用户名: 密码: 验证码:
青藏铁路五道梁冻土区工程结构热扰动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冻土区铁路的安全运营主要取决于冻土区主要工程即路基、桥梁、涵洞的稳定,这些工程的稳定则由其地基冻土的热稳定性所决定。冻土区路基工程施工对冻土带来的热扰动主要是填土热量消散和基底冻土散热界面改变带来的影响,对于低温冻土区路基基底冻土热稳定性的恢复,随着路堤高度的增加而延长,这种恢复过程对施工工序衔接及路基工程稳定都有一定影响。桥梁涵洞基础施工对冻土的热扰动问题则要比路基工程复杂许多。这不仅仅是施工活动对冻土扰动问题,更主要的是工程基础类型、施工工艺的特殊性对冻土产生的热扰动和热量消散是一个长期性问题,而且这些影响还会直接影响到基础稳定和施工工序的衔接等施工组织设计一系列问题。
     本文从施工区域冻土地质条件和冻土的热稳定性特征出发,研究分析了低温冻土区填土路基施工季节对路基基底多年冻土的热扰动,根据观测和计算结果,提出低温冻土区高路堤工程保证冻土热稳定性和路基稳定性的最佳施工季节和施工方法。
     根据青藏铁路建设过程对施工工期要求和五道梁地区施工对全线施工工期的控制和影响问题,作者通过现场混凝土灌注桩基础浇灌以后桩周地温场变化规律试验,混凝土浇灌工程中的水化热问题、混凝土入模温度问题对桩周土体回冻规律影响的数值模拟计算,解决了本地区桥梁基础灌注桩施工工艺和施工组织设计中的关键技术问题,保证了施工工序的顺利衔接和控制性工程施工工期,现场桩基试验和施工后3年的观测证明了桥梁基础的可靠性。
     本文针对五道梁地区气候和冻土热稳定性特征,还对涵洞基础型式提出了创新性改进。青藏铁路建设初期的暂行规范和过去经验,认为冻土区涵洞基础推广型式是预制拼装式基础,作者根据目前施工机具、施工技术、施工能力的现状和五道梁地区气候特征,提出局部地区采用现浇混凝土整体式基础的型式。通过现场施工验证,计算机数值模拟和施工工序衔接特征,作者认为,只要对开挖涵洞基础土体采用局部遮阳措施,基础底部铺设6cm厚度的保温材料,这种整体式现浇混凝土基础对基底多年冻土的热扰动在1—2各年际冻融循环过程即可消散,不会对涵洞基底多年冻土和基础本身的稳定性造成危害,而且这种基础型式涵洞基底不易渗水,中间不留缝隙,减少了运营过程涵洞基底冻胀的发生,保证了其使用寿命和稳定性。
     本文紧密结合生产实践进行科学试验和理论计算,对五道梁低温冻土区高路堤工程和桥梁桩基以及涵洞基础施工工艺的研究,建立在对五道梁低温冻土区冻土热稳定性特征及其变化规律深刻认识的基础之上,研究结果对青藏铁路冻土区工程建设具有理论和工程实践意义,主要表现在:
     混凝土入模温度在融化季节无法保证原来规范规定的较低的入模温度,经过对混凝土水化热对冻土热扰动影响计算和对混凝土添加剂成分的合理配比试验,混凝土入模温度在融化季节最高可以容许到12℃。
     现浇整体式涵洞基础基底换填和铺设一定厚度保温材料,可以有效的控制对基底多年冻土热扰动,使其尽快恢复稳定的热状态,保证基底稳定。因此,针对不同气候特点和冻土热稳定性特征,采用合适的施工工艺,可以应用现浇整体式涵洞基础。
     桥梁灌注桩基础施工中,混凝土入模温度和桩周土体回冻是控制性施工工艺,桩周土体回冻标准应该包括两部分概念,一个是适合施工工序衔接的回冻标准,二是达到桩基设计承载力的回冻标准。通过试验确定这两种标准,既能够标准桩基设计承载力,又恰当的利用了桩周土体回冻规律,衔接后续工序,提高施工效率,科学合理的安排施工工期。
     根据现场试验,施工建设期间和运营初期观测数据和建立在现场实测数据基础上的计算机数值模拟结果,说明根据上述工艺进行的桥梁涵洞基础施工其工程效果和初期工程效果是安全可靠的。
The safety in operation of railroad in permafrost area depends primarily on the stability of the main constructions, which include subgrade, bridge and culvert. The stability of constructions is determined by the thermal stability of the frozen soil foundation. The thermal disturbance brought by embankment engineering construction in permafrost area mainly includes the dissipation of fillings' heat and the influence from changes of permafrost radiating interface in the subgrade base. As for the thermal stability recovery of permafrost at subgrade base in low temperature permafrost area, the time increases with the height of the subgrade. This recovery process affects the joints in working operations, as well as the stability of subgrade engineering. The problems of thermal disturbance to permafrost caused by constructions of bridges and culvert foundations are much more complicated than subgrade engineering. The problems are not only about the disturbance of constructions to the permafrost, but more importantly, the thermal disturbance and heat dissipation caused by the particularity of types of foundations and working operations are longstanding problems, which directly affect a series of problems including foundation stability and joints in working operations.
     Based on the regional permafrost geology and characters of thermal stability, this text studies the thermal disturbance on the permafrost in embankment subgrade base from earth embankment height and construction seasons in low temperature permafrost area. According to the observed and computational results, the best construction seasons and construction methods are proposed to ensure the thermal stability of permafrost and embankment stability of high embankment constructions in the low temperature permafrost area.
     Considering the construction duration of Qinghai-Tibet Railroad and the control and influence of constructions in the Wudaoliang area on the whole line's construction period, the variation of ground temperature field at pile sides after the casting of cement caisson piles was tested, along with the heat of hydration during concrete casting. Numerical simulations about the influence of concrete molding temperature on the refreezing of soil at pile sides were conducted. Therefore, the key technological problems in working operations and construction organization design of local bridge foundation caisson pile constructions were solved. The smooth joints in working operations and the construction duration of controlling constructions were ensured. The stability of bridge foundations was attested by the in-site experiments and the monitoring after construction for three years.
     In the light of the characters of climate and thermal stability of permafrost in Wudaoling area, innovative improvements were proposed on the types of culvert foundation. The temporal standards during the initial construction period of Qinghai-Tibet Railroad and the past experiences believed that the promotion type of culvert foundation in permafrost area was prefabricated assembly foundation. Based on the construction tools, construction technology and construction capacity at the present state and the climate characters of Wudaoliang area, the idea that cast-in-site concrete monolithic foundation should be used locally is proposed. Through in-site construction test, computational simulation and the characters of joints in working operations, the author found that if local shading and heat insulator with a depth of 6cm were employed, the thermal disturbance on the permafrost at subgrade base from the cast-in-site concrete monolithic foundation would be dissipated within one to two years of freezing and thawing cycle, which would not bring about damage to the permafrost at culvert foundation base and the stability of the foundation itself. Moreover, water creep is rare for culverts with this type of foundation. The absence of joints also reduces frost heaving during operation, which enhances service life and stability.
     With scientific experiments and theoretical calculations closely related to production practice, the working operations of high embankment constructions, bridge pile and culvert foundations in Wudaoliang low temperature permafrost area were studied, based on the characters and variations of permafrost thermal stability in Wudaoliang low temperature permafrost area. The results have theoretical and practical significance on the constructions in the permafrost areas at Qinghai-Tibet railroad, and they are:
     The high concrete molding temperature during thawing seasons could not meet the original standards. Through calculations about the influence of concrete heat of hydration on the permafrost thermal disturbance and the mixture ratio experiments of cement addition agents, the acceptable value of molding temperature during thawing seasons can be up to 12℃.
     The thermal disturbance of permafrost at foundation base can be effectively controlled by the replacement of foundation base of cast-in-site concrete monolithic culvert foundations, along with the laying of insulating materials with a certain depth, which will facilitate the recovery of stable thermal state while maintaining the stability of foundation base. Therefore, with different climate and permafrost thermal stability characters, suitable construction technologies should be employed, and cast-in-site concrete monolithic foundations can be adopted.
     As for the construction of bridge caisson piles, concrete molding temperature and refreezing of soil at pile sides are the controlling operations. The standards of refreezing of soil at pile sides consist of two concepts, one is the refreezing standards suitable for the joints in the working operations, and another one is the refreezing standards meeting the designed capacity of pile foundations. These two standards are acquired through experiments, thus the capacity of pile foundations can be standardized while the law of soil refreezing at pile sides can be employed. The proceeding procedures are connected, the efficiency of construction is improved and the duration of construction can be scientifically and reasonably arranged.
     Trough in-site tests, observed data during construction and initial operation periods and numerical simulation results based on the in-site observed data, the bridge and culvert foundation constructions and the initial project results following the above-mentioned construction technologies were proved to be safe and reliable.
引文
[1]丁信发,永冻土地区桩基的设计与施工,低温建筑技术,1993,51(3),32-34.
    [2]H.A.崔托维奇.冻土上的地基与基础.北京:中国工业出版社.1978.
    [3]崔托维奇,张长庆等译,冻土力学,北京:科学出版社,1985.
    [4]中铁西北科学研究院,多年冻土地区桥涵工程研究研究报告,兰州,1982.
    [5]章金钊,高原多年冻土地区桥涵设计与施工研究,中国铁道科学,2001,22(4),40-46.
    [6]王国尚,林清,金念军.寒区道路块片石通风路基试验研究.冻土工程国家重点实验室年报.1995
    [7]周国庆,杨维好,中砂融沉位移与单桩负摩阻力关系的试验研究,中国矿业大学学报,1999,28(6),535-538.
    [8]刘鸿绪,对切向冻胀力沿桩侧表面分布的探讨,冰川冻土,第15卷第2期,1993年,289-292.
    [9]励国良等,多年冻土地区桩基试验研究,中国地理学会冰川冻土学术会议论文选集(冻土学),北京,科学出版社,1982.
    [10]吴紫汪,程国栋,朱林楠.冻土路基工程.兰州:兰州大学出版社.1988.
    [11]铁道部第三勘测设计院.冻土工程.北京:中国铁道出版社.1994.
    [12]叶尔绍夫主编,张长庆译,工程冻土学,(冻土学原理第五卷),兰州,中国科学院寒区早区环境与工程研究所,2002.2.
    [13]A. Foriero, B. Ladanyi et al, FEM Assessment of Large-Strain Thaw Consolidtion, Journal of Geotechnical Engineering,1995,Vol.121, No.2,126-137.
    [14]Parameswaran VR. Displacement of piles under dynamic loads in frozen soils[A]. Proceeding of 4th Canadian Permafrost Conference[C].1981.555-559.
    [15]Dufour S,Sego DC, Morgenstern NR. Vibratory model pile driving in frozen sand[A]. Proceeding of Fourth International Conference on Permafrost[C]. Alaska, USA:Washington D. C. National Academy Press.1983.255-260.
    [16]周幼吾,郭东信,邱国庆等.中国冻土.北京:科学出版社.2002.
    [17]铁道部第三设计院,多年冻土的工程地质和铁路建筑,1958
    [18]周幼吾,杜榕桓.青藏高原冻土初步考察[J].科学通报1963
    [19]周幼吾.吴紫汪.青藏公路沿线冻土考察.北京:科学出版社,1965
    [20]郭东信,王绍令,鲁国威等.东北大小兴安岭多年冻土分区[J]冰川冻土,1981。
    [21]东北多年冻土研究协作组中国东北部多年冻土分布的基本特征1983
    [22]李树德,程国栋.青藏高原冻土图[Z].兰州:甘肃文化出版社.1996
    [23]周幼吾,郭东信,我国多年冻土的主要特征[J].冰川冻土,1982年01期
    [24]施雅风.中国冰雪冻土图[M].北京:地图出版社,1988
    [25]程国栋.厚层地下冰的形成过程[J].中国科学.1982,12:281-288
    [26]杨润田,多年冻土区的水文地质及工程地质学.哈尔滨:东北林业大学出版社.1986.
    [27]邱国庆.甘肃河西走廊季节冻结盐渍土及其改良利用[M].兰州:兰州大学出版社,1996
    [28]李述训,程国栋.气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟[J]中国科学:D辑,1996
    [29]程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究,2000,20(6):521531.
    [30]周幼吾等,大兴安岭北部森林火灾对冻土水热状况的影响[J].冰川冻土.1993年01期
    [31]黄以职等,高山冰川雷达探测试验《冰川冻土》1980年03期
    [32]黄以职青藏公路沿线多年冻土融区调查的地球物理方法—兼论河流融区的某些特征1983
    [33]罗祥瑞,梁凤仙,王绍令;沱沱河北多年冻土综合影象图的制作[J],冰川冻土;1980年S1期
    [34]梁凤仙.罗祥瑞冰缘地貌现象在航片上的识别标志1981(04)
    [35]梁凤仙顾钟炜遥感技术在大兴安岭火烧迹地森林冻土环境变化调查[J].:冰川冻土1993年,第1期
    [36]王正秋;粒度成分对细砂冻胀性的影响[J];冰川冻土;1980年03期
    [37]王正秋;粗粒土冻胀性分类[J];冰川冻土;1986年03期
    [38]陈肖柏;王雅卿.砂砾土中的成冰作用及其冻胀敏感性.科学通报.1987年23期
    [39]陈肖柏 A.E.科特 王雅卿 盛煜.碳酸钙粉沫的冻胀敏感性.《冰川冻土》1991年03期
    [40]吴紫汪;冻土工程分类[J];冰川冻土;1982年04期
    [41]安维东,吴紫汪,马巍.冻土的温度水分应力及其相互作用[M]1990,兰州:兰州大学出版社
    [42]徐学祖.冻土中水分迁移的实验研究[M]北京:科学出版社,1991
    [43]吴紫汪,马巍,冻土强度与蠕变,兰州大学出版社,1994年第一版.
    [44]徐学祖,王家澄.土体冻胀和盐胀机理-1995,北京:科学出版社
    [45]李述训.冻融土中的水热输运问题[M].兰州:兰州大学出版社-1995-
    [46]李洪升.冻土断裂力学及其应用.2002-海洋出版社
    [47]徐学祖.冻土物理学.2001-北京:科学出版社
    [48]李洪升.冻土抗压强度对应变速率敏感性分析.冰川冻土,1995
    [49]马巍,吴紫汪.冻土的强度与屈服准则-冰川冻土,1993
    [50]马巍,吴紫汪.冻土的蠕变及蠕变强度.冰川冻土,1994
    [51]余群,张招祥,沈震亚.冻土的瞬态变形和强度特性.冰川冻土,1993
    [52]盛煜,吴紫汪,朱元林.应用蠕变理论对冻土在增应力过程中蠕变规律的几何分析[J]-冰川冻土,1995
    [53]王廷栋,武建军等,桩基础作用下的冻土地基蠕变平面问题模拟试验,兰州,冻土工程国家重点实验室年报,1997年第7卷
    [54]YL Zhu, JY Zhang, WW Peng. Constitutive relations of frozen soil in uniaxial compression-Proceedings of 6th permafrost,1991-Netherlands:AA Balkema.
    [55]蔡中民,朱元林.冻土的粘弹塑性本构模型以及材料参数的确定.冰川冻土,1990
    [56]C Zhongmin INERTIA EFFECTS OF HYPOELASTIC CYLINDRICAL BAR OF GRADE ZERO IN TENSION OF JUMPING VELOCITY [J]-Engineering Mechanics,1992
    [57]李洪升,刘增利.地基土冻胀位移分析及计算模式-冰川冻土,1995
    [58]李昆.三轴试验中深部冻土固结问题…-冰川冻土,1993
    [59]马巍.冻结粘性土的变形分析-冰川冻土,2000
    [60]马芹永.多年冻土和人工冻土的爆破试验与方法研究[J].土木工程学报,2004,37(9)
    [61]李海鹏,朱元林.饱和冻结粉土在常应变速率下的单轴抗压强度.冰川冻土.2002年5期
    [62]齐吉琳.孔隙分布曲线及其在土的结构性分析中的应用.西安公路交通大学学报,2000
    [63]盛煜.冻土单轴压缩里面变的归一化模型.自然科学进展:国家重点实验室通讯,1996
    [64]苗天德.冻土蠕变过程的微结构损伤理论.中国科学:B辑,1995
    [65]何平,朱元林,张家懿等.饱和冻结粉土的动弹模与动强度[J].冰川冻土,1993
    [66]沈忠言.振动荷载作用下饱水冻结粉土的单轴抗压强度.冰川冻土,1996
    [67]崔广心.深土冻土力学—冻士力学发展的新领域.冰川冻土,1998
    [68]康兴成.青藏高原地区近40年来气候变化的特征.冰川冻土,1996
    [69]康世昌.北极Svalbard地区气候变化特征及其与青藏高原对比.地理科学,1998
    [70]李述训.多年冻土的形成演化过程分析及近似计算.冰川冻土,1996
    [71]汤懋苍.青藏高原是我国气候变化启动区的新证据,科学通报,1998
    [72]秦大河(总主编),丁一汇(主编).中国西部环境演变评估(第二卷)[M].中国西部环境变化的预测.北京:科学出版社.2002.
    [73]丁一汇.中国西部环境变化的预测[M]-2002.科学出版社,北京
    [74]程国栋,李培基,张祥松等.气候变化对中国积雪、冰川和冻土的影响评估.兰州.兰州:甘肃文化出版社.P56-62.1997.
    [75]王晓黎,陈频志,吴少海,青藏铁路桩基础的形式和应用,中国铁路,2003(1),66-68.
    [76]张建明,朱元林,张家懿。动荷载下冻土中模型桩的沉降试验研究,中国科学D辑,1996,第29卷增刊1,27-32.
    [77]邱明国,李海山等,冻土中桩破坏模式的试验研究,哈尔滨建筑大学学报,1999,32(5), 39-42.
    [78]Truls Molmann, Karre Senneset,在永冻土中现场浇灌混凝土桩,第六届国际冻土会议论文集.
    [79]张力,陈吉家,青藏铁路高原冻土区桩基施工中的监理工作,铁道建筑技术,2002(4),36-38.
    [80]陈卓怀.多年冻土地区桥涵工程研究[R].中铁西北科学研究院.1982
    [81]丁靖康.水平冻胀力研究.第二届全国冻土学术会议论文选集.兰州:甘肃人民出版社,1983
    [82]童长江.青藏高原风火山地区季节融化层的冻胀性[J];冰川冻土:1983年01期
    [83]吴紫汪,张家懿.土的冻胀性实验研究[C]1981
    [84]张建明、朱元林、张家懿.动荷载下桩与冻土间冻结强度试验研究[A].第五届全国冰川冻土大会论文集[C].兰州,甘肃文化出版社.1996:789-793.
    [85]赖远明:吴紫汪:朱元林:何春雄:朱林楠:.寒区隧道温度场和渗流场耦合问题的非线性分析[J].中国科学D辑:地球科学,1999,29(S1):21-26
    [86]铁道部第一勘察设计院等.青藏铁路高原冻土地区工程设计暂行规定.兰州:2001.5
    [87]Lehane. B, (1992),Experimental Investigations of Pile Behaviour Using Instrumented Field Piles, Ph. D thesis, The University of London(Imperial College of Science, Technology and Medicine), London,UK.
    [88]D. C. Sego,M.ASCE et al, Enlarged Base(Belled) Piles for Use in Ice or Ice-Rich Permafrost, Journal of Cold Regions Engineering,2003, Vol.17, No.17,69-87.
    [89]Weaver, J. S., and Morgenstern, N. R., Pile design in permafrost, Can. Geotech. J.,18,357-370.
    [90]Closure by A. Foriero, B. Ladanyi et al, Finite element simulation of behavior of laterally loaded piles in permafrost, Journal of Geotechnical Engineering,1995, Vol.121, No.2,126-137.
    [91]张旭芝,王星华.青藏铁路多年冻土区涵洞基础的冻融变形特征[J].水文地质工程地质.2006年2期
    [92]阎菊花,孙学先.拼装式涵洞施工中高温冻土地基温度场研究.兰州交通大学学报.2006
    [93]谢永江,仲新华,朱长华等,青藏铁路桥隧结构用高性能混凝土的耐久性研究,中国铁道科学,24(1),108-112.
    [94]王福林,徐杰高原冻土区拼装涵快速施工技术.铁道工程学报-2003年z1期
    [95]张旭芝,王星华冻土铁路涵洞施工对地基土地温的影响[J].中国铁道科学.2007年4期,
    [96]王晓黎,陈频志.青藏铁路涵洞试验工程研究[J].冰川冻土.2003年z1期
    [97]仲新华,朱长华,杨富民等.青藏铁路高原冻土区桥涵结构专用混凝土的耐久性[J].中国 铁路.2003年5期
    [98]程国栋,青藏铁路工程与多年冻土相互作用及环境效应,中国科学院院刊,2002年第1期,21-25.
    [99]王绍令,赵秀锋,郭东信,黄以职;青藏高原冻土对气候变化的响应[J];冰川冻土;1996年S1期
    [100]程国栋,局地因素对多年冻土分布的影响及其对青藏铁路设计的启示,中国科学(D辑),2003,33(6),602-607.
    [101]马巍,程国栋,吴青柏.青藏铁路建设中动态设计思路的应用研究[J].岩土工程学报,2004,26(4):537-540.
    [102]程国栋,用冷却路基的方法修建青藏铁路,中国铁道科学,2003,24(3),1-4.,Vol(5):283-288.
    [103]王志坚,青藏铁路建设中的冻土工程问题,中国铁路,2002(9),35-37.
    [104]张鲁新,青藏铁路高原冻土区地温变化规律及其对路基稳定性影响,中国铁道科学,21(1),37-47.
    [105]吴青柏.人类工程活动下冻土环境变化和工程适应性研究.中国科学院博土学位论文.2000.
    [106]吴青柏,朱元林,刘永智.人类工程活动下冻土环境变化评价模型.中国科学(D辑),2002,32(2).
    [107]黄小铭,论高原冻土区铁路路基的设计原则及其应用,中国铁道科学,第22卷第1期(总第55期),23-31.
    [108]吴青柏,刘永智,童长江等,寒区冻土环境与工程环境间的相互作用,工程地质学报,8(3),281-287.
    [110]Wu Qingbai, Liu Yongzhi, Zhong Jiaming, et al. A review of recent soil engineering in permafrost regions along Qinghai-Tibet Highway. Permafrost and Periglacial Processes,2002,13(3):199-205.
    [111]加拉古利亚著,童伯良译.人为引起冻土条件变化的预报性评价方法(平原地区).兰州:甘肃科学技术出版社.1992.
    [112]国家林业局.冻土工程地质勘察规范(GB50324—2001).北京:中国计划出版社,2001.
    [113]黑龙江省寒地建筑科学研究院(主编).中华人民共和国行业标准.冻土地区建筑地基基础设计规范.北京:中国建筑工业出版社.1998.
    [114]程国栋.高海拔多年冻土分布的地带性数学模式之探讨.冰川冻土,1983.
    [115]黄小铭.青藏高原多年冻土地区铁路路堤临界高度的确定[C]//第二届全国冻土学术会议论文集.兰州:甘肃人民出版社,1983
    [116]韩利民.青藏铁路唐古拉山区冻土低路堤稳定性研究[D],北京:北京交通大学,2009
    [117]戴竞波.东北多年冻土地区路堤人为上限的变化规律.中国科学院兰州冰川冻土研究所第二届全国冻土会议,1983
    [118]Nixon J F. Geothermal aspects of ventilated pad design. Proceedings of the Third International Conference on Permafrost. Edmonton, Alberta, National Research Council of Canada.1978:841-846
    [119]陈湘生,冻土力学之研究-21世纪岩土力学的重要领域之一,煤炭学报,1998.2,Vol.23,No.1.
    [120]王海丽,冻土水热运动的数值模拟,内蒙古农牧学院学报,1998,Vol9,No.1.
    [121]Ground Freezing 2000, Proceedings of the International Symposium on Ground Freezing and Frost Action in Soils [C]. A A. Balkema, Rotterdam,2000.
    [122]Douglas J. Goering. ACE and thermosyphon design features Loftus Road Extension Project. Alaska Department of Transportation and public facilities.2001,11.
    [123]Douglas J. Goering. Air Convection Embankment Experimental Feature Design Phase I. Final report Alaska Department of Transportation and public facilities.1997.11.
    [124]Douglas J. Goering. Parks/Chena Ridge Air Convection Embankment Performance Report October 1999 to December 2000. Alaska Department of Transportation and public facilities.2001.2.
    [125]Douglas J. Goering. Roadway Stabilization Using Air Convection Embankments. Transportation Research Center Institute of Northern Engineering University of Alaska Fairbanks.1994.9.
    [126]Douglas J. Goring, Pankaij Kumal, Winter-time Convection in open-graded embankments. Cold Regions And Technology,1996.
    [127]Douglas J. Goering, Experimental Invesitigation Of Air Convection Embankments For Permafrost-Resistant Roadway Design
    [128]Douglas J. Goering, Pankaj Kumar. Winter-time Convection in open-graded embankments. Cold Regions Science and Technology 24(1996) 57-74.
    [129]J.-M. Konrad and C. Duquennoi, A model for water transport and ice lensing in freezing soils, Water Resources Research, Vol.29, NO.9; 3109-3124(1993).
    [130]Giancarlo Gioda and Livio Locatelli, A numerical and experimental study of the artificial freezing of sand, Can. Geotech.J.31; 1-11(1994).
    [131]Majdi A. Othman and Craig H. Bensoni. Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay, Can. Geotech. J.30; 236-246(1993).
    [132]A. P. S. Selvadurai, J. Hu and I. Konuk, comutational modeling of frost heave induced soil-pipeline interaction, Cold Regions Science and Technology.29; 215-228(1999).
    [133]J.-M. Konrad, Frost susceptibility related to soil index properties, Can. Geotech.J.36:403-417(1999).
    [134]Z. X. zhang and R. L. K. ushwaha Modeling soil freeze-thaw and ice effect on cannal bank, Can. Geotech. J.35; 655-665(1998).
    [135]Guoqing Zhou, Pure ice-frozen front-un-frozen soil system:The analysis of fine-grained soil's consolidation, Proceedings of the'96 international symposium on mining science and technology 1996.10.
    [136]Greg P.Newman and G. Ward Wilson, Heat and mass transfer in unsaturated soils during freezing, Can. Geotech.J.34; 63-70(1997).
    [137]P. Viklander laboratory study of stone heave in till exposed to freezing and thawing, Water Resources Research, Vol.27; 141-152(1998).
    [141]尚松浩等,冻结条件下土壤水热耦合迁移数值模拟的改进,清华大学学报,1997,Vol.37,No.8.
    [142]木下诚一 冻土物理学1985
    [143]郭宽良.计算传热学.中国科学技术大学出版社.1988
    [144]陶文铨.数值传热学.西安交通大学出版社.1988
    [145]朱林楠.多年冻土路基的临界高度[J].中国地理学会冰川冻土学术会议论文选集(冻
    土学).北京:科学出版社,1982:209-313
    [146]朱林楠.高原冻土区不同下垫面的附面层研究.冰川冻土,1988
    [147]李东庆.花石峡连续多年冻土区湿润性地段路基稳定性模拟分析.岩土工程学报,1999
    [148]SHEN. MU and B. LADANY1.1987. Modelling of coupled heat, moisture and stress field in freezing soil. Cold Regions Science and Technology,14:237-246.
    [149]张子明.混凝土绝热温升和热传导方程的新理论.河海大学学报:自然科学版,2002
    [150]朱伯芳,王同生,丁宝瑛,郭之章,水工混凝土结构的温度应力与温度控制,水利电力出版社,1976.
    [151]张鲁新,关于多年冻土区灌注桩混凝土内部最高温升及最大放热量的计算分析[R],2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700