用户名: 密码: 验证码:
玻色—爱因斯坦凝聚体腔光机械系统中的光传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光机械系统是近年来被提出并引起广泛关注的一个研究课题。一个典型的光机械系统一般由一个纳米光腔和一个纳米机械振子耦合形成。在该系统中,内腔场强辐射压驱动机械振子在其固有频率附近作机械振动,而该振动反过来将会调制光场的分布,因而在场辐射压作用下,机械振子和光场由于相互调制而耦合在一起。因为光机械系统把光场与力学元件耦合在了一起,因此我们可以通过改变光场来调节力学元件的运动状态,如通过控制光场可以实现将力学振动冷却至其振动基态。相反,我们也可以通过改变力学元件的特征而实现对光场的有效调节。基于此原因,光机械系统在精密测量、经典及量子信息处理、光开关及光存储等领域有着潜在的应用价值。
     在玻色-爱因斯坦凝聚体与光腔耦合的系统中,实验证明玻色-爱因斯坦凝聚体在光腔中的集体振动可近似看做一个机械振子的简谐振动,在内腔场辐射压的作用下,该振动与内腔场耦合在一起,形成一个典型的光机械系统。在本论文中,我们研究了玻色-爱因斯坦凝聚体腔光机械系统中的非线性光学效应及光传播特征。通过求解体系满足的海森堡运动方程并利用腔满足的输入-输出关系,我们得到了探测光的透射率及四波混频的相对输出强度。以实验数据为实际参数,我们进行了具体的数值计算,分别讨论了在有效腔-泵浦失谐量满足“红”失谐和“蓝”失谐条件下泵浦光场对探测光场透射谱的调控作用。我们研究了该耦合系统中的慢光效应及四波混频效应,并基于该光机械系统提出了实现全光晶体管和单光子路由器的设计方案。全文共分为如下六章。
     在第一章中,介绍了几种典型的光机械系统并对其研究进展做了较为详细的综述,介绍了慢光效应及全光开关和全光晶体管的研究进展,最后介绍了本论文的研究内容及全文的结构安排。
     在第二章中,研究了玻色-爱因斯坦凝聚体腔光机械系统中的慢光效应。在该系统中,由于内腔场辐射压驱动玻色-爱因斯坦凝聚体的集体振动与内腔场相耦合,因此,玻色-爱因斯坦凝聚体的集体振动将改变腔的有效长度因而调节腔的有效频率。当有效腔-泵浦失谐量满足“红”失谐条件时,在泵浦光场的驱动下,共振探测光束通过该耦合系统时将受到泵浦场的有效调制。随着泵浦场振幅的增大,共振探测光的透射率增大,其相位也急剧增加。因而共振探测光的群速度将大大减小,即探测光会发生延迟。研究结果表明,在该系统中探测光的延迟时间最长可达0.8ms.
     在第三章中,研究了在有效腔-泵浦“蓝”失谐条件下玻色-爱因斯坦凝聚体与光腔耦合形成的光机械系统中的光传播特征。在“蓝”失谐条件下,由于玻色-爱因斯坦凝聚体的集体振动和内腔场的相互作用哈密顿量呈现放大的特征,因此当泵浦光功率达到某一临界值时,系统相互作用项的放大特征将起主要作用,共振探测光的透射将被有效地放大。共振探测光的放大率起初随着泵浦光功率的增大而增大,最后随之趋于饱和。根据“蓝”失谐条件下泵浦光对共振探测光的放大作用,我们提出了利用玻色-爱因斯坦凝聚体腔光机械系统实现全光晶体管的方案。
     在第四章中,研究了玻色-爱因斯坦凝聚体腔光机械系统中的四波混频效应。在该耦合系统中,由于在内腔场辐射压的驱动下玻色-爱因斯坦凝聚体的集体振动与内腔场耦合,因而在玻色-爱因斯坦凝聚体集体振动的激发下,腔内将发生由两个泵浦光子和一个探测光子参与的四波混频过程。研究表明,泵浦光场对四波混频的产生起开关的作用,四波混频的输出强度随泵浦场功率的增大而增大并最后趋于饱和。
     在第五章中,研究了玻色-爱因斯坦凝聚体与双边透射腔耦合形成的光机械系统中的光传播特征。在该耦合系统中,由于光腔是双边透射腔,因而探测光子既可以从右腔镜透出也可以从左腔镜透出。我们研究了该系统中泵浦光在满足有效腔-泵浦“红”失谐条件下对探测光透射的调控作用。研究表明,当仅用一束共振探测光驱动该耦合系统时,共振探测光将完全从右腔镜透出;而当用理想功率的泵浦光以及共振探测光共同驱动该系统时,共振探测光却完全从左腔镜透出。因而,在该系统中,可以通过调节泵浦光来有效地控制探测光的路径。根据这一原理,我们提出了基于该耦合系统实现单光子路由器的设计方案。
     第六章对本论文的研究成果做了详细的总结并对后续的研究工作做了进一步的展望.
     本论文的研究得到了国家自然科学基金(10774101和10974133)和教育部高校博士点基金的资助。
Optomechanical system has been proposed and attracted much at-tention in recent years. A generic optomechanical system is composed ofan optical nanocavity and a nanomechanical resonator. In such a sys-tem, the strong raidation pressure of the light drives the motion of theresonator near its resonance frequency, which will give feedback on thecavity field by modulating the optical path length of the cavity. As a re-sult, the nanomechanical resonator strongly couples to the cavity field bythe radiation pressure. Due to the fact that an optomechanical system isa hybrid structure consisting of an optical element (an optical nanocavity)and a mechanical element (a nanomechanical resonator), the motion stateof the mechanical element can be efectively modulated just by controllingthe optical field in such a coupled system. For example, a mechanical res-onator, coupling to an optical cavity, can be cooled to its quantum groundstate by the radiation pressure from the cavity field. For the other hand,the optical field in the optomechanical system can also be regulated bymodulating the mechanical element. For the reasons above, the optome-chanical system will have potential applications in sensitive measurement,classical or quantum information processing, optical switching or storage,and so on.
     In a coupled BEC(Bose-Einstein condensate)-cavity system, the col-lective oscillation of the BEC can be serve as a mechanical resonator, whichhas been demonstrated by the present experiments. Such a resonatorstrongly couples to the cavity field by the radiation pressure, which willmake the coupled BEC-cavity system present as a generic optomechani-cal system by analogy. In this thesis, the nonlinear optical efects as wellas the light propagation in the cavity optomechanical system with a BEChave been discussed detailedly. By solving Heisenberg equations of motionand then using an input-output relation for the cavity, the transmission ofthe probe laser and the relative output intensity of the four wave mixingcan be obtained. Taking the experiment data as realistic parameters, thenumerical results for the transmission of the probe laser as well as the out-put of the four wave mixing are presented. The slow light efect and thefour wave mixing efect in the cavity optomechanical system with a BEChave been discussed theoretically, and an all optical transistor as well asa single photon router based on this coupled system have been proposed.The whole thesis includes the following six chapters.
     In Chapter One, several typical optomechanical systems as well asthe related researches are introduced, the research progress of the slowlight efect, all optical switch, and all optical transistor is also reviewedin detail, and finally, the contents as well as the outline of this thesis areshown.
     In Chapter Two, the slow light efect in the cavity optomechanicalsystem with a BEC is studied. In this coupled system, the collectiveoscillation of the BEC serves as a mechanical resonator which stronglycouples to the cavity field by the radiation pressure, and as a result, theefective length thus the efective frequency of the cavity is modulated bythe collective oscillation of the BEC. While driving this system by a pump laser with a red cavity-pump detuning, the propagation of the probe laserthrough the cavity on resonance can be efectively modulated by the pumplaser. Increasing the amplitude of the pump laser, the transmission of theprobe laser on resonance will be enhanced and the phase of the probelaser will sufer a sharp increase, which will result in a large decrease ofthe group velocity of the probe laser, i.e., the probe laser through thecoupled BEC-cavity system will be delayed. The calculated results showthat the delayed time is as much as0.8ms.
     In Chapter Three, the propagation of the probe laser in the BEC-cavity optomechanical system with a blue cavity-pump detuning is stud-ied. Under blue detuned pumping, the efective interaction Hamiltonianbetween the collective oscillation of the BEC and the cavity field becomesone of parametric amplification. Therefore, when the power of the pumplaser is increased so large as to surpass the critical value, the interactionbetween the oscillator and the cavity field will play a main role for con-trolling the propagation of the probe laser in the cavity. As a result, theprobe laser will significantly be amplified. The transmission of the ampli-fied probe laser initially increases and finally approaches saturation withthe increase of the pump power. Based on the amplification efect onthe probe laser in the coupled BEC-cavity system, a practical scheme forrealizing an all optical transistor based on this coupled system is proposed.
     In Chapter Four, the four wave mixing efect in the cavity optome-chanical system with a BEC is discussed. In such a coupled system, thecollective oscillation of the BEC couples to the cavity field by the strongradiation pressure from the intracavity field, and as a result, a four wavemixing process will be induced by the collective oscillation of the BEC.The calculated results show that the pump laser can efectively switch theprocess of the four wave mixing, and the relative output intensity of the four wave mixing is sensitively dependent on the power of the pump laser.Initially, the relative output intensity increases quickly with the increasingpower of the pump laser, and finally, it approaches saturation.
     In Chapter Five, the propagation of the probe laser in the cavity op-tomechanical system, which is composed of a cavity with two transmissionsides and a trapped BEC, is studied in detail. For such a coupled system,the probe photon in the cavity can transmit from the left mirror or fromthe right one. In this chapter§the dependence of the route of the probephoton on the pump laser with a red cavity-pump detuning is discussed.The results show that the probe photon will transmit from the right mir-ror in the absence of the pump laser, but will leave the cavity from itsleft mirror while applying a pump laser with an appropriate power to thecavity. Due to the fact that the pump laser can efectively control theroute of the probe photon, this coupled BEC-cavity can sever as a singlephoton router.
     In Chapter Six, the main results obtained are summarized in detailand the future researches for the cavity optomechanical system with aBEC are discussed.
     This work was supported by the National Natural Science Founda-tion of China (Grants NO.10774101and No.10974133) and the NationalMinistry of Education Program for Training Ph.D.
引文
[1] Franken P.A., Hill A.E., Peters C.W., et al.,“Generation of Optical Harmonics”,Physical Review Letters,1961,7(4),118–119.
    [2] Hellwarth R.W.,“Theory of Stimulated Raman Scattering”, Physical Review,1963,130(5),1850–1852.
    [3] Chiao R.Y., Townes C.H., and Stoichef B.P.,“Stimulated Brillouin Scatteringand Coherent Generation of Intense Hypersonic Waves”, Physical Review Let-ters,1964,12(21),592–595.
    [4] Bass M., Franken P.A., Hill A.E., et al.,“Optical Mixing”, Physical ReviewLetters,1962,8(1),18–18.
    [5] Faries D.W., Gehring K.A., Richards P.L., et al.,“Tunable Far-Infrared Ra-diation Generated from the Diference Frequency between Two Ruby Lasers”,Physical Review,1969,180(2),363–365.
    [6] Giordmaine J.A. and Miller R.C.,“Tunable Coherent Parametric Oscillation inLiNbO3at Optical Frequencies”, Physical Review Letters,1965,14(24),973–976.
    [7] Cho A.Y.,“Growth of Periodic Structures by the Molecular-Beam Method”,Applied Physics Letters,1971,19(11),467–468.
    [8] Shimizu H., Kumada K., Yamanaka N., et al.,“1.3μm InAsP p-type modulationdoped MQW lasers grown by gas-source molecular-beam epitaxy”, Journal ofCrystal Growth,1999,201-202,896–900.
    [9] Lee C.Y., Wu M.C., Shiao H.P., et al.,“Temperature dependence of photolumi-nescence from InAsP/InP strained quantum well structures grown by metalor-ganic chemical vapor deposition”, Journal of Crystal Growth,2000,208(1-4),137–144.
    [10] Hiyamizu S., Ohno Y., Higashiwaki M., et al.,“In0.15Ga0.85As/GaAs quantumwire structures grown on (553)B GaAs substrates by molecular beam epitaxy”,Journal of Crystal Growth,1999,201-202(0),824–827.
    [11] Wang J., Nozakib Y.I.M., Hao M.S., et al.,“Fabrication of nanoscale structuresof InGaN by MOCVD lateral overgrowth”, Journal of Crystal Growth,1999,197(1-2),48–53.
    [12] Frigeri P., Bosacchi A., Franchi S., et al.,“Vertically stacked quantum dots grownby ALMBE and MBE”, Journal of Crystal Growth,1999,201-202(0),1136–1138.
    [13] Baron T., Martin F., Mur P., et al.,“Silicon quantum dot nucleation on Si3N4,SiO2and SiOxNysubstrates for nanoelectronic devices”, Journal of CrystalGrowth,2000,209(4),1004–1008.
    [14] Tian Q. and Yang X.Z.,“Low-dimensional semiconductor structures”, PhysicsExperimentation,2001,21(9),3–6.
    [15] Rosencher E. and Bois P.,“Model system for optical nonlinearities: Asymmetricquantum wells”, Physical Review B,1991,44(20),11315–11327.
    [16] Fiore A., Rosencher E., Vinter B., et al.,“Second-order optical susceptibility ofbiased quantum wells in the interband regime”, Physical Review B,1995,51(19),13192–13197.
    [17] Baskoutas S., Paspalakis E., and Terzis A.F.,“Efects of excitons in nonlinearoptical rectification in semiparabolic quantum dots”, Physical Review B,2006,74(15).
    [18] Goldoni G.,“Optimal design and quantum limit for second harmonic generationin semiconductor heterostructures”, Journal of Applied Physics,2001,89(3),1755–1758.
    [19] Guo K.X. and Gu S.W.,“Nonlinear optical rectification in parabolic quantumwells with an applied electric field”, Physical Review B,1993,47(24),16322–16325.
    [20] Bedoya M. and Camacho A.S.,“Nonlinear intersubband terahertz absorption inasymmetric quantum well structures”, Physical Review B,2005,72(15),155318.
    [21] Marquardt F. and Girvin S.M.,“Optomechanics”, Physics,2009,2,40.
    [22] Kippenberg T.J. and Vahala K.J.,“Cavity optomechanics: Back-action at themesoscale”, Science,2008,321(5893),1172–1176.
    [23] Kippenberg T.J. and Vahala K.J.,“Cavity Opto-Mechanics”, Optics Express,2007,15(25),17172–17205.
    [24] Groblacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong cou-pling between a micromechanical resonator and an optical cavity field”, Nature,2009,460(7256),724–727.
    [25] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [26] Agarwal G.S. and Huang S.M.,“Electromagnetically induced transparency inmechanical efects of light”, Physical Review A,2010,81(4),041803.
    [27] Thompson J.D., Zwickl B.M., Jayich A.M., et al.,“Strong dispersive coupling ofa high-finesse cavity to a micromechanical membrane”, Nature,2008,452(7183),72–U5.
    [28] Sankey J.C., Yang C., Zwickl B.M., et al.,“Strong and tunable nonlinear optome-chanical coupling in a low-loss system”, Nature Physics,2010,6(9),707–712.
    [29] Corbitt T., Chen Y., Innerhofer E., et al.,“An All-Optical Trap for a Gram-ScaleMirror”, Physical Review Letters,2007,98(15),150802.
    [30] Gigan S., Bohm H.R., Paternostro M., et al.,“Self-cooling of a micromirror byradiation pressure”, Nature,2006,444(7115),67–70.
    [31] Weis S., Riviere R., Deleglise S., et al.,“Optomechanically Induced Trans-parency”, Science,2010,330(6010),1520–1523.
    [32] Barzanjeh S., Naderi M.H., and Soltanolkotabi M.,“Back-action ground-statecooling of a micromechanical membrane via intensity-dependent interaction”,Physical Review A,2011,84(2),023803.
    [33] Biancofiore C., Karuza M., Galassi M., et al.,“Quantum dynamics of an op-tical cavity coupled to a thin semitransparent membrane: Efect of membraneabsorption”, Physical Review A,2011,84(3),033814.
    [34] Cheung H.K. and Law C.K.,“Nonadiabatic optomechanical Hamiltonian ofa moving dielectric membrane in a cavity”, Physical Review A,2011,84(2),023812.
    [35] Jayich A.M., Sankey J.C., Zwickl B.M., et al.,“Dispersive optomechanics: amembrane inside a cavity”, New Journal of Physics,2008,10(9),095008.
    [36] Usami K., Naesby A., Bagci T., et al.,“Optical cavity cooling of mechanicalmodes of a semiconductor nanomembrane”, Nat Phys,2012,8(2),168–172.
    [37] Wilson D.J., Regal C.A., Papp S.B., et al.,“Cavity Optomechanics with Stoi-chiometric SiN Films”, Physical Review Letters,2009,103(20),207204.
    [38] Zhao Y., Wilson D.J., Ni K.K., et al.,“Suppression of extraneous thermal noisein cavity optomechanics”, Optics Express,2012,20(4),3586–3612.
    [39] Zwickl B.M., Shanks W.E., Jayich A.M., et al.,“High quality mechanical andoptical properties of commercial silicon nitride membranes”, Applied PhysicsLetters,2008,92(10),103125–3.
    [40] Armani D.K., Kippenberg T.J., Spillane S.M., et al.,“Ultra-high-Q toroid mi-crocavity on a chip”, Nature,2003,421(6926),925–928.
    [41] Carmon T., Rokhsari H., Yang L., et al.,“Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode”, PhysicalReview Letters,2005,94(22),223902.
    [42] Rokhsari H., Kippenberg T., Carmon T., et al.,“Radiation-pressure-drivenmicro-mechanical oscillator”, Optics Express,2005,13(14),5293–5301.
    [43] Schliesser A., Anetsberger G., Rivi`ere R., et al.,“High-sensitivity monitoring ofmicromechanical vibration using optical whispering gallery mode resonators”,New Journal of Physics,2008,10(9),095015.
    [44] Schliesser A., Del’Haye P., Nooshi N., et al.,“Radiation Pressure Cooling ofa Micromechanical Oscillator Using Dynamical Backaction”, Physical ReviewLetters,2006,97(24),243905.
    [45] Schliesser A., Riviere R., Anetsberger G., et al.,“Resolved-sideband cooling of amicromechanical oscillator”, Nat Phys,2008,4(5),415–419.
    [46] Chan J., Alegre T.P.M., Safavi-Naeini A.H., et al.,“Laser cooling of a nanome-chanical oscillator into its quantum ground state”, Nature,2011,478(7367),89–92.
    [47] Eichenfield M., Chan J., Camacho R.M., et al.,“Optomechanical crystals”, Na-ture,2009,462(7269),78–82.
    [48] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [49] Elste F., Girvin S.M., and Clerk A.A.,“Quantum Noise Interference and Backac-tion Cooling in Cavity Nanomechanics”, Physical Review Letters,2009,102(20),207209.
    [50] Massel F., Heikkila T.T., Pirkkalainen J.M., et al.,“Microwave amplificationwith nanomechanical resonators”, Nature,2011,480(7377),351–354.
    [51] Regal C.A., Teufel J.D., and Lehnert K.W.,“Measuring nanomechanical motionwith a microwave cavity interferometer”, Nat Phys,2008,4(7),555–560.
    [52] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2010,463(7277).
    [53] Teufel J.D., Donner T., Li D., et al.,“Sideband cooling of micromechanical mo-tion to the quantum ground state”, Nature,2011,475(7356).
    [54] Teufel J.D., Harlow J.W., Regal C.A., et al.,“Dynamical Backaction of Mi-crowave Fields on a Nanomechanical Oscillator”, Physical Review Letters,2008,101(19),197203.
    [55] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [56] Ottl A., Ritter S., Kohl M., et al.,“Hybrid apparatus for Bose-Einstein conden-sation and cavity quantum electrodynamics: Single atom detection in quantumdegenerate gases”, Review of Scientific Instruments,2006,77(6),063118.
    [57] Brennecke F., Donner T., Ritter S., et al.,“Cavity QED with a Bose-Einsteincondensate”, Nature,2007,450(7167),268–271.
    [58] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a Bose-Einstein condensate”, Science,2008,322(5899),235–238.
    [59] Colombe Y., Steinmetz T., Dubois G., et al.,“Strong atom-field couplingfor Bose-Einstein condensates in an optical cavity on a chip”, Nature,2007,450(7167),272–276.
    [60] Bhattacherjee A.B.,“Cavity quantum optomechanics of ultracold atoms in anoptical lattice: Normal-mode splitting”, Physical Review A,2009,80(4),043607.Bhattacherjee, Aranya B.
    [61] Nagy D., Domokos P., Vukics A., et al.,“Nonlinear quantum dynamics of twoBEC modes dispersively coupled by an optical cavity”, European Physical Jour-nal D,2009,55(3),659–668.
    [62] Nagy D., Ko′nya G., Szirmai G., et al.,“Dicke-Model Phase Transition in theQuantum Motion of a Bose-Einstein Condensate in an Optical Cavity”, PhysicalReview Letters,2010,104(13),130401.
    [63] Paternostro M., De Chiara G., and Palma G.M.,“Cold-Atom-Induced Controlof an Optomechanical Device”, Physical Review Letters,2010,104(24),243602.
    [64] Purdy T.P., Brooks D.W.C., Botter T., et al.,“Tunable Cavity Optomechanicswith Ultracold Atoms”, Physical Review Letters,2010,105(13).
    [65] Ritter S., Brennecke F., Baumann K., et al.,“Dynamical coupling between aBose-Einstein condensate and a cavity optical lattice”, Applied Physics B,2009,95(2),213–218.
    [66] Szirmai G., Nagy D., and Domokos P.,“Quantum noise of a Bose-Einstein con-densate in an optical cavity, correlations, and entanglement”, Physical ReviewA,2010,81(4),043639.
    [67] Zhang J.M., Cui F.C., Zhou D.L., et al.,“Nonlinear dynamics of a cigar-shapedBose-Einstein condensate in an optical cavity”, Physical Review A,2009,79(3),033401.
    [68] Zhang K., Chen W., Bhattacharya M., et al.,“Hamiltonian chaos in a coupledBEC-optomechanical-cavity system”, Physical Review A,2010,81(1),013802.
    [69] Zhou L., Pu H., Zhang K., et al.,“Cavity-induced switching between localizedand extended states in a noninteracting Bose-Einstein condensate”, PhysicalReview A,2011,84(4),043606.
    [70] Braginsky V.B., Strigin S.E., and Vyatchanin S.P.,“Parametric oscillatory in-stability in Fabry-Perot interferometer”, Physics Letters A,2001,287(5-6),331–338.
    [71] Braginsky V.B., Strigin S.E., and Vyatchanin S.P.,“Analysis of parametric os-cillatory instability in power recycled LIGO interferometer”, Physics Letters A,2002,305(3-4),111–124.
    [72] John S.,“Strong localization of photons in certain disordered dielectric super-lattices”, Physical Review Letters,1987,58(23),2486–2489.
    [73] Yablonovitch E.,“Inhibited Spontaneous Emission in Solid-State Physics andElectronics”, Physical Review Letters,1987,58(20),2059–2062.
    [74] Painter O., Lee R.K., Scherer A., et al.,“Two-Dimensional Photonic Band-GapDefect Mode Laser”, Science,1999,284(5421),1819–1821.
    [75] Nozaki K., Tanabe T., Shinya A., et al.,“Sub-femtojoule all-optical switchingusing a photonic-crystal nanocavity”, Nat Photon,2010,4(7),477–483.
    [76] Happ T.D., Tartakovskii I.I., Kulakovskii V.D., et al.,“Enhanced light emis-sion of InxGa1xAs quantum dots in a two-dimensional photonic-crystal defectmicrocavity”, Physical Review B,2002,66(4),041303.
    [77] Chang D.E., Safavi-Naeini A.H., Hafezi M., et al.,“Slowing and stopping lightusing an optomechanical crystal array”, New Journal of Physics,2011,13(2),023003.
    [78] Alegre T.P.M., Safavi-Naeini A., Winger M., et al.,“Quasi-two-dimensional op-tomechanical crystals with a complete phononicbandgap”, Optics Express,2011,19(6),5658–5669.
    [79] Vuˇckovi′c J., Lonˇcar M., Mabuchi H., et al.,“Design of photonic crystal micro-cavities for cavity QED”, Physical Review E,2001,65(1),016608.
    [80] Mekis A., Chen J.C., Kurland I., et al.,“High Transmission through Sharp Bendsin Photonic Crystal Waveguides”, Physical Review Letters,1996,77(18),3787–3790.
    [81] Lin S.Y., Chow E., Hietala V., et al.,“Experimental Demonstration of Guidingand Bending of Electromagnetic Waves in a Photonic Crystal”, Science,1998,282(5387),274–276.
    [82] Bradley C.C., Sackett C.A., Tollett J.J., et al.,“Evidence of Bose-Einstein Con-densation in an Atomic Gas with Attractive Interactions”, Physical Review Let-ters,1995,75(9),1687–1690.
    [83] Anderson M.H., Ensher J.R., Matthews M.R., et al.,“Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”, Science,1995,269(5221),198–201.
    [84] Davis K.B., Mewes M.O., Andrews M.R., et al.,“Bose-Einstein Condensation ina Gas of Sodium Atoms”, Physical Review Letters,1995,75(22),3969–3973.
    [85] Boyd R.W. and Gauthier D.J.,“‘Slow’ and ‘fast’ light”, Progress in Optics,Volume43,2002,43,497–530.
    [86] Hau L.V., Harris S.E., Dutton Z., et al.,“Light speed reduction to17metres persecond in an ultracold atomic gas”, Nature,1999,397(6720),594–598.
    [87] Harris S.E.,“Electromagnetically induced transparency”, Phys. Today,1997,50,36–42.
    [88] Schwarz S.E. and Tan T.Y.,“Wave interactions in saturable absorptions”, Ap-plied Physics Letters,1967,10(1),4–7.
    [89] Liu C., Dutton Z., Behroozi C.H., et al.,“Observation of coherent optical infor-mation storage in an atomic medium using halted light pulses”, Nature,2001,409(6819),490–493.
    [90] Kash M.M., Sautenkov V.A., Zibrov A.S., et al.,“Ultraslow Group Velocity andEnhanced Nonlinear Optical Efects in a Coherently Driven Hot Atomic Gas”,Physical Review Letters,1999,82(26),5229.
    [91] Phillips D.F., Fleischhauer A., Mair A., et al.,“Storage of Light in Atomic Va-por”, Physical Review Letters,2001,86(5),783.
    [92] Turukhin A.V., Sudarshanam V.S., Shahriar M.S., et al.,“Observation of Ultra-slow and Stored Light Pulses in a Solid”, Physical Review Letters,2001,88(2),023602.
    [93] El Amili A., Miranda B.X., Goldfarb F., et al.,“Observation of Slow Light in theNoise Spectrum of a Vertical External Cavity Surface-Emitting Laser”, PhysicalReview Letters,2010,105(22),223902.
    [94] Fleischhauer M., Imamoglu A., and Marangos J.P.,“Electromagnetically inducedtransparency: Optics in coherent media”, Reviews of Modern Physics,2005,77(2),633–673.
    [95] Boyd R.W.,“Slow and fast light: fundamentals and applications”, Journal ofModern Optics,2009,56(18-19),1908–1915.
    [96] Boyd R.W. and Gauthier D.J.,“Controlling the Velocity of Light Pulses”, Sci-ence,2009,326(5956),1074–1077.
    [97] Bigelow M.S., Lepeshkin N.N., and Boyd R.W.,“Observation of ultraslow lightpropagation in a ruby crystal at room temperature”, Physical Review Letters,2003,90(11),113903.
    [98] Bigelow M.S., Lepeshkin N.N., and Boyd R.W.,“Superluminal and slow lightpropagation in a room-temperature solid”, Science,2003,301(5630),200–202.
    [99] Ku P.C., Sedgwick F., Chang-Hasnain C.J., et al.,“Slow light in semiconductorquantum wells”, Optics Letters,2004,29(19),2291–2293.
    [100] Palinginis P., Sedgwick F., Crankshaw S., et al.,“Room temperature slow light ina quantum-well waveguide via coherent population oscillation”, Optics Express,2005,13(24),9909–9915.
    [101] M rk J., Kj r R., van der Poel M., et al.,“Slow light in a semiconductor waveg-uide at gigahertz frequencies”, Optics Express,2005,13(20),8136–8145.
    [102] Su H. and Chuang S.L.,“Room-temperature slow light with semiconductorquantum-dot devices”, Optics Letters,2006,31(2),271–273.
    [103] Gehring G.M., Schweinsberg A., Barsi C., et al.,“Observation of Backward PulsePropagation Through a Medium with a Negative Group Velocity”, Science,2006,312(5775),895–897.
    [104] Schweinsberg A., Lepeshkin N.N., Bigelow M.S., et al.,“Observation of super-luminal and slow light propagation in erbium-doped optical fiber”, EPL (Euro-physics Letters),2006,73(2),218.
    [105] Okawachi Y., Bigelow M.S., Sharping J.E., et al.,“Tunable All-Optical Delaysvia Brillouin Slow Light in an Optical Fiber”, Physical Review Letters,2005,94(15),153902.
    [106] Song K.Y., Gonz′alez Herra′ez M., and Th′evenaz L.,“Gain-assisted pulse ad-vancement using single and double Brillouin gain peaks in optical fibers”, OpticsExpress,2005,13(24),9758–9765.
    [107] Thevenaz L.,“Slow and fast light in optical fibres”, Nature Photonics,2008,2(8),474–481.
    [108] Dawes A.M.C., Illing L., Clark S.M., et al.,“All-optical switching in rubidiumvapor”, Science,2005,308(5722),672–674.
    [109] Keyes R.W.,“Power Dissipation in Information Processing”, Science,1970,168(3933),796–801.
    [110] Bajcsy M., Hoferberth S., Balic V., et al.,“Efcient All-Optical Switching UsingSlow Light within a Hollow Fiber”, Physical Review Letters,2009,102(20).
    [111] Zhang J.P., Hernandez G., and Zhu Y.F.,“All-optical switching at ultralow lightlevels”, Optics Letters,2007,32(10),1317–1319.
    [112] Qin F., Liu Y., Meng Z.M., et al.,“Design of Kerr-efect sensitive microcavityin nonlinear photonic crystal slabs for all-optical switching”, Journal of AppliedPhysics,2010,108(5).
    [113] Yang S., Al-Amri M., Evers J., et al.,“Controllable optical switch using aBose-Einstein condensate in an optical cavity”, Physical Review A,2011,83(5),053821.
    [114] Chang D.E., Sorensen A.S., Demler E.A., et al.,“A single-photon transistor usingnanoscale surface plasmons”, Nat Phys,2007,3(11),807–812.
    [115] Hong F.Y. and Xiong S.J.,“Single-photon transistor using microtoroidal res-onators”, Physical Review A,2008,78(1),013812.
    [116] Hwang J., Pototschnig M., Lettow R., et al.,“A single-molecule optical transis-tor”, Nature,2009,460(7251),76–80.
    [117] Hong F.Y. and Xiong S.J.,“Single-photon Transistors Based on the Interactionof an Emitter and Surface Plasmons”, Nanoscale Research Letters,2008,3(10),361–364.
    [118] Li J.J. and Zhu K.D.,“A quantum optical transistor with a single quantum dotin a photonic crystal nanocavity”, Nanotechnology,2011,22(5),055202.
    [1] Boyd R.W.,“Slow and fast light: fundamentals and applications”, Journal ofModern Optics,2009,56(18-19),1908–1915.
    [2] Boyd R.W. and Gauthier D.J.,“Controlling the Velocity of Light Pulses”, Science,2009,326(5956),1074–1077.
    [3] Hau L.V., Harris S.E., Dutton Z., et al.,“Light speed reduction to17metres persecond in an ultracold atomic gas”, Nature,1999,397(6720),594–598.
    [4] Harris S.E.,“Electromagnetically induced transparency”, Phys. Today,1997,50,36–42.
    [5] Akulshin A.M., Barreiro S., and Lezama A.,“Steep Anomalous Dispersion inCoherently Prepared Rb Vapor”, Physical Review Letters,1999,83(21),4277.
    [6] Liu C., Dutton Z., Behroozi C.H., et al.,“Observation of coherent optical infor-mation storage in an atomic medium using halted light pulses”, Nature,2001,409(6819),490–493.
    [7] Kash M.M., Sautenkov V.A., Zibrov A.S., et al.,“Ultraslow Group Velocity andEnhanced Nonlinear Optical Efects in a Coherently Driven Hot Atomic Gas”,Physical Review Letters,1999,82(26),5229.
    [8] Phillips D.F., Fleischhauer A., Mair A., et al.,“Storage of Light in Atomic Vapor”,Physical Review Letters,2001,86(5),783.
    [9] Turukhin A.V., Sudarshanam V.S., Shahriar M.S., et al.,“Observation of Ultra-slow and Stored Light Pulses in a Solid”, Physical Review Letters,2001,88(2),023602.
    [10] Bigelow M.S., Lepeshkin N.N., and Boyd R.W.,“Observation of ultraslow lightpropagation in a ruby crystal at room temperature”, Physical Review Letters,2003,90(11),113903.
    [11] Bigelow M.S., Lepeshkin N.N., and Boyd R.W.,“Superluminal and slow lightpropagation in a room-temperature solid”, Science,2003,301(5630),200–202.
    [12] Song K.Y., Gonza′lez Herr′aez M., and Th′evenaz L.,“Gain-assisted pulse advance-ment using single and double Brillouin gain peaks in optical fibers”, Optics Ex-press,2005,13(24),9758–9765.
    [13] Okawachi Y., Bigelow M.S., Sharping J.E., et al.,“Tunable All-Optical Delays viaBrillouin Slow Light in an Optical Fiber”, Physical Review Letters,2005,94(15),153902.
    [14] Thevenaz L.,“Slow and fast light in optical fibres”, Nature Photonics,2008,2(8),474–481.
    [15] Boyd R.W. and Narum P.,“Slow-and fast-light: fundamental limitations”, Jour-nal of Modern Optics,2007,54(16-17),2403–2411.
    [16] Boyd R.W. and Gauthier D.J.,“‘Slow’ and ‘fast’ light”, Progress in Optics, Vol-ume43,2002,43,497–530.
    [17] Stepanov S. and S′anchez M.P.,“Slow and fast light via two-wave mixing inerbium-doped fibers with saturable absorption”, Physical Review A,2009,80(5),053830.
    [18] Yannopapas V., Paspalakis E., and Vitanov N.V.,“Electromagnetically inducedtransparency and slow light in an array of metallic nanoparticles”, Physical ReviewB,2009,80(3),035104.
    [19] El Amili A., Miranda B.X., Goldfarb F., et al.,“Observation of Slow Light in theNoise Spectrum of a Vertical External Cavity Surface-Emitting Laser”, PhysicalReview Letters,2010,105(22),223902.
    [20] Cabrera-Granado E., D′az E., and Caldero′n O.G.,“Slow Light in Molecular-Aggregate Nanofilms”, Physical Review Letters,2011,107(1),013901.
    [21] Bae I.H. and Moon H.S.,“Continuous control of light group velocity from sub-luminal to superluminal propagation with a standing-wave coupling field in a Rbvapor cell”, Physical Review A,2011,83(5),053806.
    [22] Schwarz S.E. and Tan T.Y.,“Wave interactions in saturable absorptions”, AppliedPhysics Letters,1967,10(1),4–7.
    [23] Chiao R.Y., Townes C.H., and Stoichef B.P.,“Stimulated Brillouin Scatteringand Coherent Generation of Intense Hypersonic Waves”, Physical Review Letters,1964,12(21),592–595.
    [24] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [25] Marquardt F. and Girvin S.M.,“Optomechanics”, Physics,2009,2,40.
    [26] Groblacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity field”, Nature,2009,460(7256),724–727.
    [27] Wilson-Rae I., Nooshi N., Zwerger W., et al.,“Theory of Ground State Cooling ofa Mechanical Oscillator Using Dynamical Backaction”, Physical Review Letters,2007,99(9),093901.
    [28] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [29] Agarwal G.S. and Huang S.M.,“Electromagnetically induced transparency inmechanical efects of light”, Physical Review A,2010,81(4),041803.
    [30] Huang S. and Agarwal G.S.,“Normal-mode splitting and antibunching in Stokesand anti-Stokes processes in cavity optomechanics: Radiation-pressure-inducedfour-wave-mixing cavity optomechanics”, Physical Review A,2010,81(3),033830.
    [31] Thompson J.D., Zwickl B.M., Jayich A.M., et al.,“Strong dispersive coupling ofa high-finesse cavity to a micromechanical membrane”, Nature,2008,452(7183),72–U5.
    [32] Sankey J.C., Yang C., Zwickl B.M., et al.,“Strong and tunable nonlinear optome-chanical coupling in a low-loss system”, Nature Physics,2010,6(9),707–712.
    [33] Weis S., Riviere R., Deleglise S., et al.,“Optomechanically Induced Trans-parency”, Science,2010,330(6010),1520–1523.
    [34] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [35] Cheung H.K. and Law C.K.,“Nonadiabatic optomechanical Hamiltonian of amoving dielectric membrane in a cavity”, Physical Review A,2011,84(2),023812.
    [36] Barzanjeh S., Naderi M.H., and Soltanolkotabi M.,“Back-action ground-statecooling of a micromechanical membrane via intensity-dependent interaction”,Physical Review A,2011,84(2),023803.
    [37] Biancofiore C., Karuza M., Galassi M., et al.,“Quantum dynamics of an opticalcavity coupled to a thin semitransparent membrane: Efect of membrane absorp-tion”, Physical Review A,2011,84(3),033814.
    [38] Brennecke F., Donner T., Ritter S., et al.,“Cavity QED with a Bose-Einsteincondensate”, Nature,2007,450(7167),268–271.
    [39] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a Bose-Einstein condensate”, Science,2008,322(5899),235–238.
    [40] Colombe Y., Steinmetz T., Dubois G., et al.,“Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip”, Nature,2007,450(7167),272–276.
    [41] Purdy T.P., Brooks D.W.C., Botter T., et al.,“Tunable Cavity Optomechanicswith Ultracold Atoms”, Physical Review Letters,2010,105(13).
    [42] Nagy D., Domokos P., Vukics A., et al.,“Nonlinear quantum dynamics of two BECmodes dispersively coupled by an optical cavity”, European Physical Journal D,2009,55(3),659–668.
    [43] Nagy D., Ko′nya G., Szirmai G., et al.,“Dicke-Model Phase Transition in theQuantum Motion of a Bose-Einstein Condensate in an Optical Cavity”, PhysicalReview Letters,2010,104(13),130401.
    [44] Zhang J.M., Cui F.C., Zhou D.L., et al.,“Nonlinear dynamics of a cigar-shapedBose-Einstein condensate in an optical cavity”, Physical Review A,2009,79(3),033401.
    [45] Zhang K., Chen W., Bhattacharya M., et al.,“Hamiltonian chaos in a coupledBEC-optomechanical-cavity system”, Physical Review A,2010,81(1),013802.
    [46] Paternostro M., De Chiara G., and Palma G.M.,“Cold-Atom-Induced Control ofan Optomechanical Device”, Physical Review Letters,2010,104(24),243602.
    [47] Bhattacherjee A.B.,“Cavity quantum optomechanics of ultracold atoms in anoptical lattice: Normal-mode splitting”, Physical Review A,2009,80(4),043607.
    [48] Zhou L., Pu H., Zhang K., et al.,“Cavity-induced switching between localized andextended states in a noninteracting Bose-Einstein condensate”, Physical ReviewA,2011,84(4),043606.
    [49] Steinke S.K. and Meystre P.,“Role of quantum fluctuations in the optomechanicalproperties of a Bose-Einstein condensate in a ring cavity”, Physical Review A,2011,84(2),023834.
    [50] Pitaevskii L. and Stringari S., Bose-Einstein condensation, Oxford UniversityPress, Oxford,2003.
    [51] Gardiner C.W. and Zoller P., Quantum Noise, Springer, Berlin,2004.
    [1] Constable G. and Somerville B., A Century of Innovation: Twenty EngineeringAchievements that Transformed Our Lives, Joseph Henry Press,2003.
    [2] Koppens F.H.L., Buizert C., Tielrooij K.J., et al.,“Driven coherent oscillations ofa single electron spin in a quantum dot”, Nature,2006,442(7104),766–771.
    [3] Orrit M.,“Nanooptics: Photons pushed together”, Nature,2009,460(7251),42–44.
    [4] Chang D.E., Sorensen A.S., Demler E.A., et al.,“A single-photon transistor usingnanoscale surface plasmons”, Nat Phys,2007,3(11),807–812.
    [5] Hwang J., Pototschnig M., Lettow R., et al.,“A single-molecule optical transis-tor”, Nature,2009,460(7251),76–80.
    [6] Li J.J. and Zhu K.D.,“A quantum optical transistor with a single quantum dotin a photonic crystal nanocavity”, Nanotechnology,2011,22(5),055202.
    [7] Tominaga J., Mihalcea C., Buchel D., et al.,“Local plasmon photonic transistor”,Applied Physics Letters,2001,78(17),2417–2419.
    [8] Hong F.Y. and Xiong S.J.,“Single-photon transistor using microtoroidal res-onators”, Physical Review A,2008,78(1),013812.
    [9] Hong F.Y. and Xiong S.J.,“Single-photon Transistors Based on the Interactionof an Emitter and Surface Plasmons”, Nanoscale Research Letters,2008,3(10),361–364.
    [10] Dawes A.M.C.,“Towards a single-photon all-optical transistor”, physica statussolidi (RRL)-Rapid Research Letters,2009,3(1), A17–A19.
    [11] Gibbs H.M., Optical Bistability: Controlling Light with Light, Academic, Orlando,1985.
    [12] O’Brien J.L.,“Optical Quantum Computing”, Science,2007,318(5856),1567–1570.
    [13] Bouwmeester D., Ekert A., and Zeilinger A., The Physics of Quantum Informa-tion, Springer, Berlin,2000.
    [14] Groblacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity field”, Nature,2009,460(7256),724–727.
    [15] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [16] Wilson-Rae I., Nooshi N., Zwerger W., et al.,“Theory of Ground State Cooling ofa Mechanical Oscillator Using Dynamical Backaction”, Physical Review Letters,2007,99(9),093901.
    [17] Agarwal G.S. and Huang S.M.,“Electromagnetically induced transparency inmechanical efects of light”, Physical Review A,2010,81(4),041803.
    [18] Thompson J.D., Zwickl B.M., Jayich A.M., et al.,“Strong dispersive coupling ofa high-finesse cavity to a micromechanical membrane”, Nature,2008,452(7183),72–U5.
    [19] Sankey J.C., Yang C., Zwickl B.M., et al.,“Strong and tunable nonlinear optome-chanical coupling in a low-loss system”, Nature Physics,2010,6(9),707–712.
    [20] Zhao Y., Wilson D.J., Ni K.K., et al.,“Suppression of extraneous thermal noisein cavity optomechanics”, Optics Express,2012,20(4),3586–3612.
    [21] Biancofiore C., Karuza M., Galassi M., et al.,“Quantum dynamics of an opticalcavity coupled to a thin semitransparent membrane: Efect of membrane absorp-tion”, Physical Review A,2011,84(3),033814.
    [22] Weis S., Riviere R., Deleglise S., et al.,“Optomechanically Induced Trans-parency”, Science,2010,330(6010),1520–1523.
    [23] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [24] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [25] Nunnenkamp A., Bo¨rkje K., and Girvin S.M.,“Single-Photon Optomechanics”,Physical Review Letters,2011,107(6),063602.
    [26] Marquardt F. and Girvin S.M.,“Optomechanics”, Physics,2009,2,40.
    [27] Larson J. and Horsdal M.,“Photonic Josephson efect, phase transitions, andchaos in optomechanical systems”, Physical Review A,2011,84(2),021804.
    [28] Massel F., Heikkila T.T., Pirkkalainen J.M., et al.,“Microwave amplification withnanomechanical resonators”, Nature,2011,480(7377),351–354.
    [29] Brennecke F., Donner T., Ritter S., et al.,“Cavity QED with a Bose-Einsteincondensate”, Nature,2007,450(7167),268–271.
    [30] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a Bose-Einstein condensate”, Science,2008,322(5899),235–238.
    [31] Colombe Y., Steinmetz T., Dubois G., et al.,“Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip”, Nature,2007,450(7167),272–276.
    [32] Purdy T.P., Brooks D.W.C., Botter T., et al.,“Tunable Cavity Optomechanicswith Ultracold Atoms”, Physical Review Letters,2010,105(13).
    [33] Ritter S., Brennecke F., Baumann K., et al.,“Dynamical coupling between a Bose-Einstein condensate and a cavity optical lattice”, Applied Physics B,2009,95(2),213–218.
    [34] Nagy D., Domokos P., Vukics A., et al.,“Nonlinear quantum dynamics of two BECmodes dispersively coupled by an optical cavity”, European Physical Journal D,2009,55(3),659–668.
    [35] Nagy D., Ko′nya G., Szirmai G., et al.,“Dicke-Model Phase Transition in theQuantum Motion of a Bose-Einstein Condensate in an Optical Cavity”, PhysicalReview Letters,2010,104(13),130401.
    [36] Zhang J.M., Cui F.C., Zhou D.L., et al.,“Nonlinear dynamics of a cigar-shapedBose-Einstein condensate in an optical cavity”, Physical Review A,2009,79(3),033401.
    [37] Bhattacherjee A.B.,“Cavity quantum optomechanics of ultracold atoms in anoptical lattice: Normal-mode splitting”, Physical Review A,2009,80(4),043607.
    [38] Zhang K., Chen W., Bhattacharya M., et al.,“Hamiltonian chaos in a coupledBEC-optomechanical-cavity system”, Physical Review A,2010,81(1),013802.
    [39] Paternostro M., De Chiara G., and Palma G.M.,“Cold-Atom-Induced Control ofan Optomechanical Device”, Physical Review Letters,2010,104(24),243602.
    [40] Szirmai G., Nagy D., and Domokos P.,“Quantum noise of a Bose-Einstein con-densate in an optical cavity, correlations, and entanglement”, Physical Review A,2010,81(4),043639.
    [41]O¨ttl A., Ritter S., Kohl M., et al.,“Hybrid apparatus for Bose-Einstein conden-sation and cavity quantum electrodynamics: Single atom detection in quantumdegenerate gases”, Review of Scientific Instruments,2006,77(6),063118.
    [42] Murch K.W., Moore K.L., Gupta S., et al.,“Observation of quantum-measurementbackaction with an ultracold atomic gas”, Nature Physics,2008,4(7),561–564.
    [43] Gardiner C.W. and Zoller P., Quantum Noise, Springer, Berlin,2004.
    [44] Gardiner C.W. and Collett M.J.,“Input and output in damped quantum systems:Quantum stochastic diferential equations and the master equation”, PhysicalReview A,1985,31(6),3761–3774.
    [45] Fiore V., Yang Y., Kuzyk M.C., et al.,“Storing Optical Information as a Mechan-ical Excitation in a Silica Optomechanical Resonator”, Physical Review Letters,2011,107(13),133601.
    [1] Ye P.X., Nonlinear Optics, Peking Univeristy Press, Beijing,2007.
    [2] Chiao R.Y., Kelley P.L., and Garmire E.,“Stimulated Four-Photon Interactionand Its Influence on Stimulated Rayleigh-Wing Scattering”, Physical Review Let-ters,1966,17(22),1158–1161.
    [3] Carman R.L., Chiao R.Y., and Kelley P.L.,“Observation of Degenerate Stimu-lated Four-Photon Interaction and Four-Wave Parametric Amplification”, Physi-cal Review Letters,1966,17(26),1281–1283.
    [4] Pellin M. and Yardley J.,“A resonantly enhanced four-wave parametric oscilla-tor”, Quantum Electronics, IEEE Journal of,1977,13(11),904–907.
    [5] Boyd R.W., Raymer M.G., Narum P., et al.,“Four-wave parametric interactionsin a strongly driven two-level system”, Physical Review A,1981,24(1),411–423.
    [6] Sun J., Zuo Z., Mi X., et al.,“Two-photon resonant four-wave mixing in a dressedatomic system”, Physical Review A,2004,70(5),053820.
    [7] Petch J.C., Keitel C.H., Knight P.L., et al.,“Role of electromagnetically inducedtransparency in resonant four-wave-mixing schemes”, Physical Review A,1996,53(1),543–561.
    [8] Wu Y., Saldana J., and Zhu Y.,“Large enhancement of four-wave mixing bysuppression of photon absorption from electromagnetically induced transparency”,Physical Review A,2003,67(1),013811.
    [9] Wu Y. and Yang X.,“Four-wave mixing in molecular magnets via electromagnet-ically induced transparency”, Physical Review B,2007,76(5),054425.
    [10] Kosionis S., Terzis A., and Paspalakis E.,“Pump-probe optical response andfour-wave mixing in intersubband transitions of a semiconductor quantum well”,Applied Physics B: Lasers and Optics,2011,104(1),33–43.
    [11] Yang W.X., Hou J.M., and Lee R.K.,“Highly efcient four-wave mixing via inter-subband transitions in InGaAs/AlAs coupled double quantum well structures”,Journal of Modern Optics,2009,56(6),716–721.
    [12] Boyer V., McCormick C.F., Arimondo E., et al.,“Ultraslow Propagation ofMatched Pulses by Four-Wave Mixing in an Atomic Vapor”, Physical ReviewLetters,2007,99(14),143601.
    [13] Du S., Wen J., Rubin M.H., et al.,“Four-Wave Mixing and Biphoton Generationin a Two-Level System”, Physical Review Letters,2007,98(5),053601.
    [14] Kang H., Hernandez G., and Zhu Y.,“Resonant four-wave mixing with slow light”,Physical Review A,2004,70(6),061804.
    [15] Renger J., Quidant R., van Hulst N., et al.,“Surface-Enhanced Nonlinear Four-Wave Mixing”, Physical Review Letters,2010,104(4),046803.
    [16] Sharping J.E., Fiorentino M., Coker A., et al.,“Four-wave mixing in microstruc-ture fiber”, Optics Letters,2001,26(14),1048–1050.
    [17] Su H., Li H., Zhang L., et al.,“Nondegenerate four-wave mixing in quantum dotdistributed feedback lasers”, Photonics Technology Letters, IEEE,2005,17(8),1686–1688.
    [18] David N., Shun-Lien C., Kim N.J., et al.,“Comparison of Four-Wave Mixing inQuantum Dots and Quantum Wells for Wavelength Conversion”, OSA TechnicalDigest (CD), Optical Society of America,2008, CMBB6.
    [19] Monat C., Ebnali-Heidari M., Grillet C., et al.,“Four-wave mixing in slow lightengineered silicon photonic crystal waveguides”, Optics Express,2010,18(22),22915–22927.
    [20] Wang G., Cen L., Qu Y., et al.,“Intensity-dependent efects on four-wave mix-ing based on electromagnetically induced transparency”, Optics Express,2011,19(22),21614–21619.
    [21] Yang G.Q., Xu P., Wang J., et al.,“Four-wave mixing in a three-level bichro-matic electromagnetically induced transparency system”, Physical Review A,2010,82(4),045804.
    [22] Guo K.X. and Gu S.W.,“Nonlinear optical rectification in parabolic quantumwells with an applied electric field”, Physical Review B,1993,47(24),16322–16325.
    [23] Shao S., Guo K.X., Zhang Z.H., et al.,“Third-harmonic generation in cylindricalquantum dots in a static magnetic field”, Solid State Communications,2011,151(4),289–292.
    [24] Harris S.E., Field J.E., and Imamogˇlu A.,“Nonlinear optical processes using elec-tromagnetically induced transparency”, Physical Review Letters,1990,64(10),1107–1110.
    [25] Harris S.E.,“Electromagnetically induced transparency”, Phys. Today,1997,50,36–42.
    [26] Schmidt H. and Imamogdlu A.,“Giant Kerr nonlinearities obtained by electro-magnetically induced transparency”, Optics Letters,1996,21(23),1936–1938.
    [27] Huang S. and Agarwal G.S.,“Normal-mode splitting and antibunching in Stokesand anti-Stokes processes in cavity optomechanics: Radiation-pressure-inducedfour-wave-mixing cavity optomechanics”, Physical Review A,2010,81(3),033830.
    [28] Weis S., Riviere R., Deleglise S., et al.,“Optomechanically Induced Trans-parency”, Science,2010,330(6010),1520–1523.
    [29] Kippenberg T.J. and Vahala K.J.,“Cavity optomechanics: Back-action at themesoscale”, Science,2008,321(5893),1172–1176.
    [30] Ludwig M., Kubala B., and Marquardt F.,“The optomechanical instability in thequantum regime”, New Journal of Physics,2008,10,095013.
    [31] Marquardt F. and Girvin S.M.,“Optomechanics”, Physics,2009,2,40.
    [32] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [33] Groblacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity field”, Nature,2009,460(7256),724–727.
    [34] Agarwal G.S. and Huang S.M.,“Electromagnetically induced transparency inmechanical efects of light”, Physical Review A,2010,81(4),041803.
    [35] Thompson J.D., Zwickl B.M., Jayich A.M., et al.,“Strong dispersive coupling ofa high-finesse cavity to a micromechanical membrane”, Nature,2008,452(7183),72–U5.
    [36] Sankey J.C., Yang C., Zwickl B.M., et al.,“Strong and tunable nonlinear optome-chanical coupling in a low-loss system”, Nature Physics,2010,6(9),707–712.
    [37] Brennecke F., Donner T., Ritter S., et al.,“Cavity QED with a Bose-Einsteincondensate”, Nature,2007,450(7167),268–271.
    [38] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a Bose-Einstein condensate”, Science,2008,322(5899),235–238.
    [39] Colombe Y., Steinmetz T., Dubois G., et al.,“Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip”, Nature,2007,450(7167),272–276.
    [40] Nagy D., Domokos P., Vukics A., et al.,“Nonlinear quantum dynamics of two BECmodes dispersively coupled by an optical cavity”, European Physical Journal D,2009,55(3),659–668.
    [41] Nagy D., Ko′nya G., Szirmai G., et al.,“Dicke-Model Phase Transition in theQuantum Motion of a Bose-Einstein Condensate in an Optical Cavity”, PhysicalReview Letters,2010,104(13),130401.
    [42] Paternostro M., De Chiara G., and Palma G.M.,“Cold-Atom-Induced Control ofan Optomechanical Device”, Physical Review Letters,2010,104(24),243602.
    [43] Ritter S., Brennecke F., Baumann K., et al.,“Dynamical coupling between a Bose-Einstein condensate and a cavity optical lattice”, Applied Physics B,2009,95(2),213–218.
    [44] De Chiara G., Paternostro M., and Palma G.M.,“Entanglement detection inhybrid optomechanical systems”, Physical Review A,2011,83(5),052324.
    [45] Zhang J.M., Cui F.C., Zhou D.L., et al.,“Nonlinear dynamics of a cigar-shapedBose-Einstein condensate in an optical cavity”, Physical Review A,2009,79(3),033401.
    [46] Zhang K., Chen W., Bhattacharya M., et al.,“Hamiltonian chaos in a coupledBEC-optomechanical-cavity system”, Physical Review A,2010,81(1),013802.
    [47] Gardiner C.W. and Zoller P., Quantum Noise, Springer, Berlin,2004.
    [48] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [49] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [1] Scarani V., Bechmann-Pasquinucci H., Cerf N.J., et al.,“The security of practicalquantum key distribution”, Rev. Mod. Phys.,2009,81(3),1301–1350.
    [2] Kimble H.J.,“The quantum internet”, Nature,2008,453,1203–1230.
    [3] Aoki T., Parkins A.S., Alton D.J., et al.,“Efcient Routing of Single Photons byOne Atom and a Microtoroidal Cavity”, Physical Review Letters,2009,102(8),083601.
    [4] Hoi I.C., Wilson C.M., Johansson G., et al.,“Demonstration of a Single-PhotonRouter in the Microwave Regime”, Physical Review Letters,2011,107(7),073601.
    [5] Agarwal G.S. and Huang S.,“Optomechanical systems as single-photon routers”,Physical Review A,2012,85(2),021801.
    [6] Brennecke F., Donner T., Ritter S., et al.,“Cavity QED with a Bose-Einsteincondensate”, Nature,2007,450(7167),268–271.
    [7] Colombe Y., Steinmetz T., Dubois G., et al.,“Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip”, Nature,2007,450(7167),272–276.
    [8] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a Bose-Einstein condensate”, Science,2008,322(5899),235–238.
    [9] Ritter S., Brennecke F., Baumann K., et al.,“Dynamical coupling between a Bose-Einstein condensate and a cavity optical lattice”, Applied Physics B,2009,95(2),213–218.
    [10] Murch K.W., Moore K.L., Gupta S., et al.,“Observation of quantum-measurementbackaction with an ultracold atomic gas”, Nature Physics,2008,4(7),561–564.
    [11] Nagy D., Ko′nya G., Szirmai G., et al.,“Dicke-Model Phase Transition in theQuantum Motion of a Bose-Einstein Condensate in an Optical Cavity”, PhysicalReview Letters,2010,104(13).
    [12] Nagy D., Ko′nya G., Szirmai G., et al.,“Dicke-Model Phase Transition in theQuantum Motion of a Bose-Einstein Condensate in an Optical Cavity”, PhysicalReview Letters,2010,104(13),130401.
    [13] Yang S., Al-Amri M., Evers J., et al.,“Controllable optical switch using a Bose-Einstein condensate in an optical cavity”, Physical Review A,2011,83(5),053821.
    [14] Weis S., Riviere R., Deleglise S., et al.,“Optomechanically Induced Trans-parency”, Science,2010,330(6010),1520–1523.
    [15] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [16] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [17] Wang Y.J., Anderson D.Z., Bright V.M., et al.,“Atom Michelson Interferometeron a Chip Using a Bose-Einstein Condensate”, Physical Review Letters,2005,94(9),090405.
    [18] Fort′agh J. and Zimmermann C.,“Magnetic microtraps for ultracold atoms”, Re-views of Modern Physics,2007,79(1),235–289.
    [19] Treutlein P., Hunger D., Camerer S., et al.,“Bose-Einstein Condensate Coupled toa Nanomechanical Resonator on an Atom Chip”, Physical Review Letters,2007,99(14),140403.
    [20] Keyes R.W.,“Power Dissipation in Information Processing”, Science,1970,168(3933),796–801.
    [21] Dawes A.M.C., Illing L., Clark S.M., et al.,“All-optical switching in rubidiumvapor”, Science,2005,308(5722),672–674.
    [22] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [23] Gardiner C.W. and Zoller P., Quantum Noise, Springer, Berlin,2004.
    [1] Fiore V., Yang Y., Kuzyk M.C., et al.,“Storing Optical Information as a MechanicalExcitation in a Silica Optomechanical Resonator”, Physical Review Letters,2011,107(13),133601.
    [2] Zhang J.M., Cui F.C., Zhou D.L., et al.,“Nonlinear dynamics of a cigar-shapedBose-Einstein condensate in an optical cavity”, Physical Review A,2009,79(3),033401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700