用户名: 密码: 验证码:
激光二极管泵浦的1.5μm固体激光器的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于铒离子4I13/2→4I15/2跃迁辐射的1.5μm固体激光器具有结构紧凑、光束质量好、输出激光波长对应着光纤和大气的低损耗传输窗口以及对人眼安全等优点,因此该光源在光纤通信、人眼安全激光测距、激光雷达、遥感探测、激光医学、激光微加工、以及环境检测等领域均有着广泛的应用。具体到当前科学研究的热点领域——量子通信的研究中,为了制备高质量的、光纤通信波段的纠缠光源,我们也需要一台同时具备高输出功率和低噪声性能的1.5μm激光器。
     LD泵浦的1.5μm固体激光器在实现连续单频运转之后具有优良的噪声性能,非常适合用于纠缠光源的制备。但是由于缺乏研究特别成熟的高质量的激光晶体,在近几十年的关于连续和连续单频的1.5μm固体激光器的研究工作中,人们普遍采用的激光增益介质是铒镱共掺的磷酸盐玻璃。由于磷酸盐玻璃的热性质和机械性能比较差,导致可注入到激光器内的泵浦功率被限制在2W以下。因此,基于铒镱共掺磷酸盐玻璃的1.5μm固体激光器很难实现输出激光功率的进一步提高,这也使得人们不得不将研究目标转向热性质和机械性能更好的铒镱共掺的钒酸盐、钨酸盐以及硼酸盐晶体。而在众多的晶体介质中,由中国的中科院福建物质结构研究所、俄罗斯的莫斯科州立大学等单位所研制的Er3+,Yb3+:YAl3(BO3)4(Er,Yb:YAB)晶体显示出了优越的激光性能,使得瓦级的连续1.5μm固体激光器成为了现实。
     我们利用中科院福建物质结构研究所研制成功的Er,Yb:YAB激光晶体,同时基于我所在全固态连续单频激光器研究领域的一系列成果,开展了LD端面泵浦的高功率1.5μm激光器的研究工作,最终目标是实现瓦级的连续单频1.5μm激光运转并应用于连续变量量子纠缠源的制备。我们的基本研究方案为:通过合理的腔型设计以及在泵浦光源、制冷系统等方面的优化,以Er,Yb:YAB晶体作为增益介质分别得到高功率的准连续1.5μm激光运转以及高功率高光束质量的连续单横模的1.5μm激光运转;然后在此基础上通过纵模选择,得到1.5μm的连续单频激光输出。具体研究内容如下:
     1.对激光晶体的温度分布和热效应进行了详细分析,并在理论上将晶体温度对反转粒子数密度、受激发射截面等参数的影响,以及热效应作用下腔模腰斑和热致衍射损耗的变化,引入铒镱共掺系统的速率方程,对Er,Yb:YAB激光器的三能级系统性质作了详细研究。研究结果表明晶体温度的升高对Er,Yb:YAB激光器的性能有很大的不利影响。通过分别研究不同的控温炉设计、泵浦源占空比、泵浦腰斑,以及晶体厚度等对激光输出特性的影响,我们提出了几种优化Er,Yb:YAB激光器性能的途径,并为我们的实验研究提供了指导。
     2.根据理论分析的结果,我们首先对准连续泵浦条件下的Er,Yb:YAB激光器进行了实验优化,获得了功率为2.6W的准连续1.5μm激光输出。在上述优化过程中,我们通过逐步增大泵浦源的占空比,初步实现了Er,Yb:YAB激光器的连续运转。但是由于晶体的热效应严重,输出激光功率较低。
     3.为了提高连续1.5μm激光器的输出性能,我们详细分析了改善晶体热效应的方法,并提出了适用于以薄片晶体作为激光介质的LD端面泵浦激光器的制冷方案——蓝宝石热沉端面制冷。我们首先利用有限元分析的方法对该方案的制冷效果进行了理论预期,然后通过刀片法测量两种制冷条件下激光晶体的热焦距进行实验验证。结果表明该方案可以有效地减弱激光晶体的热透镜效应,降低晶体温度。基于上述工作,我们设计了三镜折叠谐振腔进行对比实验。根据实验结果,在制冷方案改进之后,激光器的激光转化效率和光束质量均有明显的提升。在注入泵浦功率5.35W时,实现了680mW的连续单横模1.5μm激光输出。
     4.在己得到的连续单横模1.5μm激光器的基础上,分别利用在腔内插入标准具和单向行波腔的方式进行纵模选择。通过在腔内插入标准具,我们获得了430mW的1.5μm连续单频激光输出,并实验研究了激光器的运转特性和噪声性能。其中激光强度噪声在分析频率4MHz处即达到散粒噪声极限,相位噪声则在分析频率5MHz处达到散粒噪声极限。该噪声指标达到了制备高质量连续变量量子纠缠源的要求。
     本论文中的创新性工作包括:
     1.提出了一个适用于LD端面泵浦的Er,Yb:YAB激光器的理论模型。计算中考虑与铒镱共掺磷酸盐玻璃激光器在光谱特性、热性质等方面的区别,在双掺系统模型中引入晶体温度对反转粒子数密度、受激发射截面等参数的影响,以及热效应作用下腔模腰斑和热致衍射损耗的变化,重点分析了晶体温度和热效应对激光器工作特性的影响,根据计算结果提出了优化Er,Yb:YAB激光器性能的途径。
     2.设计了蓝宝石热沉端面制冷激光晶体的控温结构。通过使用该制冷方式,晶体的热效应和晶体温度均大幅减小,并在此基础上制备了一台输出功率为680mW的连续单横模1.5μm激光器。
     3.利用激光晶体自身的标准具效应,通过在谐振腔内再插入标准具的方式选择单纵模,得到了输出功率为430mW的连续单频1.5μm激光器。该激光器具有紧凑的结构和优良的噪声指标,有助于实现小型化、产品化的1.5μm纠缠源。
Since the diode pumped solid state lasers (DPSSLs) at1.5μm based on the4113/2→4115/2transition of erbium ions have the advantages of compact, good beam quality, eye-safety, and excellent transparency in both atmosphere and fused-silica fiber, they are of great interest for their applications in optical fiber communications, eye-safe laser range finding, laser radar, remote sensing, laser medicine, laser micromachining, environment detection and so on. In particular, when the DPSSLs at1.5μm are operated in single longitudinal mode, the lasers will possess more advantages, including good power stability, narrow linewidth, long coherent length and low noise, which benifit the generation of an entanglement source with high quality.
     To date, people have devoted vast efforts in the power scaling of the DPSSLs at1.5μm, and more than twenty kinds of erbium and yetterbium codoped laser materials have been used in the investigations. Recently, lots of progresses were made by the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM,CAS) and Moscow State University. The Er3+,Yb3+:YAl3(BO3)4(Er,Yb:YAB) crystal, which can exhibit excellent laser performance, were fabricated and made the watt-level continuous-wave (cw) DPSSL at1.5μm become reality.
     For the sake of miniaturization and productization of the entanglement source at1.5μm, we carried out the investigations of high-power-level DPSSL at1.5μm by using the high quality Er,Yb:YAB crystal provided by FJIRSM,CAS. The first step of the research is to realize a high power quasi-cw1.5μm laser and a single transverse mode laser at1.5μm with high output power and good beam quality via reasonable cavity design and the optimizations on the pump source and the cooling scheme. The second step that based on the former one is to obtain a single frequency laser by means of intra-cavity etalon or unidirectional traveling wave cavity.
     The works completed are as follows:
     1. Based on the detailed analyses of the temperature distribution and the thermal effect in the laser crystal, a theoretical model taking account of temperature-dependent thermal population distribution, temperature-dependent emission cross-section, themal induced variation of cavity waist and thermal induced diffraction loss, was developed for cw Er,Yb:YAB lasers. From the model, the influences of many parameters, including the thermal loading, the radius of aperture in the temperature control oven, the pump duty cycle, the pump waist, and the thickness of the crystal, on the laser output were analyzed. Finally, the guidelines for optimizing the laser behaviors were proposed.
     2. Based on the simulation results, the Er,Yb:YAB laser was experimentally optimized under quasi-continuous pumping. As a product,2.6W quasi-cw laser output was obtained at the pump duty cycle of10%. Then we let the lasers operate in quasi-cw mode at different pump duty cycles that increased step by step; when the duty cycle was set as100%, a cw1.5μm laser was demonstrated.
     3. The optimization of the cw laser performance was concentrated on the thermal management of the laser crystal, which was realized by a cooling scheme based on a sapphire heat-spreader. To investigate the effect of the new scheme, the temperature distributions in the crystals cooled by different schemes were simulated by the finite-element-analysis, and the thermal focal lengthes were measured by the knife method. Then the comparative studies of the laser behaviours were made with a three-mirror folded cavity, which was designed to be thermal insensitive. From the experimental results, both the laser output and the beam quality were improved after the optimization.
     4. On the basis of the cw single transverse mode laser operation, single longitudinal mode was selected by intra-cavity etalon and unidirectional traveling wave cavity, respectively.430mW cw single frequency laser operation was obtained with good stability and excellent noise property. The measured intensity noise and the phase noise achieved the shot noise limit when the analysis frequency was4MHz and5MHz, respectively. The noise level reached the requirement of the generation of a high quality continuous variable quantum entanglement source.
     The creative works are as follows:
     1.A model suitable to the diode-pumped Er,Yb:YAB laser was established. The differences between the Er,Yb:YAB crystal and the Er,Yb co-doped phosphate glass, the effect of crystal temperature on the thermal population distribution, emission cross-section, and many other parameters, the variation of the cavity waist and thermal induced diffraction loss, were taken into account. The guidelines for optimizing the laser performance were provided.
     2. A sapphire-based end-cooling configuration was designed. Both the thermal effect and the temperature of the crystal were strongly reduced. As a consequence, the single-transverse-mode laser output was scaled up to680mW.
     3. A cw single frequency laser at1.5μm with430mW output was obtained. The laser possesses both compact structure and low noise, which benefit the miniaturization and productization of the entanglement source at1.5μm.
引文
[1]T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187,493-494.
    [2]M. Ross, YAG laser operation by semiconductor laser pumping, Proc. IEEE, 1960,56,196-197.
    [3]R. Newman, Excitation of the Nd3+fluorescence in CaWO4 by recombination radiation in GaAs, J. Appl. Phys.,1963,34(2),437-437.
    [4]J. Berger, D. F. Welch, D. R. Scifres, W. Streifer, P. S. Cross,370mW,1.06μm, CW TEMoo output from an Nd:YAG laser rod end-pumped by a monolithic diode array, Electron. Lett.,1987,23(13),669-670.
    [5]F. W. Ostermayer, GaAs1-xPx diode pumped YAG:Nd lasers, Appl. Phys. Lett., 1971,18(3),93-96.
    [6]S. C. Tidwell, J. F. Seamans, C. E. Hamilton, C. H. Muller, D. D. Lowenthal, Efficient,15W output power, diode-end-pumped Nd:YAG laser, Opt. Lett.,1991, 16(8),584-586.
    [7]S. C. Tidwell, J. F. Seamans, M. S. Bowers, Highly efficient 60-W TEMoo cw diode-end-pumped Nd:YAG laser, Opt. Lett.,1993,18(2),116-118.
    [8]A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers, Appl. Phys. B,1994,58, 365-372.
    [9]K. I. Martin, W. A. Clarkson, D. C. Hanna,3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser, Opt. Lett.,1996,21(12),875-877.
    [10]U. Keller, Recent developments in compact ultrafast lasers, Nature,2003, 424(6950),831-838.
    [11]http://www.cisco.com/en/US/prod/collateral/modules/ps5455/white_paper_cll-463661.html
    [12]谭扬林,周敢,杨用红,光纤通信系统,湖南大学出版社,2000,1-13.
    [13]http://www.laserfocusworld.com/articles/print/volume-39/issue-1/features/powe r-and-energy-meters/navigating-the-features-and-limitations-of-laser-power-and-energ y-meters.html
    [14]徐军等,激光材料科学与技术前沿,上海交通大学出版社,2007,233.
    [15]J. McGrath, J. Munch, G. Smith, P. Veitch, Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing, Appl. Opt.,1998,37(24),1-4.
    [16]Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen, Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YV04 crystal as a self-Raman medium, Opt. Exp.,2009,17(6),4330-4335.
    [17]S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, J. T. Shy, Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator, Opt. Lett.,2007,33(22),2388-2340.
    [18]J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, Low noise, continuous-wave single-frequency 1.5-μm laser generated by a singly resonant optical parametric oscillator, Chin. Phys. B.,2011,20(11),1142151-5.
    [19]http://www.directindustry.com/prod/keopsys/continuous-wave-cw-fiber-lasers-29481-524784.html
    [20]http://www.nuphoton.com/?page_id= 171
    [21]E. Snitzer, R. Woodcock, Yb3+-Er3+glass laser, Appl. Phys. Lett.,1965,6(3), 45-46.
    [22]S. Taccheo, P. Laporta, S. Longhi, O. Svelto, C. Svelto, Diode-pumped bulk erbium-ytterbium lasers, Appl. Phys. B,1996,63,425-436.
    [23]B. I. Denker, B. I. Galagan, V. V. Osiko, S. E. Sverchkov, Materials and components for miniature diode-pumped 1.5 μm erbium glass lasers, Laser Phys., 2002,12(4),692-701.
    [24]N. V. Kuleshov, A. A. Lagatsky, V. G Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, G. Huber, CW laser performance of Yb and Er,Yb doped tungstates, Appl. Phys. B,1997,64,409-413.
    [25]G Karlsson, V. Pasiskevicius, F. Laurell, J. A. Tellefsen, Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator, Opt. Comm.,2003, 217,317-324.
    [26]S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell,230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm, IEEE Phot. Tech. Lett.,2001, 13(1),19-21.
    [27]J. Taboada, J. M. Taboada, D. Stolarski, J. Zohner, L Chavey, H. Hodnett, G. Noojin, R. Thomas, C. Cain, S. Kumru,100-megawatt Q-switched Er-glass laser, Proc. SPIE,2006,6100,6100B.
    [28]P. Laporta, S. Longhi, S. Taccheo, O. Svelto, Analysis and modeling of the erbium-ytterbium glass lasers, Opt. Comm.,1993,100,311-321.
    [29]E. Tanguy, C. Larat, J. P. Pocholle, Modeling of the erbium-ytterbium laser, Opt. Comm.,1998,153,172-183.
    [30]F. Song, S. J. Liu, Z. H. Wu, H. Cai, J. Su, J. G Tian, J. J. Xu, Model of longitudinally laser diode pumped erbium-ytterbium-codoped phosphate glass microchip laser with upconversion, IEEE J. Quantum Electron.,2007,43,817-823.
    [31]S. Taccheo, P. Laporta, S. Longhi, C. Svelto, Experimental analysis and theoretical modeling of a diode-pumped Er:Yb:glass microchip laser, Opt. Lett.,1995, 20(8),889-891.
    [32]N. A. Tolstik, A. E. Troshin, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+, Yb3+:YVO4 crystal, Appl. Phys. B, 2007,86,275-278.
    [33]J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, Y. D. Huang, Enhanced efficiency of Er:Yb:Ce:NaGd(WO4)2 laser at 1.5-1.6 μm by the introduction of high-doping Ce3+ions, Opt. Lett.,2008,33(21),2548-2550.
    [34]B. Denker, B. Galagan, L. Ivleva, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, F. Laurell, Luminescent and laser properties of Yb-Er:GdCa4O(BO3)3:a new crystal for eye-safe 1.5-μm lasers, Appl. Phys. B,2004,79,577-581.
    [35]P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. D. Jiang, J. Y. Wang, Optimization of Er,Yb:YCOB for CW Laser Operation, IEEE J. Quantum Electron., 2004,40(11),1575-1582.
    [36]Yu. P. Rudnitskii, L. V. Shachkin, S. T. Durmanov, G. V. Smirnov, Longitudinally diode-pumped quasi-continuous Yb3+,Er3+:LSB laser, Quantum Electron.,2005,35(12),1113-1116.
    [37]Y. W. Zhao, Y. F. Lin, Y. J. Chen, X. H. Gong, Z. D. Luo, Y. D. Huang, Spectroscopic properties and diode-pumped 1594 nm laser performance of Er:Yb:Li6Y(BO3)3 crystal, Appl. Phys. B,2008,90,461-464.
    [38]J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, Y. D. Huang, High efficient 1.56μm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal, Opt. Exp.,2008,16(22),17243-17248.
    [39]Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, Y. D. Huang,2.0 W diode-pumped Er3+,Yb3+:YAl3(BO3)4 laser at 1.5-1.6 μm, Appl. Phys. Lett.,2006, 89(24),241111 1-3.
    [40]N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, N. I. Leonyuk, Efficient 1W continuous-wave diode-pumped Er3+Yb3+:YA13(BO3)4 laser, Opt. Lett.,2007,32(22),3233-3235.
    [41]Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, Y. D. Huang,1.1 W diode-pumped Er:Yb laser at 1520 nm, Opt. Lett.,2007,32(18),2759-2761.
    [42]W. X. You, Y. F. Lin, Y. J. Chen, Z. D. Luo, Y. D. Huang, Polarized spectroscopy of Er3+ions in YA13(BO3)4 crystal, Opt. Mater.,2007,29,488-493.
    [43]李静,王继扬,张怀金,苏静,谭浩,宋峰,Er3+,Yb3+:YA13(BO3)4晶体的光谱性质研究,人工晶体学报,2004,33(3),367-370.
    [44]G. J. Kintz, T. Bare, Single-frequency operation in solid-state laser materials with short absorption depths, IEEE J. Quantum Electron.,1990,26(9),1457-1459.
    [45]E. J. Hao, H. M. Tan, T. Li, L. S. Qian. Single-frequency laser at 473 nm by use of twisted-mode technique, Opt. Comm.,2007,270,327-331.
    [46]相干公司产品参数:http://www.coherent.com.cn/pro.asp?idh=202
    [47]张志伟,薄片式Yb:YAG激光器及其应用,强激光与粒子束,2005,17(增刊),11-14.
    [48]W. Q. Xi, J. Y. Zhao, K. S. Zhang, A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation, Chin. Phys. Lett.,2005, 22(5),1144-1147.
    [49]张靖,张宽收,王润林,郭蕊香,彭堃墀,全固化单频Nd:YVO4环行激光器,2000,27(8),694-696.
    [50]王垚廷,周倩倩,李渊骥,刘建丽,张宽收,输出770mW的全固态连续单频蓝光激光器,中国激光,2009,36(7),1714-1718.
    [51]Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, K. C. Peng, High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter, Opt. Comm.2010,283,309-312.
    [52]刘侠,王宇,常冬霞,贾晓军,彭堃墀,LD泵浦Nd:YVO4/LBO单频671nm激光器,量子光学学报,2007,13(2),138-140.
    [53]常冬霞,刘侠,王宇,葛青,贾晓军,彭堃,连续波Nd:YVO4/LBO稳频倍频红光全固态激光器,中国激光,2008,35(3),323-327.
    [54]刘国宏,李永民,王垚廷,李渊骥,张宽收,全固态高功率连续单频稳频1053nmNd:YLF激光器,中国激光,2009,36(7),1732-1734.
    [55]Y. T. Wang, J. L. Liu, Q. Liu, Y. J. Li, K. S. Zhang, Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion, Opt. Exp.,2010,18(12),12044-12051.
    [56]J. L. Liu, Z. Y. Wang, H. Li, Q. Liu, K. S. Zhang. Stable,12 W, continuous-wave single-frequency Nd:YVO4 green laser polarized and dual-end pumped at 880 nm, Opt. Exp.,2011,19(7),6777-6782.
    [57]Y. J. Wang, Y. H. Zheng, Z. Shi, K. C. Peng, High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms. Laser Phys. Lett.,2012, 9(7),506-510.
    [58]Y. H. Zheng, Y. J. Wang, C. D. Xie, K. C. Peng. Single-frequency Nd:YVO4 laser at 671 nm with high-output power of 2.8 W, IEEE J. Quantum Electron.,2012, 48(1),67-72.
    [59]P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, J. Y. Wang. Coupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laser, Opt. Comm.,2002,207,315-320.
    [60]P. Laporta, S. Longhi, S. Taccheo, O. Svelto. Single-mode cw erbium-ytterbium glass laser at 1.5μm, Opt. Lett.,1993,18(1),31-33.
    [61]S. Taccheo, P. Laporta, O. Svelto. Linearly polarized, single-frequency, widely tunable Er:Yb bulk laser at around 1550 nm wavelength, Appl. Phys. Lett.,1996, 69(21),3128-3130.
    [62]S. Taccheo, S. Longhi, P. Laporta,20-dBm tunable single-frequency erbium-ytterbium bulk laser, Proc. of Eur. Conf. Opt. Comm.,1998,1,219-220.
    [63]S. Taccheo, P. Laporta, O. Svelto, G De Geronimo, Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser, Opt. Lett.,1996,21(21), 1747-1749.
    [64]S. Taccheo, P. Laporta, O. Svelto, G De Geronimo, Theoretical and experimental analysis of intensity noise in a codoped erbium-ytterbium glass laser, Appl. Phys. B,1998,66,19-26.
    [65]L. S. Watkins, C. Ghosh, R. Gandham, S. Leffler, R. Van Leeuwen, Q. Wang, B. Xu, Low noise high power ultra-stable ss laser for 1550 nm wavelength band. Proc. IEEE AVFOP,2006,56-57.
    [66]R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, C. Ghosh, Low noise high power ultra-stable diode pumped Er-Yb phosphate glass laser. Proc. SPIE,2008,6975, 69750K 1-9.
    [67]L. S. Watkins, R. van Leeuwen, B. Xu, Q. Wang, C. Ghosh, Compact high power DPSS laser with very low RIN and phase noise for 1550 nm wavelength band, Proc. IEEE AVFOP,2009,7-8.
    [68]P. Wang, J. M. Dawes, P. Burns, J. A. Piper, H. J. Zhang, L. Zhu, X. L. Meng, Diode-pumped cw tunable Er3+:Yb3+:YCOB laser at 1.5-1.6 μm, Opt. Mater.,2002, 19,383-387.
    [69]B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, F. Laurell, Yb3+,Er3+:YAG at high temperatures:Energy transfer and spectroscopic properties, Opt. Comm.,2007,271,142-147.
    [70]J. P. Hurrell, S. P. S. Porto, L. F. Chang, S. S. Mitra, R. P. Bauman, Optical phonons of yttrium aluminum garnet, Phys. Rev.1968,173(3),851-856.
    [71]C. B. Layne, W. H. Lowdermilk, M. J. Weber, Multiphonon relaxation of rare-earth ions in oxide glasses, Phys. Rev. B,1977,16(1),10-20.
    [72]T. Schweizer, T. Jensen, E. Heumann, G Huber, Spectroscopic properties and diode pumped 1.6 μm laser performance in Yb-codoped Er:Y3Al5O12 and Er:Y2SiO5, Opt. Comm.,1995,118,557-561.
    [73]Y. H. Tsang, C. J. Mercer, D. J. Binks, A mechanically Q-switched Yb:Er:YVO4 laser, Proc. SPIE,2008,6998,69981P.
    [74]H. J. Zhang, X. L. Meng, C. Q. Wang, P. Wang, L. Zhu, X. S. Liu, C. M. Dong, Y. Y. Yang, R. P. Cheng, J. Dawes, J. Piper, S. J. Zhang, L. K. Sun, Growth, spectroscopic properties and laser output of Er:Ca4YO(BO3)3 and Er:Yb:Ca4YO(BO3)3 crystals, J. Cryst. Growth,2000,218,81-86.
    [75]D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, M. R. Kokta, Judd-Ofelt analysis of the Er3+(4f11) absorption intensities in Er3+-doped garnets, J. Appl. Phys.,2003,93(5),2602-2607.
    [76]Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, G. M. Stephan, Laser characteristics at 1535 um and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser, Opt. Comm.,2002,203,301-313.
    [77]W.克希耐尔著,孙文、江泽文、程国祥 译,固体激光工程,科学出版社,2002,42.
    [78]福建华科激光晶体参数:http://www.u-oplaz.com/crystals/crystals20-1.htm
    [79]G Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, S. Sverchkov, Development and characterization of Yb-Er laser glass for high average power laser diode pumping, Appl. Phys. B,2002,75,41-46.
    [80]D. Jaque, J. Capmany, J. Rams, J. G Sole, Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser, J. Appl. Phys.,2000,87(3),1042-1048.
    [81]H. J. Zhang, X. L. Meng, L. Zhu, X. S. Liu, R. P. Cheng, Z. H. Yang, S. J. Zhang, L. K. Sun, Growth and thermal properties of Yb:Ca4YO(BO3) 3 crystal, Mater. Lett.,2000,43,15-18.
    [82]J. Li, J. Y. Wang, X. F. Cheng, X. B. Hu, P. A. Burns, J. M. Dawes, Thermal and laser properties of Yb:YAl3(BO3)4 crystal, J. Cryst. Growth,2003,250,458-462.
    [83]W.克希耐尔著,孙文、江泽文、程国祥译,固体激光工程,科学出版社,2002,361.
    [84]N. I. Leonyuk, L. I. Leonyuk, Growth and characterization of RM3(BO3)4 crystals, Prog. Cryst. Growth Charact. Mater.,1995,31,179-278.
    [85]P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. G Liu, J. Y. Wang, Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4 lasers, Opt. Lett.,2000,25(10),731-733.
    [86]D. Jaque, J. Capmany, J. A. Sanz Garcia, A. Brenier, G Boulon, J. Garcia Sole, Nd3+ion based self frequency doubling solid state lasers, Opt. Mater.,1999,13, 147-157.
    [87]P. Dekker, J. M. Dawes, J. A. Piper, Y. G Liu, J. Y. Wang,1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser, Opt. Comm.,2001,195, 431-436.
    [88]D. Jaque, Self-frequency-sum mixing in Nd doped nonlinear crystals for laser generation in the three fundamental colours The NYAB case, J. Alloys Compd.,2001, 323-324,204-209.
    [89]D. Jaque, J. Capmany, J. Garcia Sole, Z. D. Luo, A. D. Jiang, Continuous-wave laser properties of the self-frequency-doubling YAl3(BO3)4.Nd crystal, J. Opt. Soc. Am. B,1998,15(6),1656-1662.
    [90]Gy. Meszaros, E. Svab, E. Beregi, A. Watterich, M. Toth, Rietveld refinement for yttrium aluminum borates from neutron-and X-ray diffraction, Physica B,2000, 276-278,310-311.
    [91]R. M. Vazquez, R. Osellame, M. Marangoni, R. Ramponi, E. Dieguez, Er3+ doped YAl3(BO3)4 single crystals:determination of the refractive indices, Opt. Mater., 2004,26,231-233.
    [92]I. Foldvari, E. Beregi, A. Munoz F., R. Rosa, V. Horvath, The energy levels of Er3+ion in yttrium aluminum borate (YAB) single crystals, Opt. Mater.,2002,19, 241-244.
    [93]P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal, J. Opt. Soc. Am. B,1999,16(1),63-69.
    [94]T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, Diode-pumped tunable Yb:YAG miniature lasers at room temperature:modeling and experiment, IEEE J. Sel. Top. Quantum Electron.,1997,3(1),100-104.
    [95]V. V. Ter-Mikirtychev, V. A. Fromzel, Directly single-diode-pumped continuous-wave Yb3+:YAG laser tunable in the 1047-1051-nm wavelength range, Appl. Opt.,2000,39(27),4964-4969.
    [96]K. Ertel, C. Hernandez-Gomez, P. D. Mason, I. O. Musgrave, I. N. Ross, J. L. Collier, Concept for cryogenic kJ-class Yb:YAG amplifier, ASSP,2010, AWB 20.
    [97]J. G. Manni, J. D. Hyb, D. Rand, D. J. Ripin, J. R. Ochoa, T. Y. Fan,100-W Q-switched cryogenically cooled Yb:YAG laser, IEEE J. Quantum Electron.,2010, 46(1),95-97.
    [98]D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, Innovative high-power cw Yb:YAG cryogenic laser, Proc. SPIE,2007,6552,65520D 1-9.
    [99]K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Krankel, K. Petermann, G. Huber, Thermal and laser properties of Yb:LuAG for kW thin disk lasers, Opt. Exp.,2007,18(20),20712-20722.
    [100]T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, R. L. Byer, Edge-pumped quasi-three-level slab lasers:Design and power scaling, IEEE J. Quantum Electron., 2000,36(2),205-219.
    [101]K. Liu, E. Y. B. Pun, Comparative studies of spectroscopic properties in Er3+-Yb3+ codoped phosphate glasses, J. Alloys Compd.,2009,470,340-346.
    [102]A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, N.V. Kuleshov, Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB, Appl. Phys B., 2008,92,567-571.
    [103]J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, T. Omatsu, Thermal lensing measurements and thermal conductivity of Yb:YAB, Appl. Phys B.,2003,76, 289-292.
    [104]Y. J. Li, J. X. Feng, P. Li, K. S. Zhang, Y. J. Chen, Y. F. Lin, Y. D. Huang,400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm, Opt. Exp.,2013,21(5),6082-6090.
    [105]T. Forster, Intermolecular energy migration and fluorescence, Annal. Phys., 1948,6,55-75 (Translated by R. S. Knox, Univ. Rochester,1974,1984).
    [106]D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys., 1953,21,836-850.
    [107]M. Louis, S. Hubert, E. Simoni, J. Y. Gesland, Energy transfer between lanthanide and actinide ions in LiYF4, Opt. Mater.,1996,6,121-127.
    [108]M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, M. Bettinelli, Temperature dependence of Nd3+(?)Yb3+ energy transfer in the YA13(BO3)4 nonlinear laser crystal, J. Appl. Phys.,2005,97,0935101-8.
    [109]N. F. Zhuang, X. L. Hu, S. K. Gao, B. Zhao, J. L. Chen, J. Z. Chen, Spectral properties and energy transfer of Yb,Er:GdVO4 crystal, Appl. Phys. B,2006,82, 607-613.
    [110]G. A. Sefler, W. D. Mack, G. C. Valley, T. S. Rose, Secondary energy transfer and nonparticipatory Yb3+ions in Er3+-Yb3+ high-power amplifier fibers, J. Opt. Soc. Am. B,2004,21(10),1740-1748.
    [111]J.-L. Doualan, P. Le Boulanger, S. Girard, J. Margerie, F.-S. Ermeneux, R. Moncorge, Excited state absorption of erbium-doped laser crystals, J. Lumin.,1997, 72-74,179-182.
    [112]T. Y. Fan, Heat generation in Nd:YAG and Yb:YAQ IEEE J. Quantum Electron., 1993,29(6),1457-1459.
    [113]J. L. Blows, T. Omatsu, J. Dawes, H. Pask, M. Tateda, Heat generation in Nd:YVO4 with and without laser action, IEEE Phot. Tech. Lett.,1998,10(12), 1727-1729.
    [114]S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, Review on thermal effects in solid-state lasers:The case of ytterbium-doped materials, Prog. Quantum Electron.,2006,30,89-153.
    [115]M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, Thermal modeling of continuous-wave end-pumped solid-state lasers, Appl. Phys. Lett.1990,56(19), 1831-1833.
    [116]Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, Optimization in scaling fiber-coupled laser-diode end-pumped laser to higher power:influence of thermal effect, IEEE J. Quantum Electron.,1997,33(8),1424-1429.
    [117]M. Dammak, Crystal-field analysis of Er3+ ions in yttrium aluminium borate (YAB) single crystals, J. Alloys Compd.,2005,393,51-56.
    [118]V. V. Filippov, I. T. Bondar, N. V. Kuleshov, N. I. Leonyuk, V. V. Mal'tsev, O. V. Pilipenko, Dispersion and temperature dependence of the refractive indices of pure and Yb3+-doped crystals ofYAl3(BO3)4, J. Opt. Technol.,2007,74(10),717-719.
    [119]李静,薛迎红,程艳,赵洪阳,徐国纲,王继扬,Yb0.05:Gd0.20Y0.75Al3(BO3)4和Yb0.05:Y0.95Al3(BO3)4晶体的生长和性质研究,稀有金属材料与工程,2009, 38(9),1630-1633.
    [120]史彭,李隆,甘安生,凌亚文,刘小芳,白晋涛,端面抽运矩形截面Nd:GdVO4晶体热效应研究,中国激光,2005,32(7),923-928.
    [121]宋小鹿,李兵斌,王石语,蔡德芳,文建国,过振,脉冲激光二极管端面抽运全固态激光器热效应瞬态过程,中国激光,2007,34(11),1476-1482.
    [122]F. Song, C. B. Zhang, X. Ding, J. J. Xu, G. Y. Zhang, Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers, App. Phys. Lett.,2002,81(9),2145-2147.
    [123]S. Chenais, S.Forget, F. Druon, F. Balembois, F. Georges, Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG, App. Phys. B,2004,79,221-224.
    [124]F. Song, S. J. Liu, Z. H. Wu, H. Cai, X. Zhang, L. Teng, J. G Tian, Determination of the thermal loading in laser-diode-pumped erbium-ytterbium-codoped phosphate glass microchip laser, J. Opt. Soc. Am. B,2007, 24(9),2327-2332.
    [125]Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, S. C. Wang, Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers, IEEE J. Sel. Top. Quantum Electron.,1997,3(1),29-34.
    [126]赵晶云,LD双端端面泵浦的高功率连续单频Nd:YVO4激光器,硕士毕业论文,2004,17.
    [127]M. Born, E. Wolf, Principles of optics, Pergamon Press, fifth edition,1975.
    [128]S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, Scaling CW diode-end-pumped Nd:YAG lasers to high average powers, IEEE J. Quantum Electron.,1992,28(4),997-1009.
    [129]Y. F. Chen, Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers, J. Opt. Soc. Am. B,2000,17(11),1835-1840.
    [130]G. L. Bourdet, G. Lescroart, Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser, Appl. Opt.,1999,38(15),3275-3281.
    [131]G. Martel, C. Ozkul, F. Sanchez, Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser, Opt. Comm.,2000,185,419-430.
    [132]李渊骥,焦月春,冯晋霞,张宽收,LD端面抽运1.5 μm Er3+,Yb3+:YAl3(BO3)4激光器,中国激光,2013,40(1),01020071-5.
    [133]V. Lupei, N. Pavel, T. Taira, Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping, Appl. Phys. Lett.,2002,81(15), 2677-2679.
    [134]V. Lupei, G. Aka, D. Vivien, Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885 nm into the emitting level, Opt. Comm.,2002, 204,399-405.
    [135]Y. F. Lii, X. D. Yin, J. Xia, R. G Wang, D. Wang, Efficient continuous-wave intracavity frequency-doubled Nd:YAG-LBO blue laser at 473 nm under diode pumping directly into the emitting level, Laser Phys. Lett.,2010,7(1),25-28.
    [136]J. Zou, H. Chu, L. R. Wang, Continuous wave Nd:YAG-BiBO blue laser under direct 869 nm pumping, Laser Phys.,2012,22(3),482-484.
    [137]A. Y. Yao, W. Hou, H. Q. Li, Y. Bi, X. C. Lin, A. C. Geng, Y. P. Kong, D. F. Cui, Z. Y. Xu, Reducing thermal effect in end-diode-pumped laser crystal by using a novel resonator, Chin. Phys. Lett.,2005,22(3),607-610.
    [138]C. Lu, M. Gong, Q. Liu, L. Huang, F. He,16.4 W laser output at 1.34 μm with twin Nd:YVO4 crystals and double-end-pumping structure, Laser Phys. Lett.,2008, 5(1),21-24.
    [139]贾建勋,王春香,冯晋霞,张宽收,输出功率12 W的全固态连续单横模1.34μm激光器,量子光学学报,2012,18(1),97-101.
    [140]N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, M. Dubinskii, Ultralow quantum-defect eye-safe Er:Sc2O3 laser, Opt. Lett.,2008,33(13),1524-1526.
    [141]M. Tsunekane, N. Taguchi, and H. Inaba, Reduction of thermal effects in a diode-end-pumped, composite Nd:YAG rod with a sapphire end, Appl. Opt.,1998, 37(15),3290-3294.
    [142]S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers, Appl. Phys. B,2005,80,635-638.
    [143]G A. Newburgh, M. Dubinskii, Silicon carbide cooled solid-state laser, CLEO/QELS,2006, CFB6.
    [144]P. Millar, A. J. Kemp, D. Burns, Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader, Opt. Lett.,2009,34(6), 782-784.
    [145]P. Millar, R. B. Birch, A. J. Kemp, D. Burns, Synthetic diamond for intracavity thermal management in compact solid-state lasers, IEEE J. Quantum Electron.,2008, 44(8),709-717.
    [146]R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, H. P. Weber, Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods, IEEE J. Quantum Electron.,1998,34(6),1046-1052.
    [147]陈子伦,姜宗福,杨华峰,纵向泵浦Cr:Nd:GSGG激光棒的热透镜效应研究,激光与红外,2004,34(6),430-432.
    [148]张云,张天才,李廷鱼,谢常德,法布里-珀罗腔对相位噪声测量的影响,光学学报,2000,20(4),465-471.
    [149]张天才,半导体激光器量子噪声及其非经典效应的理论与实验研究,博士毕业论文,山西大学,1995,155-160.
    [150]刘建丽,利用全固态激光技术及光学参量过程产生高功率连续单频激光的理论和实验研究,博士毕业论文,山西大学,2012,34-36.
    [151]周倩倩,用于量子光学实验的宽带低噪声探测器研制及应用,硕士毕业论文,山西大学,2010.
    [152]A. S. Villar, M. Martinelli, P. Nussenzveig, Testing the entanglement of intense beams produced by a non-degenerate optical parametric oscillator, Opt. Comm.,2004, 242,551-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700