用户名: 密码: 验证码:
用于原子与通信波段激光器调谐及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固态连续单频可调谐激光器,具有输出光谱范围宽、输出功率高、使用方便、窄线宽及全固态等优点,因此在高灵敏度的干涉仪、高分辨率激光光谱、引力波探测、量子通讯、原子冷却及其它基础物理研究等领域获得了广泛应用。
     作为可调谐激光器中的代表——全固态连续调谐单频钛宝石激光器由于它频谱范围宽,线宽窄,相位噪声低,功率高,等独特的优点,已成为量子通讯、量子信息处理、激光光谱等领域的重要光源。
     鉴于全固态连续单频可调谐钛宝石激光器在我们实验室和其它科研领域有着广泛的应用前景,为了推动我们实验室基础研究和应用研究的发展,加快我们国家自主创新的步伐,我们分别对双折射滤光片组的设计、腔内标准具的锁定、锁定标准具需要的低噪声高压放大器、以及对作为泵浦源的高功率绿光激光器的控制系统设计等进行了一系列研究工作:
     1、设计了一个可调谐的高功率低噪声单频绿光激光器。激光器采用LD端面泵浦技术,谐振腔采用四镜8字环形谐振腔结构,通过在谐振腔内插入楔形的复合Nd:YVO4增益晶体,倍频晶体LBO,光学单向器,在LD泵浦功率为47W时,获得了输出功率为10.7W的连续单频绿光激光输出,3小时的功率稳定性优于±0.64%,在此基础上,通过改变标准具的工作温度,实现了激光器的频率调谐,在温度改变约14℃时,激光器基频光的频率调谐范围达到了12GHz,相应倍频光的调谐范围为24GHz,由于调谐范围覆盖了碘分子多条吸收线,因此它可在基于碘分子超精细吸收峰的光频标系统中,提供优质的激光光源。2、设计制做了LOCK-IN、标准具探测器以及振镜电机控制信号等关键电子设备,实现了标准具与激光器腔内振荡光的锁定,为进行激光器连续调谐工作研究创造了条件。使用垂直入射TGG+半波片的光学单向器,进行连续调谐实验,发现了TGG晶体和半波片对连续调谐的影响,设计了布氏角入射TGG晶体及自然旋光补偿片的光学单向器。并总结出设计自然旋光补偿片时如何考虑s光反射的问题,以避免出现过补偿,为以后的实验设计工作积累了经验。
     在采用布氏角入射TGG+自然旋光补偿片结构的光学单向器进行的连续调谐实验中,最终实现了连续调谐20GHz的实验结果。
     由于钛宝石激光器有较宽的波长调谐范围,其中780nm光波恰好对应于铷原子跃迁线F3/2一F1/2,因此可以有效俘获铷原子并将之冷却。同时,利用波长为780nnm激光作为泵浦光,通过OPO技术还可获得1560nm纠缠源,可用于量子保密通讯研究。因此可以为铷原子的研究以及量子光学通讯提供优质光源。
     3、设计完成了由单片机控制的LD泵浦源控制系统,与我所生产的10W单绿光单频激光器配套使用,达到了预期的效果。在此工作中设计完成了硬件PCB板的设计,并通过软件编程实现了预定的目标。系统开关机过程中实现了LBO倍频晶体温度自动均匀变化,在操作逻辑顺序上由程序控制,在运行过程中发现异常可自动进入关机程序,避免了许多人为误操作带来的安全隐患;在电流设置方面,由于程序设定了上限电流,操作过程不会出现过流损坏LD的情况;从而操作更方便,运行更安全。
     4、设计完成了低噪声高压放大器的工作。通过设计电平搬移电路,将运算放大器输出电压搬移300多伏后,传递到末级放大作用的高压N沟道MOS管的栅源之间,使低电压的运算放大器与高压晶体管可以配合工作。
     经过两年多本所各实验室的使用,效果良好,满足了精密实验中低噪声放大的需求。在此基础上向国家知识产权局审请国家专利,并于2013年1月23日获得授权。
     创新性的工作:
     A.利用薄标准具温度变化实现大范围激光器频率调谐。
     B.利用布氏角入射TGG+自然旋光补偿片避免了标准具效应对激光器连续调谐的影响。提出自然旋光补偿片过补偿及产生的原因,使补偿更加有效。
     C.实现标准具与激光器频率的锁定,为研究连续调谐过程中的问题创造了条件。
     D.利用单片机程序控制激光器泵浦源,使整个系统操作更加简便,运行更加可靠。
     E.设计了电平搬移电路,实现在高压放大器中运算放大器输出信号下移300多伏驱动高压MOS晶体管。
All-solid-state CW single frequency tunable Ti:sapphire laser, with the advantages of wide spectral range, high output power, easy to usage, narrow line width and solid, is widely used in high sensitive interferometers, high resolution laser spectroscopy, detection of gravitational waves, quantum communication, atomic cooling and other basic physics research fields.
     All solid continuously tunable single-frequency Ti:sapphire laser, as a representative of the tunable lasers, has such unique advantages as wide spectral range, narrow linewidth, low phase noise, and high power. It has be used as a important light source in the field of quantum communication, quantum information processing, and laser spectroscopy.
     View of the all-solid-state continuous single-frequency tunable Ti: sapphire laser in our laboratory and other scientific fields have a wide range of applications, in order to promote the development of our laboratory basic research and applied research and to accelerate the pace of innovation in our country, we do a series of research works in the double refraction filter set design, the lock of etalon inserted in cavity, the low noise high voltage amplifier which is needed in the tuning system, and the control system which is used in pump source of high power single frequency green laser.
     1. A design of a high-power tunable single-frequency low-noise green laser. The laser is end-pumped by LD. A figure-eight-shaped ring resonator is constructed by four cavity mirrors. A wedge-shaped composite Nd:YVO4gain crystal, a frequency doubling crystal LBO, and a optical diode is put in the ring resonator. The laser output power is10.7W which is continuous single frequency green laser pumped by47W. The output power stability is better than±0.64%in the3hours. On this basis, frequency tuning of the laser is achieved by changing the operating temperature of the etalon. The frequency tuning range of the fundamental is12GHz, and the corresponding harmonic tuning range is24GHz under the etalon temperature change of about14℃. As a good laser source it can be used in the optical frequency standard based on the hyperfine peaks of molecular iodine, since its frequency-tuning range has covered several absorption lines of molecular iodine
     2. Designed and completed a LOCK-IN, etalon signal detector and galvanometer motor control signals and other critical electronic equipment. The etalon is locked in the laser light within the cavity. This creates the condition for the experiment of the continuous tuning research. By the use of the normal incidence TGG+half-wave of the optical isolators, an influence that the TGG and the half wave plate hinder continuous tuning is found. Then Brewster angle incident TGG crystal and natural optical rotation compensation-chip optical isolators is designed and completed. During the experiment a phenomena of over-compensation is discovered. That is the result of omitting of s light reflection. The design method of natural optical rotation compensation plate is concluded that the s light reflection must be considered in order to avoid over-compensation. This accumulated experience in design work for future experiments.
     In the continuous tuning experiment using Brewster angle incident TGG+a natural optically compensation plate structure optical diode, the results of the continuous tuning of20GHz ultimately is obtained.
     Ti:sapphire laser is with a wide wavelength tuning range. The780nm light waves exactly correspond to the rubidium atomic transition line F3/2-F1/2. It can be used in effectively trapping and cooling of rubidium atoms. As pump light of wavelength780nm laser,1560nm entangled source for the study of quantum confidential communication is also available by the use of OPO technology. So it can provide high quality light source for the study of rubidium atoms and quantum optical communications.
     3. LD pump source controlled by microcomputer control system is designed and completed. Supporting the use of10W single single-frequency green lasers which produced by our institute, the control system achieve the desired effect. During the work, a hardware PCB is designed, and through software programming to achieve a predetermined goal. The pump system achieves uniform temperature changes for boubling crystal LBO in power on and power off process. The operation logical sequence is controlled by the program. In the case of abnormal operation condition the control system automatically enter the shutdown process, to avoid security risks brought about by a number of human errors. In the current setting, because the program sets the maximum current limit the operation current does not appear over-flow damage to the LD. The operation is more convenient and safer than before.
     4, A low-noise high-voltage amplifier is designed and completed. By the level moving circuit the output voltage of operation amplifier is moved to the level that is over300voltages lower than the operational amplifier. The operational amplifier output voltage change is transmitted to the final stage between gate and source of the high-voltage N-channel MOS transistor, so that the low voltage operational amplifier and work with high voltage transistors.
     The amplifier is used more than two years in our laboratories. The result is satisfied, and meet the needs of precise experiment that request high voltage low noise amplifying. On this basis, a national patent application is submitted, and on January23,2013the patent is authorized by the State Intellectual Property Office.
     Innovative work:
     A. Using the thin etalon temperature changes to achieve a wide range of laser frequency tuning.
     B. Brewster angle incidence TGG+natural optical rotation compensation plate to avoid etalon effect in continuous tuning of the laser. Point out the problem of over-compensation of natural optically compensation plate and causes. So that can compensate more effectively.
     C. the etalon is locked with laser frequency. This creates the conditions for the study of the problems in the process of continuous tuning.
     D. Using the single chip machine to control the laser pumping source, so that the whole system is easier and more reliable to operate.
     E. design level Moving circuit, the operational amplifier output signal down over300volt drive high voltage MOS transistor in the high voltage amplifier.
引文
[1]T. H. Maiman et al., Ruby laser system, US Patent,3353115(1961)
    [2]P. P. Sorokin, J. R. Lankard et al., Laser-pumped stimulated emission from organic dyes:experimental studies and analytical comparisons, IBM J. of Research and Development,11 (2),162(1967)
    [3]P. F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B,3(1),125-133(1986)
    [4]Qamar S, Xiong H and Zubairy M S, Influence of pump-phase fluctuations on entanglement generation using a correlated spontaneous-emission laser, Phys. Rev. A 75,062305(2007)
    [5]Dong Wang, Yana Shang, Zhihui Yan, Wenzhe Wang, Xiaojun Jia, Changde Xie and Kunchi Peng, Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator, EPL 82(2),24003 (2008)
    [6]Dong Wang, Yana Shang, Xiaojun Jia, Changde Xie and Kunchi Peng, Dependence of quantum correlations of twin beams on the pump finesse of an optical parametric oscillator, J. Phys. B:At Mol. Opt. Phys.41,035502 (2008)
    [7]http://www.coherent.com/Products/index.cfm?846/MBR-Ring-Series
    [8]Product catalog of the Spectra-physics
    [9]http://www.tekhnoscan.com/english/TIS-SF-777.htm
    [10]http://www.m21asers.com/products-services/laser-systems/solstis.aspx
    [11]吴路生,韦丽,周东方,赵梅荣,邬承就,双向泵浦的高功率高效率钛宝石激光器,中国激光,22(3),168-170(1995)
    [12]王长青,连续、准连续及自锁模运转的掺钛蓝宝石激光器的研究,博士毕业论文,天津大学精密仪器系(1993)
    [13]郝二娟,李特,檀慧明,钱龙生,LD泵浦的全固态激光器的单频实现方法[J],激光杂志,2006,27:14-15
    [14]王军营,郑权,薛庆华等,利用双折射滤光片技术获得瓦级单频绿光输出[J],光子学报,2005,34:321-324
    [15]J. J. Zayhowski, The effects of spatial hole burning and energy diffusion on the single mode operation of standing wave lasers[J], IEEE J.-QE,1990,26:2052-2057
    [16]V. Evtuhov and A. E. Siegman, A twisted mode technique for obtaining axially uniform energy density in a laser cavity[J], Appl. Opt.1965,4:142-143
    [17]Huadong Lu, Jing Su, Fengqin Li, Wenzhe Zhang, Yougui Chen and Kunchi Peng, "Compact, stable, tunable Ti:sapphire laser", Chinese J. of Lasers,37(5), 1166-1171,(2010).
    [18]H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gobler, K. Danzmann, and R. Schnabel, "Observation of squeezed light with 10-dB quantum-noise reduction," Phys. Rev. Lett.,100,033602 (2008)
    [19]Huadong Lu, Jing Su, Changde Xie, and Kunchi Peng, "Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser", Optics Express,19(2),1344-1353 (2011).
    [20]M. L. Eickhoff, J. L. Hall, "Optical frequency standard at 532 nm", IEEE Trans. Instrum. Meas.,44(2),155-158 (1995).
    [21]Yaohui Zheng, Huadong Lu, Fengqin Li, Kuanshou Zhang, and Kunchi Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation", Chinese J. of Lasers,34(6),739-742 (2007).
    [22]Yaohui Zheng, Huadong Lu, Fengqin Li, Kuanshou Zhang, and Kunchi Peng, "Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode", Appl. Opt., 46(22),5336-5339 (2007).
    [23]Yaohui Zheng, Fengqin Li, Yajun Wang, Kuanshou Zhang, and Kunchi Peng, "High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter", Opt. Commun.283,309-312 (2010).
    [24]A. Owyoung, P. Escherick, "Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser", Opt. Lett.,12(12),999-1001 (1987).
    [25]Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, "Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser", Appl. Phys. B,90,485-488 (2008).
    [26]David C. Thompson et al. "High-speed random access laser tuning", Appl. Opt., 38,2545 (2005).
    [27]Takunori Taira, Akira Mukai, Yukihiro Nozawa, and Takao Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers", Opt. Lett.,16(24),1955-1957(1991).
    [28]J. Harrison, A. Finch, J. H. Flint, and P. F. Moulton, Broad-band rapid tuning of a single-frequency diode-pumped Neodymium laser, IEEE J. of Quantum Electronics, 28(4),1123-1130(1992).
    [29]M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications", Opt. Commun.,203,359-362 (2002).
    [30]M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "single-frequency intracavity doubled Yb:YAG ring laser", Opt. Commun.,256, 347-351 (2005).
    [31]Jing Zhang, Hongliang Ma, Runlin Wang, Fengqin Li, Changde Xie and Chenchi Peng, "All-solid-state single-frequency ring Nd:YVO4 tunable lasers", Chinese J. of Lasers, A29(7),577-579 (2002).
    [32]Wenzhe Wang, Huadong Lu, Jing Su, and Kunchi Peng, Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power, APPLIED OPTICS, Vol.52, No.9
    [33]梁晓燕,可调谐连续钛宝石稳频激光器,硕士毕业论文,山西大学光电研究所(1993)
    [34]孙燕,全固态连续单频钛宝石激光器,硕士毕业论文,山西大学光电研究所(2008)
    [35]张国威,可调谐激光技术(第一版),国防工业出版社
    [36]克希耐尔, 固体激光工程, 科学出版社
    [37]H. W. Schoder, et al., Appl. Phys.,14,377 (1977)
    [38]孙晓泉,谢建平,张运生等,钛宝石环行激光器的实验研究,中国激光,A22(1),13-16(1995)
    [39]A. R. Clobes, M. J. Brienza, Single-frequency traveling-wave Nd:YAG laser, Appl. Phys. Lett.,21(6),265-267 (1972)
    [40]K. C. Peng, Ling-An Wu, H. J. Kimble, Frequency-stabilized Nd:YAG laser with high output power, Appl. Opt.,24(7),938-940 (1985)
    [41]R. Roy, P. A. Schulz, A. Walther, Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser, Opt. Lett.,12(9),672-674 (1987)
    [42]S. M. Jarrentt, J. F. Young, High-efficiency single-frequency cw ring dye laser, Opt. Lett.,4(6),176-178(1979)
    [43]Thomas F. Johnston, William Proffitt, Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser, IEEE J. of Quantum Electronics, QE-16(4),483-488 (1980)
    [44]T. F. Johnston, William Proffitt, Broadband optical diode for a ring laser, US patent, 4272158(1981)
    [45]王军民,梁晓燕,李瑞宁,一种可用于可调谐环行Ti:Al2O3激光器的宽带单向器,激光与红处,21(1),31-33(1993)
    [46]赵凯华,钟锡华.光学(下册).北京:北京大学出版社,1984第一版.p216
    [47]http://www.nortrthropgrumman.com/BusinessVentures/SYNOPTICS/Products/ SpecialtyCrystals/Documents/pageDocs/tgg_verdet_constant.pdf
    [48]赵凯华,钟锡华.光学(下册).北京:北京大学出版社,1984.p224
    [49]卢华东 连续单频可调谐钛宝石激光器及其强度噪声的研究,博士毕业论文,山西大学光电研究所(2011)
    [50]B. H. Billings, J. Opt. Soc. Am.,37,738(1947), J. M. Yarborough et al., IEEE/OSA Conf. Laser Eag. and Application. Washinton, DC., May 1973
    [51]母国光,光学,2009第二版327
    [52]赵永华,刘玉璞,张影华,宽调谐固体激光器的BF设计,中国激光,vol.A22,No.9
    [53]廖延彪,偏振光学, 科学出版社,2003年8月第1版, p23
    [54]赵凯华,钟锡华,光学(下册).北京:北京大学出版社,1984.p203
    [55]赵凯华,钟锡华.光学(下册).北京:北京大学出版社,1984.169
    [56]M. Born and E. Wolf.光学原理.第4版.北京:科学出版社,1978.926-928
    [57]K I Martin, W A Clarkson, Self-suppression of axial mode hopping by intracavity second-harmonic generation, Opt. Lett.1997,22,375
    [58]BB公司MPY634器件说明书
    [59]Coherent web site. [Online]. Available:HTU http://www.coherent.com/Lasers/index.cfmUT
    [60]J. L. Liu, Z. Y. Wang, H. Li, Q. Liu, and K. S. Zhang, Stable,12 W, continuous-wave single-frequency Nd:YV04 green laser polarized and dual-end pumped at 880 nm, optics express,Vol.19,6777,2010
    [61]TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC T6963C user manual
    [62]金鹏实业有限公司,OCM240128-1图型点阵液晶显示模块使用说明书
    [63]http://www.dz3w.com/info/standard/0075387.html
    [64]+5V, Serial-Input, Voltage-Output,16-Bit DACs MAX541/MAX542 user user manual
    [65]Analog Device 3V/5V, 1mW,2-/3- channel,16 bit, Sigma-delte ADCs AD7705/AD7706 user manual
    [66]广州周立功单片机发展有限公司.12C总线规范.www.zlgmcu.com
    [67]王文哲,基于单片机的全固态激光器电控系统,量子光学学报,2013,19(2),182-188.
    [68]ATMEL 2-Wire Serial EEPROM AT24C32/AT24C64 user manual
    [69]Paul Horowitz, Winfield Hill, The Art of Electronics, CAMBRIDGE UNIVERSITY PRESS, p430-431
    [70]Analog Device High pricisio Reference AD587 user manual
    [71]Dual Precision Op. Amp. LT1013 user manual
    [72]LF155/LF156/LF355/LF356/LF357 JFET input Operational Amplifiers user manual
    [73]Single Low noise Operational Amplifier NE5534 user manual
    [74]周炳琨,激光原理[M],北京,国防工业出版社,2000,212
    [75]KEC SEMICONDUCTOR TECHNICAL DATE BF421 user manual

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700