算法的研究与设计[J].小型微型计算机系统,2008,29(5):980-984.
    [103]Fan S T, Yang W P, Dong C J. RTCP function in five-axis machining[J]. Key Engineering Materials,2011,464:254-259.
    [104]耿聪,于东,张晓辉.五轴联动数控加工中的刀具轨迹控制算法 [J].中国机械工程,2010,21(24):2904-2909.
    [105]彭芳瑜,何莹,李斌.NURBS曲线高速插补中的前瞻控制[J].计算机辅助设计与图形学学报,2006,18(5):625-629.
    [106]Du D, Liu Y, Yan C, et al. An accurate adaptive parametric curve interpolator for NURBS curve interpolation[J]. International Journal of Advanced Manufacturing Technology,2007,32(9):999-1008.
    [107]Zhou K, Wang G J, Zhong J H, et al. NURBS interpolation based on exponential smoothing forecasting [J]. International Journal of Advanced Manufacturing Technology,2008,39(11-12):1190-1196.
    [108]赵巍,王太勇,万淑敏.基于NURBS曲线的加减速控制方法研究[J].中国机械工程,2006,17(1):1-3.
    [109]杜道山,燕存良,李从心.一种实时前瞻的自适应NURBS插补算法[J].上海交通大学学报,2006,40(5):843-847.
    [110]叶伟.数控系统纳米插补及控制研究[博士学位论文].北京交通大学,2010.
    [111]彭芳瑜,李黎,陈徐兵,等.连续小直线段高速高精插补中的动力学约束条件[J].计算机辅助设计与图形学学报,2006,18(12):1812-1816.
    [112]冷洪滨,邬义杰,潘晓弘.三次多项式型微段高速加工速度规划算法研究[J].计算机集成制造系统,2008,14(2):336-340.
    [113]叶伟,王小椿.一种连续小线段高速插补算法[J].南京理工大学学报(自然科学版),2008,32(4):443-448.
    [114]王宇晗,肖凌剑,曾水生,等.小线段高速加工速度衔接数学模型[J].上海交通大学学报,2004,38(6):901-904.
    [115]叶佩青,赵慎良.微小直线段的连续插补控制算法研究[J].中国机械工程,2004,15(15):1354-1356.
    [116]何均,游有鹏,王化明.面向微线段高速加工的Ferguson样条过渡算法[J].中国机械工程,2008,19(17):2085-2089.
    [117]李建刚,张婷华,李泽湘,等.数控加工中的连续多段直线轨迹B-Spline拟合[J].哈尔滨工业大学学报,2008,40(10):1606-1608.
    [118]陶佳安,游清宁,施群.数控系统高性能微段插补技术研究与应用[J].仪器仪表学报,2009,30(9):1924-1929.
    [119]陶佳安,高胜林,游清宁,等.连续微段前瞻及加减速算法[J].计算机辅助设计与图形学学报,2010,22(9):1570-1577.
    [120]冷洪滨,邬义杰,潘晓弘.三次多项式型微段高速自适应前瞻插补方法[J].机械工程学报,2009,45(6):73-79.
    [121]冷洪滨.高性能数控系统若干关键技术的研究[博士学位论文].浙江大学,2008.
    [122]Han G C, Kim D I, Kim H G, et al. A high speed machining algorithm for CNC machine tools[C].//Proceedings of the25th IEEE International Conference on Industrial Electronics,Control, and Instrument (IECON). Washington,D C,USA:IEEE,1999:1493-1497.
    [123]钟庆,李季,黄树槐.快速成型中的微线段连续高速高精度插补[J].华中理工大学学报,2000,28(3):39-41.
    [124]郭新贵,李从心.一种新型柔性加减速算法[J].上海交通大学学报,2003,37(2):205-207.
    [125]曹宇男,王田苗,陈友东,等.插补前S加减速在CNC前瞻中的应用[J].北京航空航天大学学报,2007,33(5):594.
    [126]Jeon J W. Efficient acceleration and deceleration technique for short distance movement in industrial robots and CNC machine tools[J]. Electronics Letters,2000,36(8):766-768.
    [127]杨建中.复杂多曲面数控加工刀具轨迹生成方法研究[博士学位论文].华中科技大学;,2007.
    [128]Chiou J, Lee Y S. Optimal tool orientation for five-axis tool-end machining by swept envelope approach [J]. Journal of Manufacturing Science and Engineering,2005,127(4):810-818.
    [129]严思杰,周云飞,陈学东.五轴NC加工中刀具运动包络面的计算[J].中国机械工程,2005,16(23):2120-2124.
    [130]黄泽华,王小椿,蔡永林.五坐标数控铣削加工刀具扫描体的求解[J].北京交通大学学报:自然科学版,2010,34(1):149-153.
    [131]王太勇,张志强,王涛,等.复杂参数曲面高精度刀具轨迹规划算法[J].机械工程学报,2007,43(12):109-113.
    [132]陈明君,李洪珠,李旦.碳纳米管力学行为研究的新进展[J].机械工程学报,2005,41(3):18-24.
    [133]Limaiem A, Trochu F. Geometric algorithms for the intersection of curves and surfaces[J]. Computers&Graphics,1995,19(3):391-403.
    [134]刘满禄,张华,胡天链.改进的人工势场法用于移动机器人导航[J].华中科技大学学报:自然科学版,2008,36(S1):177-180.
    [135]Zhang T, Zhu Y, Song J. Real-time motion planning for mobile robots by means of artificial potential field method in unknown environment[J]. Industrial Robot:An International Journal,2010,37(4):384-400.
    [136]Barraquand J, Latombe J C. A Monte-Carlo algorithm for path planning with many degrees of freedom[C].//Proceedings of the1990IEEE International Conference on Robotics and Automation. Cincinnati:IEEE,1990:1712-1717.
    [137]Kamon I, Rivlin E, Rimon E. A new range-sensor based globally convergent navigation algorithm for mobile robots[C].//Proceedings of the1996IEEE International Conference on Robotics and Automation. Minneapolis:IEEE,1996:429-435.
    [138]Liu X M, Yang L, Yong J H, et al. A torus patch approximation approach for point projection on surfaces [J]. Computer Aided Geometric Design,2009,26(5):593-598.
    [139]Chen C Y, Liao P S. Design and implementation of real-time NURBS interpolator for motion control[C].//Proceedings of the2007Second IEEE Conference on Industrial Electronics and Applications. Harbin, China:IEEE,2007:426-431.
    [140]任锟.高速数控加工的前瞻控制理论及关键技术研究[博士学位论文].浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700