用户名: 密码: 验证码:
并联PWM背靠背式风电变流器调制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电技术的研究被日益重视,它采用风轮机直接驱动永磁同步发电机,通过功率变换器进行电能转换后并网,省去了故障频出的齿轮箱,同时低压穿越能力明显提高,提高了效率,因此,直驱型风力发电是风电技术发展的重要方向。但由于全功率变流器须承载全部电能,随着风力发电单机容量的提高,全功率变流器容量的提高将成为风电变流技术研究的重点,达到提高变流器容量,保障大功率变流器的稳定高效运行,为电网提供高质量电能的目标,对风电事业的发展具有深远的影响。
     论文以实现以通过载波相移技术应用于大功率变流器,实现全功率变流器大容量化为目标,开展了以下工作:
     首先介绍国内外风电行业的发展史及现状,重点分析风电变流器的现状及发展趋势,总结出提高变流器容量的可行方案,着重阐述了并联技术的研究现状,表明并联技术提高变流器容量的可行性。
     其次,分析六相双绕组永磁同步电机的数学模型,阐述风力的数学模型,搭建了永磁同步电机直接连接风力的仿真模型,阐述了永磁同步电机的零d轴空制策略。建立六相永磁同步电机的仿真模块。
     第三,分析比较几种大功率变流器调制策略,着重研究载波相移正弦脉宽调制和相移电压空间矢量调制两种优秀的大功率变流技术调制策略。并基于MATLAB/SIMULINK调制出两种调制策略的波形。
     最后,重点研究并联PWM背靠背式变流器的拓扑结构及运行工况,着重分析了并联条件下的机侧、网侧变流器数学模型,给出了电压外环电流内环的双闭环机侧变流器控制策略,网侧变流器采用电压电流双环控制策略。在此基础上搭建两种脉宽调制策略下的仿真模型,针对性比较两种仿真结果,验证两种大功率调制策略的优缺点。将载波相移技术运用于脉宽调制中,实现脉宽调制在功率变流技术场合的应用,通过仿真实验,验证课题研究的可行性。
Wind power technology has been increasingly emphasized on research, which uses a wind turbine directly to drive permanent magnet synchronous motor, Converts electricity to grid through power converter, eliminates the frequent failure gear box, what's more, improves the low pressure through ability and enhances efficiency significantly. Therefore, direct drive wind power generation is an important direction in wind power technology. However, full power converter carrying all the power. With the capacity of stand-alone wind power increasing, to the improvement of the full power converter capacity will be the focus of the study in wind power converter technology, the goal is to improve the capacity of the converter, protect the power converter operating stably and efficiently, to provide high-quality power to the grid, which has a profound impact the development of wind power.
     This paper applied the phase shift carrier technology in high-power converter, to achieve the capacity of full power converter increase, unfolded the following work:
     The paper introduced the development of domestic wind power industry history and current situation, the focus of wind power converter status and development trends, summed up the converter to improve the capacity of viable options, focusing on the status of technology research in parallel, indicating that the parallel technology to improve converter capacity is feasible.
     Secondly, it analyzed the mathematical model of 6-phase permanent magnet synchronous motor and the wind turbine, built the directly connection simulation model of the wind turbine and permanent magnet synchronous motor. Additionally, explained the permanent magnet synchronous motor zero d-axis air strategy and.Verified the effectiveness of the control strategy.
     Thirdly, it analyzed and compared several high-power converter modulation strategy, focused on Carrier Phase Shifted SPWM and Carrier Phase Shifted SVM modulation, which are outstanding high-power converter technology modulation strategy. In addition, the paper modulated waveform via two modulation strategies basing on MATLAB/SIMULINK.
     Finally, the paper focused on the parallel back-to-back PWM converters topology and operating conditions, Researched grid-side converter and generator-side converter model of the parallel back-to-back PWM converters, generator-side converter was applied the inner current loop and outer voltage loop control strategy, network-side converter used voltage and current double-loop for Decoupled Active and Reactive Power control strategy. On this basis, two kinds pulse width modulation simulation model was built, and compared two simulation results, verified the advantages and disadvantages of each high-power modulation strategy. For Carrier Phase-Shifting Technique being used in Pulse Width Modulation, achieved an aim application of pulse width modulation in High-Power Converter technology occasions. The simulation waveform verified feasibility of the study.
引文
[1]张宏彬.能源问题、环境污染与“节能减排”[J].改革与开放,2010,(20).
    [2]李源.环保和能源危机[J].中国新时代,2005,(03).
    [3]李慧明,杨娜.低碳经济及碳排放评价方法探究[J].学术交流,2010,(04).
    [4]张丽香.可再生能源发电的发展现状及前景[J].电力学报.
    [5]付文莉.可再生能源,未来能源之星[J].电源技术,2008,(09).
    [6]王承询,张源.风力发电[M].北京:中国电力出版社,2003.
    [7]田德.国内外风力发电技术的现状与发展趋势[J].农业工程技术(新能源产业),2007,(01).
    [8]张岚,施鹏飞.风电产业呈加速发展趋势[J],2010,(10).
    [9]中国风电产业2009年发展报告[J].风能产业,2010.5.
    [10]刘万琨,张志英,李银凤,赵萍.风能与风力发电技术.北京:化学工业出版社,2009.
    [11]Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E. Wind Energy Handbook.New York: Wiley & Sons,2001.
    [12]Hansen I.H,Helle L,Blaabjerg F,et al. Conceptual Survey of Generators and Power Electronics for Wind Turbines[J].Roskilde:RisO National Laboratory,2001.
    [13]Ion Boldea, Lucian Tutelea, loan Serban. Variable Speed Electric Generators and Their Control:An Emerging Technology Journal of Electrical Engineering.2002,3:20-28.
    [14]SLOOTWEG J G, DE HAAN S W H, POLINDER H et al. General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations.IEEE Trans on Power Systems,2003,18(1):144-151.
    [15]解鑫,王昌盛,彭军林,王雪帆.变速恒频双馈风力发电机的研究及应用前景[A].湖北省电工技术学会2004年学术年会论文集[C],2004.
    [16]冯奇,魏笑谈.2009年中国风电变流器市场概况[J].变频器世界,2009,(11).
    [17]李建林,许洪华.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008.
    [18]Polinder H, van der Pijl F F A, de Vilder G.-J,et al. Comparison of direct-drive and geared generator concepts for wind turbines[J].IEEE Trans on Energy Conversion,2006, 21 (3):725-733.
    [19]魏建玮,张迎雪.整流器并联技术的研究[J].大众科技,2009,(02).
    [20]谢力华,苏彦民.逆变电源的并联运行控制技术[J].电力电子技术,2000,(04).
    [21]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学博士学位论文,2008.
    [22]陈守川,姜新建.永磁同步风力发电机变流器控制策略与实验研究[J].微电机,2009,(10).
    [23]XIE Wei; HUANG Jia sheng. Dynamic Performance Analysis of 6-phase Permanent Magnet Synchronous Motor with Double Y-connected 3-phase Symmetrical Windings Displaced in turn by 30°. Navigation of China.2004.
    [24]梅仕锋,欧阳红林,杨民生.六相双Y移30°感应电机稳定性分析[J].电机技术,2006,(01).
    [25]薛丽英,齐蓉.六相永磁同步电机驱动系统的建模与仿真[J].电力系统及其自动化学报,2006,(04).
    [26]李崇坚.交流电同步电机调速系统[M].北京:科学出版社,2006.
    [27]Zhang, Yongchang; Zhu, Jianguo. Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency[J]. IEEE Transactions on Power Electronics, v 26, n 1, p 235-248,2011.
    [28]Renato O C Lyra, Thomas A Lipo. Torque density improvement in a six-phase induction motor with third harmonic current injection[J]. IEEE Trans, on Industrial Application, 2002,38(5):1351-1360.
    [29]张希良.风能开发利用(21世纪可持续能源丛书).北京:化学工业出版社,2005.
    [30]Spooner E. Modular design of permanent-magnet generators for Wind Turbine[J].IEEE Proceedings of Conference on Electric Power Applications.1996.
    [31]凌禹,张同庄,邱雪峰.直驱式风力发电系统最大风能追踪策略研究[J].电力电子技术,2007,(07).
    [32]陈建伟.基于双PWM变换器的直驱永磁同步风力发电系统建模与控制策略研究[D].新疆:新疆大学硕士学位论文.
    [33]Huang, Keyuan; Huang, Shoudao; She, Feng; Luo, Baimin; Cai, Luoqiang. A control strategy for direct-drive permanent-magnet wind-power generator using back-to-back PWM converter[J]. Proceedings of the 11th International Conference on Electrical Machines and Systems, ICEMS 2008.
    [34]Kim, Ki-Hong; Jeung, Yoon-Cheul; Lee, Dong-Choon; Kim, Heung-Geun. Robust control of PMSG wind turbine systems with back-to-back PWM converters[J].2nd International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2010.
    [35]Van, Tan Luong; Lee, Dong-Choon. Developing function models of back-to-back PWM converters for simplified simulation[J]. Journal of Power Electronics, v 11, n 1, p 51-58, January 2011.
    [36]周维来,裴景斌,徐殿国.基于双PWM控制永磁直驱风电变流器的研究[J].变频器世界,2010,(05).
    [37]Li, Jian-Lin; Hu, Shu-Ju; Li, Mei; Zhu, Ying; Kong, De-Guo; Xu, Hong-Hua. Research on the application of parallel back-to-back PWM converter on direct-drive wind power system[J].3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008.
    [38]Li, Jianlin; Gao, Zhigang; Hu, Shuju; Fu, Xunbo; Xu, Honghua. Application of parallel back-to-back PWM converter on the direct-drive wind power system[J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, v 32, n 5, p 59-62, March 10,2008.
    [39]Weihao, Hu; Yue, Wang; Xianwen, Song; Zhaoan, Wang.A novel sensorless unity power factor control method for six-phase PMSG in direct drive wind energy conversion systems[J].Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, p 744-749,2009.
    [40]Weihao, Hu; Yue, Wang; Xianwen, Song; Zhaoan, Wang. An improved DC-Link voltage control method for multiple grid connected converter in direct drive wind power generation system[J].Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, p 1939-1944.
    [41]YEZ,BOROYEVICH D,LEE F C. Modeling and control of zero sequence current in parallel multiphase converters//Proceedings of Power Electronics Specialists Conference:Vol 2,Jun 18-23,2000,Galway, Ireland:680-685.
    [42]李建林,高志刚,胡书举,付勋波,许洪华.并联背靠背PWM变流器在直驱型风力发电系统的应用[J].电力系统自动化,2008,(5)
    [43]李建林,王立桥.载波相移调制技术及其在大功率变流器中的应用[M].北京:机械工业出版社.
    [44]许爱国,谢少军.阶梯波合成逆变器的波形调制技术研究[J].中国电机工程学报,2009,(21).
    [45]杨贵杰,孙力,崔乃政,陆永平.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,(05).
    [46]张仲超,方强,何卫东.组合变流器CPS-SPWM技术研究[J].电力电子技术,1997,5.
    [47]李建林,张仲超.一种新颖的组合变流器载波相移SVM技术[J].电气自动化,2003,25(5)
    [48]洪宝棣.单相正弦脉宽调制风电逆变器的研究与实现[D].呼和浩特:内蒙古农业大学,2007.
    [49]Bowes S R. New Sinusoidal Pulse Width Modulated Inverter[C]. Proc. IEE Electric Power Applications, Vol.1222, pt. B,No.11,1975.
    [50]王长永.组合变流器相移SPWM技术及其在有源电力滤波器中的应用研究[D].杭州:浙江大学,2001.
    [51]李建林,张仲超.组合变流器载波相移空间矢量调制技术[J].高电压技术,2003,29(1)
    [52]余勇,张兴.大功率相移SVM整流器研究[J].电力电子技术,2008,8.
    [53]孙海生.变速恒频风力发电系统中双PWM变换器的分析、建模控制[D].呼和浩特:内蒙古工业大学,2009.
    [54]杨勇,杭毅,汤燕燕.风力发电系统中并网逆变器并联运行环流分析[J].高电压技术,2009,8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700