用户名: 密码: 验证码:
超临界压缩空气储能系统多级向心透平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力储能系统在电力系统中作用日益显著,压缩空气储能技术是目前能大规模商业运营的两种电力储能技术之一,但传统压缩空气储能技术依赖化石能源,能量密度低,为克服传统压缩空气储能系统的缺点,学者们提出了超临界压缩空气储能系统,多级向心透平是超临界压缩空气储能系统关键部件之一,其性能直接影响储能系统效率,因此,为研发高效稳定的多级向心透平,提高储能系统效率,非常有必要对多级向心透平进行全面细致研究。
     本文对超临界压缩空气储能系统多级向心透平系统进行总体热力学分析,通过自编程序对多级向心透平进行设计研究,完成四级向心透平设计,再对向心透平内部流场和变工况特性进行研究,搭建超临界压缩空气储能系统四级向心透平实验平台,并对其进行实验研究,主要研究内容如下:
     1.详细研究了多级向心透平系统的热力过程,分析系统能量分布和(?)分布,研究分别以热效率、(?)效率和系统出功为优化目标下多级向心透平系统性能,确定不同热源温度下多级向心透平的优化目标函数,并对MW级超临界压缩空气储能系统中的多级向心透平进行总体设计。
     2.开展四级向心透平设计研究,以实验数据为基础,确定了以载荷系数、流量系数、比转速和速比为多目标优化的设计程序,发展一套将一维设计、叶片造型和三维优化校核有机结合的向心透平设计程序,并完成四级向心透平的设计工作,确定第一、二级向心透平叶轮为闭式叶轮,第三、四级向心透平叶轮为半开式叶轮。
     3.利用CFD技术对向心透平进行三维流场研究,分析导叶和叶轮流道内马赫数、压力和熵的变化特性,并对导叶出口参数进行分析,其与设计值基本吻合,导叶损失区集中在喉道和叶片表面,叶轮损失区集中在叶顶截面和尾迹区。对向心透平变工况特性研究表明,向心透平的转速和膨胀在较大范围内变化时都能保持较高的效率。
     4.搭建了首个MW级超临界压缩空气储能系统四级向心透平实验台,包括四级向心透平实验件、齿轮传动系统、能量耗散系统、压力调节系统和温度控制系统等,该实验台满足高转速、高膨胀比多级向心透平的实验要求。对四级向心透平进行实验研究,分析系统启动特性和总体性能,其启动时间在5min内;进口压力7.0MPa时,实验各级透平的等熵效率分别为80.0%、87.9%、82.2%和89.1%,总效率为84.4%。
Electrical Energy Storage(EES) technologies are increasingly important in the power system. The Compressed Air Energy Storage(CAES) technology is one of two types of commercially available ESS technologies in large scale. However, the traditional CAES has the drawbacks of dependence on fossil fuels and low energy density. A supercritical CAES system is developed by researchers to conquer these problems. The multistage radial turbine is one of the key components of supercritical CAES, whose performance directly affects the efficiency of energy storage system. It is of imperative to make full and detailed investigate on developing the highly efficient and stable multistage radial turbine in order to improve the efficiency of whole energy storage system.
     In this thesis, the multistage radial turbine system of the supercritical CAES was thermodynamically analyzed. The four-stage radial turbine was designed and studied through an in-house coding and the turbine unit design results were obtained. Then it was studied through Computational Fluid Dynamics(CFD) to reveal its internal flow field and performance under various working conditions. The four-stage radial turbine rig of the supercritical CAES was built to conduct the experimental research.
     The main contents of the thesis were as follows:
     1. The performance and design criteria of air powered multistage turbine were studied thermodynamically. It was simulated the energy and exergy distributions. And the characteristics of multistage turbine with inter-heating were optimized in terms of maximum thermal efficiency, maximum exergy efficiency and maximum workoutput over different inlet temperatures. The systematic parameters of multistage radial turbine were developed for MW-level supercritical CAES system.
     2. The design method was investigated in detail, by which the four-stage radial turbine was designed. The impellers of the first and second stage radial turbines were closed impellers, and the third and fourth stage radial turbines were semi-open impellers. The design method consisted of one-dimensional design method, blade design method and three-dimensional optimization. The one-dimensional design method was based on the experimental data and simultaneously optimized such parameters as load factor, flow coefficient, specific speed and velocity ratio.
     3. The aerodynamic characteristics of radial turbine under design and off-design conditions were investigated in detail through the CFD technology. It was investigated the guide vane row and rotor row passages'Mach number, pressure and entropy distributions. The outlet parameters of the guide vane was agreed well with the designed results. The losses of the guide vane row mainly occurred in the throat and blade surface. The losses of the rotor row mainly occurred in the impeller tip and wake regions. The study of the radial turbine indicated that it could achieved a relatively high efficiency under a relatively large range of rotation speed and expansion ratio.
     4. The four-stage radial turbine experimental rig for MW-level supercritical CAES system was established including radial turbines, gear transmission system, load management system, pressure control system and temperature control system. This rig could fulfill experimental requirements of multistage radial turbine system with highspeed and high expansion ratio. The experiments were carried out to study its start-up characteristics and overall performance. It was concluded that:its start-up time was within5minutes; under7.0MPa inlet pressure the efficiencies from the first stage radial turbine to the fourth stage radial turbine were80.0%,87.9%,82.2%and89.1%, respectively; the total efficiency of the four-stage radial turbine system was84.4%.
引文
1. Bueno, C. and J.A. Carta, Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renewable and Sustainable Energy Reviews, 2006.10(4):p.312-340.
    2. Lund, H. and G. Salgi, The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management,2009.50(5):p.1172-1179.
    3. McDowall, J., Integrating energy storage with wind power in weak electricity grids. Journal of Power sources,2006.162(2):p.959-964.
    4. 刘佳,夏宏德,陈海生,等,新型液化空气储能技术及其在风电领域的应用.工程热物理学报,2010(012):p.1993-1996.
    5. Cavallo, A., Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES). Energy,2007.32(2):p.120-127.
    6. Chen, H., et al., Progress in electrical energy storage system:A critical review. Progress in Natural Science,2009.19(3):p.291-312.
    7. Choi, S., et al. Energy storage systems in distributed generation schemes, in Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE.2008. IEEE.
    8. McLarnon, F.R. and E.J. Cairns, Energy Storage. Annual Review of Energy,1989.14(1):p.241-271.
    9. Baalbergen, F., P. Bauer, and J.A. Ferreira, Energy Storage and Power Management for Typical 4Q-Load. Industrial Electronics, IEEE Transactions on,2009.56(5):p.1485-1498.
    10. Hoffman, P. and J. Ferrante, Energy Storage Capacitors of High Energy Density. Nuclear Science, IEEE Transactions on,1971.18(4):p.235-239.
    11. Gyuk, I. Energy Storage for a greener grid, in PHYSICS OF SUSTAINABLE ENERGY:Using Energy Efficiently and Producing It Renewably.2008. AIP Publishing.
    12. Ter-Gazarian, A., Energy storage for power systems.1994:Iet.
    13. Ribeiro, P.F., et al., Energy storage systems for advanced power applications. Proceedings of the IEEE, 2001.89(12):p.1744-1756.
    14. Ibrahim, H., A. Ilinca, and J. Perron, Energy storage systems-characteristics and comparisons. Renewable and Sustainable Energy Reviews,2008.12(5):p.1221-1250.
    15. Cavallo, A.J., Energy storage technologies for utility scale intermittent renewable energy systems. Journal of solar energy engineering,2001.123(4):p.387-389.
    16. Eckroad, S. and I. Gyuk, EPRI-DOE handbook of energy storage for transmission & distribution applications. Electric Power Research Institute, Inc,2003.
    17. Succar, S. and R.H. Williams, Compressed air energy storage:Theory, resources, and applications for wind power. Princeton environmental institute report,2008.8.
    18. 陈海生,谭春青,刘佳,等,超临界空气储能系统(专利).2011.
    19. Raju, M. and S. Kumar Khaitan, Modeling and simulation of compressed air storage in caverns:a case study of the Huntorf plant. Applied Energy,2012.89(1):p.474-481.
    20. Davidson, B., et al., Large-scale electrical energy storage. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews),1980.127(6):p.345-385.
    21. 刘文毅,压缩空气蓄能(CAES)电站热力性能仿真分析.2008,华北电力大学(北京).
    22. 陈海生,压缩空气储能技术的特点与发展趋势.高科技与产业化,2011.6(181):p.55-56.
    23. Crotogino, F., K.-U. Mohmeyer, and R. Scharf, Huntorf CAES:More than 20 years of successful operation. Orlando, Florida, USA,2001.
    24. Crotogino, F. Compressed air storage, in Internationale Konferenz" Energieautonomie durch Speicherung Erneuerbarer Energien.2006.
    25. Mack, D., Something new in power technology. Potentials, IEEE,1993.12(2):p.40-42.
    26. 张新敬,压缩空气储能系统若干问题的研究.2011,北京:中国科学院研究生院(工程热物理研究所).
    27. 郭欢,新型压缩空气储能系统性能研究.2013,中国科学院研究生院(工程热物理研究所).
    28. Nakhamkin, M., et al., AEC 110 MW CAES plant:status of project. Journal of engineering for gas turbines and power,1992.114(4):p.695-700.
    29. Hadjipaschalis, I., A. Poullikkas, and V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews,2009.13(6):p. 1513-1522.
    30. Bullough, C., et al., Advanced adiabatic compressed air energy storage for the integration of wind energy. i Proceedings of the European Wind Energy Confer, London,2004.
    31. 陈海生,陈海生,刘金超,等,压缩空气储能技术原理.储能科学与技术,2013(2):p.146-151.
    32. Yan, X., et al. Energy storage sizing for office buildings based on short-term load forecasting, in Information and Automation for Sustainability (ICIAfS),2012 IEEE 6th International Conference on. 2012. IEEE.
    33. 徐玉杰,陈海生,刘佳,等,风光互补的压缩空气储能与发电一体化系统特性分析[J].中国电机工程学报,2012.32(20):p.88-95.
    34. 王仲奇,秦仁,透平机械原理.1988:机械工业出版社.
    35. Moustapha, H., et al., Axial and radial turbines. Vol.2.2003:Concepts NREC Wilder, VT.
    36. Rohlik, H.E., Analytical determination of radial inflow turbine design geometry for maximum efficiency. 1968:National Aeronautics and Space Administration.
    37. Glassman, A.J., Computer program for design analysis of radial-inflow turbines.1976.
    38. Sawada, T. and A. Nishi, Investigation of Radial Inflow Turbine. JSME Vol3. No62,1970.
    39. 李燕生,确定“零涡”向心透平设计方案的一种方法.深冷技术,1982.2:p.003.
    40. 李燕生,向心透平与离心压气机.1987:机械工业出版社.
    41. 李燕生,径流式涡轮机械导风轮的设计与加工.1982:国防工业出版社.
    42. 冀春俊,张鹏刚,向心透平内部流动的数值分析及叶轮的改进设计.燃气轮机技术,2005.18(2):p.44-48.
    43. Wu, C.-H., A general Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial, and mixed-Flow Types.1952, DTIC Document.
    44. Tan, C.S. and W. Hawthorne, Three-dimensional flow in radial turbomachinery and its impact on design. 1993:National Aeronautics and Space Administration.
    45. 赵彬,单鹏,径流与斜流涡轮设计的通流反问题方法.航空动力学报,2008.23(3):p.476482.
    46. 郭新生,谢立军,徐丽萍,向心透平叶片角动量分布的优化.航空学报,2000.21(4):p.289-293.
    47. Simonyi, P. and R.J. Boyle, Comparison of a quasi-3D analysis and experimental performance for three compact radial turbines.1991:NASA.
    48. Huber, F. and R. Ni. Application of a multi-stage 3-D Euler solver to the design of turbines for advanced propulsion systems. in AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference,25 th, Monterey, CA.1989.
    49. Carrillo, R.n.A.M., et al. Radial Inflow Turbine One and Tri-Dimensional Design Analysis of 600 kW Simple Cycle Gas Turbine Engine, in ASME Turbo Expo 2010:Power for Land, Sea, and Air.2010. American Society of Mechanical Engineers.
    50. Hiett, G. and I. Johnston. Paper 7:Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines, in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings.1963. SAGE Publications.
    51. Kofskey, M.G. and C.A. Wasserbauer, Experimental performance evaluation of a radial-inflow turbine over a range of specific speeds.1966:National Aeronautics and Space Administration.
    52. Kofskey, M.G. and W.J. Nusbaum, Effects of specific speed on the experimental performance of a radial-inflow turbine. Vol.6182.1971:National Aeronautics and Space Administration.
    53. KOFSKEY, M. and J. HAAS, Effect of reducing rotor blade inlet diameter on the performance of a 11. 66-Centimeter radial-inflow turbine(Performance tests to determine effects of increased rotor blade loading on gas turbine operation by reduction of rotor blade inlet diameter).1973.
    54. Watanabe, I., I. Ariga, and T. Mashimo, Effect of dimensional parameters of impellers on performance characteristics of a radial-inflow turbine. Journal for Engineering for Power,1971.93(1):p.81-102.
    55. Tunakov, A., Izvestiya vysshikh uchebnykh. Russian,"Effect of Radial Clearance on the Operation of a Centripetal Gas Turbine"), Zavedeniy Aviatsionnaya Technika,1960.4:p.83-92.
    56. Rodgers, C. and R. Geiser, Performance of a high-efficiency radial/axial turbine. Journal of turbomachinery,1987.109(2):p.151-154.
    57. ROELKE, R., et al., Design and experimental evaluation of compact radial-inflow turbines.1991.
    58. Simonyi, P.S., et al., Aerodynamic evaluation of two compact radial-inflow turbine rotors. NASA STI/Recon Technical Report N,1995.96:p.13245.
    59. Jones, A., Design and test of a small, high pressure ratio radial turbine. Journal of turbomachinery,1996. 118(2):p.362-370.
    60. Spence, S. and D. Artt, Experimental performance evaluation of a 99.0 mm radial inflow nozzled turbine with different stator throat areas. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1997.211(6):p.477-488.
    61. Spence, S.T., W. Doran, and D. Artt, Experimental performance evaluation of a 99.0 mm radial inflow nozzled turbine at larger stator-rotor throat area ratios. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1999.213(3):p.205-218.
    62. 邓清华,倪平,丰镇平,微型燃气轮机向心透平的性能试验.动力工程,2008.28(2):p.195-199.
    63. 邓清华,丰镇平,微型燃气轮机向心透平导向器的流场分析与设计研究.西安交通大学学报,2005.39(9):p.962-965.
    64. Feng, Z., Q. Deng, and J. Li. Aerothermodynamic Design and Numerical Simulation of Radial Inflow Turbine Impeller for a 100kW Microturbine. in ASME Turbo Expo 2005:Power for Land, Sea, and Air. 2005. American Society of Mechanical Engineers.
    65. Deng, Q., J. Niu, and Z. Feng. Tip leakage flow in radial inflow rotor of a microturbine with varying blade-shroud clearance, in ASME Turbo Expo 2007:Power for Land, Sea, and Air.2007. American Society of Mechanical Engineers.
    66. Rodgers, C. The characteristics of radial turbines for small gas turbines, in ASME Turbo Expo 2003. 2003. Atlanta, Georgia, USA.
    67. David, J. Characteristics of a radial turbines with internal component measurements, in ASME TURBOEXPO 2000.2000. Munich, Germany.
    68. 戴韧,崔清章,陈康民,向心透平蜗壳内流动的实验与数值研究.发电设备,2004.18(5):p.272-275.
    69. Lakshminarasimha, A., W. Tabakoff, and A. Metwally, Laser Doppler velocimeter measurements in the vortex region of a radial inflow turbine. Journal of Propulsion and Power,1992.8(1):p.184-191.
    70. Pasin, M. and W. Tabakoff. Laser measurements of unsteady flow field in a radial turbine guide vanes, in AIAA Materials Specialist Conference-Coating Technology for Aerospace Systems.1992.
    71. Putra, M.A. and F. Joos, Investigation of Secondary Flow Behavior in a Radial Turbine Nozzle. Journal of Turbomachinery,2013.135(6):p.061003.
    72. Zangeneh-kazemi, M., W.N. Dawes, and W.R. Hawthorne. Three dimensional flow in radial-inflow turbines, in ASME.1988. New York, USA.
    73. M, P. and T. W, Laser measurements of the flow field in a radial turbine rotor, in 31st Aerospace Sciences Meeting.1993, American Institute of Aeronautics and Astronautics.
    74. Murugan, D., W. Tabakoff, and A. Hamed, Flow field investigation and flow analysis in the exit region of a radial turbine, in 30th Joint Propulsion Conference and Exhibit.1994, American Institute of Aeronautics and Astronautics.
    75. Huntsman, I. and H. Hodson. An experimental assessment of the aerodynamic performance of a low-speed radial inflow turbine. in AIAA/SAE/ASME/ASEE 30th Joint Propulsion Conference and Exhibit.1994. American Institute of Aeronautics and Astronautics (AIAA).
    76. 何平,开式向心涡轮背部间隙流的研究.2012,中国科学院研究生院(工程热物理研究所).
    77. Dai, J., et al., Comparison of internal flow field between experiment and computation in a radial turbine impeller. JSME international journal. Series B, fluids and thermal engineering,2004.47(1):p.48-56.
    78. Simpson, A., et al. Experimental and numerical investigation of varying stator design parameters for a radial turbine, in ASME Turbo Expo 2006:Power for Land, Sea, and Air.2006. American Society of Mechanical Engineers.
    79. Spence, S., et al., A direct performance comparison of vaned and vaneless stators for radial turbines. Journal of Turbomachinery,2007.129(1):p.53-61.
    80. Tamaki, H., et al. The effect of clearance flow of variable area nozzles on radial turbine performance, in ASME Turbo Expo 2008:Power for Land, Sea, and Air.2008. American Society of Mechanical Engineers.
    81. Spence, S.T., J. O'Neill, and G. Cunningham, An investigation of the flowfield through a variable geometry turbine stator with vane endwall clearance. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2006.220(8):p.899-910.
    82. Spence, S.W.T. and D. Artt, An experimental assessment of incidence losses in a radial inflow turbine rotor. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 1998.212(1):p.43-53.
    83. Doran, W., S.T. Spence, and D. Artt, Experimental performance evaluation of a 99.0 mm radial inflow nozzled turbine with varying shroud profiles. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2001.215(2):p.267-280.
    84. Futral, S.M. and D.E. Holeski, Experimental results of varying the blade-shroud clearance in a 6.02-inch radial-inflow turbine.1970:National Aeronautics and Space Administration.
    85. Dambach, R., I. Huntsman, and H. Hodson,1998 Turbomachinery Committee Best Paper Award:An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine. Journal of turbomachinery,1999. 121(4):p.644-650.
    86. Dambach, R. and H. Hodson, Tip leakage flow in a radial inflow turbine with varying gap height. Journal of Propulsion and Power,2001.17(3):p.644-650.
    87. Company, E.S.O.G.T.E., Advanced Gas Turbine (AGT) powertrain system development for automotive applications.1982, The Garrett Corporation.
    88. Nishiguchi, F., Y. Sumi, and K. Yamane, Reduction in the polar moment of inertia of an automotive turbocharger by controlling aerodynamic blade loading. Proceedings of Turbocharging and Turbochargers, paper C.34:p.123-127.
    89. B Engels, D.-I. and R.L. Dipl-Ing, Ceramic rotors for passenger car turbochargers. Proceedings of Turbocharging and Turbochargers, paper C,1990:p.295-307.
    90. Roelke, R.J., Radial turbine cooling. VKI Radial Turbines,1992.1.
    91. Calvert, G.S., S.C. Beck, and U. Okapuu, Design and Experimental Evaluation of a High-Temperature Radial Turbine.1971, DTIC Document.
    92. Lizet, T., D. L, and N. Brent, Experimental evaluation of a cooled radial-inflow turbine, in 29th Joint Propulsion Conference and Exhibit.1993, American Institute of Aeronautics and Astronautics.
    93. Balje, O., Turbomachines.1981:John Wiley.
    94. Whitfield, A., The preliminary design of radial inflow turbines. Journal of Turbomachinery,1990. 112(1):p.50-57.
    95. Bruno, J.C., V. Ortega-Lopez, and A. Coronas, Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas:case study of a sewage treatment plant. Applied energy,2009. 86(6):p.837-847.
    96. He, P., et al., Aerothermal investigation of backface clearance flow in deeply scalloped radial turbines. Journal of Turbomachinery,2013.135(2):p.021002.
    97.何平,孙志刚,郭宝亭,等,开式向心涡轮背部间隙流动特性的研究.工程热物理学报,2011.32(8):p.1303-1306.
    98. Hung, T., T. Shai, and S. Wang, A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy,1997.22(7):p.661-667.
    99. Chow, T., A review on photovoltaic/thermal hybrid solar technology. Applied Energy,2010.87(2):p. 365-379.
    100. Kim, Y. and D. Favrat, Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system. Energy,2010.35(1):p.213-220.
    101. Thirugnanasambandam, M., S. Iniyan, and R. Goic, A review of solar thermal technologies. Renewable and sustainable energy reviews,2010.14(1):p.312-322.
    102.陈海生,张雪辉,严晓辉,等,一种多级向心透平系统(专利).2011.
    103.陈海生,张雪辉,严晓辉,等,一种背靠背的多级向心透平系统(专利).2012.
    104. Zhang, X., et al., Analysis of an Air Powered Engine System Using a Multi-Stage Radial Turbine. Entropy,2013.15(4):p.1186-1201.
    105. Chen, H., et al., Air fuelled zero emission road transportation:A comparative study. Applied Energy, 2011.88(1):p.337-342.
    106. Shen, Y.-T. and Y.-R. Hwang, Design and implementation of an air-powered motorcycles. Applied Energy,2009.86(7):p.1105-1110.
    107. GuoliangWangXuanying, C.Y.X.H.T. and L.J. Guangzheng, RESEARCH AND PROGRESS OF THE COMPRESSED AIR POWER VEHICLE [J]. Chinese Journal of Mechanical Engineering,2002.11:p. 002.
    108.朱朝辉,姚艳霞,杨金焕,等,低温氦透平膨胀机的研究进展.低温与特气,2003.21(1):p.1.
    109. Chen, H. and N. Baines, The aerodynamic loading of radial and mixed-flow turbines. International journal of mechanical sciences,1994.36(1):p.63-79.
    110. Korakianitis, T. and D. Wilson, Models for predicting the performance of Brayton-cycle engines. Journal of engineering for gas turbines and power,1994.116(2):p.381-388.
    111. Chen, H. and N. Baines, Analytical optimization design of radial and mixed flow turbines. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1992.206(3):p. 177-187.
    112. Howard, J., T. AB, and H. Henseler. Performance and flow regimes for annular diffusers. in MECHANICAL ENGINEERING.1968. ASME-AMER SOC MECHANICAL ENG 345 E 47TH ST, NEW YORK, NY 10017.
    113.董平,航空发动机气冷涡轮叶片的气热耦合数值模拟研究.2009,哈尔滨工业大学.
    114.朱阳历,叶轮机械叶片全三维反问题优化设计方法研究.2012,中国科学院研究生院(工程热物理研究所).
    115.孙纪宁,ANSYS CFX对流传热数值模拟基础应用教程.2010:国防工业出版社.
    116.毛宁,涡轮叶冠密封容腔流及其与主流作用研究.2011,中国科学院研究生院(工程热物理研究 所).
    117. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal,1994.32(8):p.1598-1605.
    118.何有世,袁寿其,黄良勇,流体机械叶轮内部流场测试技术进展.流体机械,2005.32(12):p.36-40.
    119.王志强,高压压气机低速模拟方法研究.2010,南京航空航天大学.
    120.牛玉川,吸附式压气机叶栅的实验研究和分析.2007,中国科学院研究生院(工程热物理研究所).
    121.高丽敏,席光,王尚锦,等,用热线风速仪测量叶轮后叶片扩压器流场.工程热物理学报,2005.26(4):p.599-601.
    122.李军,苏明,涡轮叶栅非定常流动的PIV实验.华中科技大学学报:自然科学版,2008(S1).
    123.欧阳华,新型可逆式弯掠组合叶片的研究.2002,上海交通大学.
    124.张晓东,姜正礼,赵旺东,五孔探针在涡轮导向器出口流场测量中的应用.燃气涡轮试验与研究,2010(004):p.44-48.
    125.闫久坤,吴昌明,小球型五孔探针在压气机试验中的应用.航空动力学报,1991.6(4):p.352-354.
    126.马宏伟,蒋浩康,压气机转子通道内尖区三维平均流场.航空动力学报,1997.12(2):p.167-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700