用户名: 密码: 验证码:
不同保护性耕作措施对内陆河灌区冬小麦田土壤物理性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过设置在甘肃省武威市黄羊镇甘肃农业大学试验站的田间定位试验,以传统耕作(T)为对照,研究了秸秆翻压(TIS)、免耕不覆盖(NT)、免耕立茬(NTSS)、免耕秸秆覆盖(NTS))处理对冬小麦田土壤物理性状及其产量的影响,得出以下主要结论:
     1.在各个生育时期内NTSS和NTS处理较T、TIS和NT处理明显的增加了0-30 cm土层土壤含水量,在测定时期内0-30cm土层NTS处理的土壤含水量均高于其他(T、TIS和NT)处理同时变化幅度最小;在30-150cm土层土壤含水量在所测定的生育时期内各处理含水量差距不明显。NTS处理在提高0-30cm土层冬小麦田含水量的同时也保持了30-150cm土层的土壤含水量,为冬小麦的生长提供更多的水分。
     2.冬小麦田土壤的容重在测定时期内,NTS、NTSS、NT和TIS处理的土壤容重在测定的3个土壤层次均小于T处理,NTS和NTSS处理与T处理差异显著,可以降低冬小麦田的土壤容重。经过长期免耕秸秆覆盖处理NTS与其他处理相比有效控制了(0-30cm)土壤容重的增加。同时T和TIS处理由于翻耕,可以降低冬小麦田0-20cm土层的土壤坚实度,且在返青期、拔节期和孕穗期表现的更加明显,NTS处理可以有效降低20-40cm土层的土壤坚实度。NTS可以有效的控制土壤坚实度的增加保持土壤坚实度的相对稳定。
     3.耕作措施影响冬小麦田的土壤温度,在测定时期内T、TIS和NT处理的土壤温度总是高于NTS和NTSS处理,在气温上升的过程中,NTS和NTSS处理的土壤温度上升缓慢,有明显降低土壤温度的作用,在冬小麦生长发育的前期土壤温度NTS>NTSS处理,后期NTS     4. NTS、NTSS、NT和TIS处理与T处理相比测定的3个层次内均能提高土壤中大团聚体>0.25mm(机械稳定性团聚体)的含量,NTS处理的含量最高,其主要是提高了各层次>5mmm和2-5mmm粒径的土壤团聚体含量;NTS、NTSS、NT和TIS处理与T处理相比测定的3个层次内均能提高土壤重大团聚体(水稳性团聚体)的含量,其中NTS处理与T处理差异显著,在测定的3各层次中,NTS和NTSS处理均能提高1-0.5mm和0.25-0.5mm粒径的土壤水稳性团聚的含量,其中NTS处理可以有效的提高水稳性团聚体的稳定率,NTS处理在改善土壤结构的同时,也增加了这种改善相对稳定性。
     5.在测定时期内,NTS和NTSS处理能显著提高0-5cm和5-10cm土层的土壤有机质含量,TIS处理在10-20cm和20-30cm土层可以提高有机质含量。与T相比,NTS、NTSS、NT和TIS处理都可以提高作物产量,其中NTSS和NTS较T分别提高冬小麦产量26.2%和12.4%。NTS处理提高最多,与T处理差异显著;与T相比各处理均能提高冬小麦田的水分利用效率,NTSS和NTS处理较T处理分别提高了19.6%和12.6%,NTS处理提高最多,与T处理差异显著。
Effect of tillage with stubble incorporated (TIS), no-tillage without stubble retention (NT), no-tillage with stubble standing (NTSS) and no-tillage with stubble retention (NTS) on yield and soil physical properties of winter wheat was studied by taking conventional tillage (T) as the control on a ten years'located experiment in Huangyang experimental station, Wuwei city, Gansu province. The main conclusions were showed as follow:
     1. Soil water content in 0-30cm layer in each growth stage was significantly increased in NTSS and NTS plots in comparison to that in T, TIS and NT plots under the same outside moisture conditions, the content in 0-30cm layer had significant changes among different measurement dates, that in 30-150cm layer kept stable, which indicated 0-30 soil body was the main body for moisture consumption of winter wheat in Hex irrigation region, while 30-150cm layer displayed a better effect on replenishment and equilibration for 0-30cm soil layer moisture, different tillage treatments had different effects on water content in winter wheat field. Soil water content in 0-30cm layer in NTSS and NTS plots in each growth stage was significantly higher than that in T, TIS and NT plots, while 30-150cm layer had no significant changes. Water content decreased from returning green stage to maturity under the same environmental factors.
     2. Soil bulk density of NTS, NTSS, NT and NIS was significantly lower than that of T in the measurement period, bulk density of NTS,1.30g/cm3, was the lowest among five treatments, NTSS took second place, both reached significant level in comparison to T, which indicated both NTSS and NTS could increased bulk density. Long term no-tillage with stubble retention could efficiently mitigate the increase of soil bulk density (0-30cm), soil compaction (0-20cm) was also decreased by T and TIS because of tillage and incorporating treatments, the mitigation was highlighted within returning green, jointing and booting stage. NTSS could significantly decrease soil compaction in 20-40cm layer. Soil compaction would increase after wheat harvesting while T, TIS, NT, NTSS and NTS significantly and NTSS, NTS not, in which soil compaction of NTS was lowest among five treatments, indicating soil compaction of NTS kept relatively stable by mitigating increase of compaction to promote stability of soil structure.
     3. Capillary porosity was effectively increased by NTS and NTSS, improving soil water retention and absorption as well as soil structure, in which NTS displayed better than NTSS. Total porosity was increased by NTS and NTSS, no-capillary porosity was also improved by NTSS in comparison to other treatments. Tillage treatments influenced soil temperature, soil temperature of T, TIS and NT was also higher than that of NTS and NTSS, the soil temperature of NTS and NTSS increased slowly, temperature difference was smaller from morning to night, having a significant effect of lowering temperature.
     4. Elastic-stable aggregate of NTS, NTSS, NT and NIS was improved in comparison to T, in which NTS was highest. Those treatments could also improve the content of soil aggregate within its particle size>5cm and 2-5cm. NTS, NTSS, NT and NIS could improve water-stable aggregate content, in which NTS and T reached significant level. NTS and NTSS could improve 1-0.5mm and 0.25-0.5mm. Water-stable aggregate content, indicating NTS could not only improve soil structure, but also ameliorate relative stableness and eternality of soil.
     5. Tillage treatments influenced yield and WUE of winter spring. NTS, NTSS, NT and TIS could improve wheat yield significantly, NTSS and NTS increased yield by 26.2% and 12.4%, respectively, in comparison to T, of which NTS outputted the highest yield. NTS, NTSS, NT and TIS could also improve WUE, NTSS and NTS increased by 19.6% and 12.6%, respectively, compared with T, of which NTS yielded highest WUE. NTS and NTSS could significantly improve soil organic matter in 0-10cm soil layer, while TIS 10-30cm soil layer. Organic matter of each treatment decreased from returning green to maturity stage, of which NTS's decreasing range was smallest, indicating the replenishment of organic matter was better than other treatments.
引文
[1]李洪文.北方旱地农业保护性耕作的土壤水分模型及相关机械技术的研究[D].北京农业工程大学,1995,6.
    [2]苏元升.免耕播种机开沟器及其测试系统的研究[D].北京农业工程大学,1999,6
    [3]李玲玲,黄高宝,张仁陟,等.不同保护性耕作措施对旱作农田土壤水分的影响[J].生态学报,2005,25(9):2326-2332
    [4]中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法[M].科学出版,1987:41-43.
    [5]陈素英,张喜英,刘孟雨.玉米秸秆覆盖麦田下的土壤温度和土壤温度动态规律[J].中国农业气象,2002,4:34-37
    [6]Teasdale J R. Light transrnittance, soil temperature and soil moisture under residue of hairy vetch and rye [J]. Agronomy Journal,1993,85(3):637-680.
    [7]师江澜,刘建忠,吴发启.保护性耕作研究进展与评述[J].干旱地区农业研究,2006,1:24-1.
    [8]刘洋,孙占祥,冯良山.实行保护性耕作技术促进旱作农业可持续发展[J].辽宁农业科学2009(3):41-43.
    [9]冯福学,黄高宝,柴强,等.不同耕作措施对冬小麦根系时空分布和产量的影响[J].生态学报,2009(5):29-5.
    [10]王利立,黄高宝,郭清毅.不同保护性耕作方式对冬小麦叶片水平水分利用效率的影响[J].干旱地区农业研究,2008,26(1):90-96.
    [11]黄高宝,于爱忠,郭清毅,等.甘肃河西冬小麦保护性耕作对土壤风蚀影响的风洞试验研究[J].土壤学报.2007,11:44-6.
    [12]黄涛,黄高宝,于爱忠,等.不同耕作措施对冬小麦田CO2排放通量的影响[J].甘肃农业大学学报,2009,44(6):28-32.
    [13]赵聚宝,梅旭荣.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学,1996,29(2):59-66.
    [14]周建忠.保护性耕作防治土壤风蚀的研究[D].北京:中国农业大学,2003.
    [15]高焕文,李问盈.保护性耕作技术与机具[M].北京:化学工业出版社.2004,1-39,197-211
    [16]Morris H.M. Flowing in rough conditions[J]. Transactions of the ASAE.1955,120:373-398.
    [17]吴崇友,金诚谦,魏佩敏,等.保护性耕作的本质与发展前景[J].中国农机化,2003.8.11.
    [18]Castro Filho C, Henklain J C, Vieira M J, et al.Tillage methods and soil and water conservation in southern Brazil. Soil&Tillage Research,1991,20(2-4):271-83.
    [19]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物数量与养分转化的研究[J].中国农业科学,1994,27(6):41-49.
    [20]西北农业大学[M].旱农学.北京:农业出版社,1991
    [21]P.W.Ungerand TM. Mcalla. Conservation tillage systems, Advances in Agronomy.1980,33:1-58.
    [22]臧英.保护性耕作防治土壤风蚀的试验研究[D].北京:中国农业大学,2003.
    [23]罗守藩.免耕秸秆覆盖对玉米根系的影响[J].山西农业科学,1993(1):14-18.
    [24]Chepil W.S.Influence of moisture on erodibility of soil by wind [J]. Soil Sci Soc Proc.1956,20:288-291.
    [25]Benites J.R, Derpsch R, McGarry D. Current Status and Future Growth Potential of Conservation Agriculture in the World [J].ISTROC,2003:120-128.
    [26]中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法[M].科学出版社,1987.
    [27]李洪文.北方旱地农业保护性耕作的土壤水分模型及相关机械技术的研究[D].北京农业工程大学,1995,6.
    [28]苏元升.免耕播种机开沟器及其测试系统的研究[D].北京农业工程大学,1999,6.
    [29]董治宝,陈渭南,董光荣.关于人为地表结构破坏与土壤风蚀关系的定量研究[J].科学通报,995,40(1):41-49.
    [30]赵化春,王晓丽.少耕法与免耕法的起源与发展前景[J].吉林农业科学,1991(1):85-88
    [31]贾建国.农业部“十五”重点推广50项技术—保护性耕作机械化技术[J].世界农业,2001,(11):34-35
    [32]郭清毅,黄高宝.保护性耕作对旱地麦—豆双序列轮作农田土壤水分及利用效率的影响[J].水土保持学报,2005,19(3):165-169.
    [33]晋小军,黄高宝.陇中半干旱地区不同耕作措施对土壤水分及利用效率的影响[J].水土保持学报,2005,19(5):109-112.
    [34]景军胜,董振生,张修森.旱地油菜地膜覆盖栽培方式研究初报[J].干旱地区农业研究,2000,19(4):11-15.
    [35]李洪文,陈君达,高焕文,等.旱地表土耕作效应研究[J].干旱地区农业研究,2001,19(2):13-18.
    [37]马占福,刘国华,程志国,等.西北内陆灌溉农业区地膜作物留茬少免耕耕作技术研究[J].耕作与栽培,2002,14(6):5-8.
    [38]邱润民,王智斌,左志刚,等.陇东地区春小麦保护性耕作技术试验[J].中国农机化,2003,(2):11-13
    [39]邱润民,王智斌,左志刚,等.陇东地区春玉米保护性耕作栽培的初步试验[J].中国农机化,2002,(6):16-18
    [40]Mc Conkey Brian, Lindwall Wayne. Conservation Tillage Systems in Western Canada.面向二十一世纪的机械化旱作节水农业[M].北京:中国农业大学出版社,2000,142-252
    [41]郭俊伟.土壤容重对玉米生长的影响[J].陕西农业科学,1996,(4):25-26.
    [42]黄高宝,郭清毅,张仁陟.保护性耕作条件下旱地农田麦-豆双序列轮作体系的水分动态及产量效应[J].生态学报.2006,26(4):1176-1186.
    [43]Tebrugge, F. A. Bohrmsen. Farms and experts options in no-tillage in West-Europe and Nebraska, paper presented at I world congress on conservation Agriculture [J]. Madrid, Spain, October1-5.
    [44]赵二龙,李立科,徐福利,等.旱地小麦留茬少耕全程覆盖高产技术体系研究[J].西北农业学报,1998,7(4):44-47.
    [45]Blevins R. L, Thomas G. W, Smith M. S, Frey W. W, Comelius P. L.Changes in soil properties after 10 years continuous non-tilled and conventionally tilled [J]. Soil and Tillage Research.1983, (3):135-146
    [46]Gao H. W, W. Y. Li.Chinese conservation tillage [J].ISTROC Australia.2003,465-470
    [47]张志田,高绪科,等.旱地麦田保护性耕作对土壤水分状况影响研究[J].土壤通报,1995,26(5):200-203.
    [48]周凌云.农田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):49-52.
    [49]Anaka D L, Anderson R L.保护耕作制中土壤蓄水量与降水贮存效率的研究[J].水土保持科技情报,1999,1:21-23.
    [50]Thnh H Dao. Tillage and winter wheat residue management effects on water in filtration and storage [J]. Soil Sci. Soc. Am. J,1993,57:1586-1595
    [51]郭俊伟.土壤容重对玉米生长的影响[J].陕西农业科学,1996,(4):25-26.
    [52]Enta M H, Fowler D B. Influence of crop water environment and dry matter accumulation on grain yield of no-till winter wheat [J]. Can. J. Plant Sci,1989,69:367-375
    [53]张志国,徐琪,长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报.1998,35(3):384-391
    [54]Karlen D. L., et al. Long-term tillage effect on soil quality. Soil Tillage Research [J].1994,32 (4):313-327
    [55]Reeves DW. The role of organic matter in maintaining soil quality in continuous cropping systems [J]. Soil Tillage Research,1997,43:131-67
    [56]陈兰祥,夏淑芬,徐松林.小麦—玉米轮作覆盖稻草对土壤肥力及产量的影响[J].土壤学报,1996,28(3):156-159.
    [57]逢蕾.旱地秸秆覆盖免耕对土壤有机碳的影响[D].兰州:甘肃农业大学,2004.
    [58]Camberdeila C A&Elliott E T. Carbon and nitrogen dynamics of some fraction from cultivated grassland soils [J].SSSAJ,1994,58:123-130.
    [59]石书兵,马林,刘建喜等.奇台县保护性耕作实效果分析[J].新疆农业科技,2005,10(5):37-38.
    [60]刘金海,党占平,曹卫贤.不同覆盖和播种方式对渭旱地小麦产量及土壤水分的影响[J].麦类作物学报,2005,25(4):91-94.
    [61]OttmanM J,Doerge T A,Martin E C.Durum grain quality as affected by nitrogen fertilization near an thesis and irrigation during grain filling [J].Agronomy Journal,2000,92:1035-1041
    [62]严洁,邓良基,黄剑.保护性耕作对土壤理化性和作物产量的影响[J].中国农机化,2005,(2):31-34.
    [63]李友军,黄明,吴金芝,等.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报,2006,20,(2):42-45.
    [64]李全起,陈雨海,于舜章,等.覆盖与灌溉条件下农田耕层土壤养分含量的动态变化[J].水土保持学报,2006,20(1):37-40.
    [65]孙海国.保护性耕作和植物残体对土壤养分状况的影响[J].中国生态农报,1997.
    [66]海龙,王平,张仁陟等.不同耕作方式对土壤有机磷形态的影响[J].甘肃农业大学学报,2006,41(5):95-99
    [67]Staley T E.Soil microbial and organic component al-teration in a no-tillage chrono sequence [J]. Soil Sci,1988,52(4):998-1005
    [68]余晓鹤,土壤表层管理对部分土壤化学性质的影响[J],土壤,1990,(2):158-161.
    [69]袁家福,麦田秸秆覆盖效应及增产作用[J],生态农业研究,1990,4(3):61-65.
    [70]张乃生,赵全梅.旱地玉米免耕整秸秆半覆盖技术经济效果评价[J].山西农业科学,1994.25(4):91-94.
    [71]徐春阳.长期免耕对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002.39(1):17-23
    [72]邱润民,王智斌,左志刚等陇东地区冬小麦保护性耕作技术试验[J],中国农机化2003,2:11-13
    [73]邵月红,潘剑君,孙波等.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,19(3):242-245
    [74]杜兵,李问盈,邓健,等.保护性耕作表土作业的田间试验研究[J].中国农业大学学报,2000,5(4):65-67.
    [75]Gami S K, Ladha J K, et al. Long-term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal [J]. Biol Fertil Soils.2001,34:73-78.
    [76]Lampurlanes J and Cantero-martinez C. Soil bulk density and penetration resistance under different tillage and crop management system and their relationship with barley root growth [J].Agronomy Journal,2003, 95:526-536.
    [77]王殿武,等.少、免耕对旱地土壤物理性质的影响[J].河北农业大学学报,1992,21(2):28-33.
    [78]刘世平,等.长期少免耕土壤供肥特征与水稻吸肥规律的研究[J].江苏农学院学报,1995,16(2):77-80.
    [79]Wander M M, et al. Tillage impacts on depth distribution of total and particulate organic matter in three illinois soil [J]. S. S. S. A. J.1998,62(6):1704-1711.
    [81]温美丽,刘宝元,叶芝菡,等.免耕与土壤侵蚀研究进展[J].中国生态农业学报.2006,14(3):1-3.
    [82]Aase J K. et al. Crop and soil response to long-term tillage practice in the northern Great Plains [J]. Agronomy journal,1995,87(4):652.
    [83]王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421.
    [84]罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响[J].干旱地区农业研究.2005,23(4):7-12.
    [85]Croretto C C. No-till development in chequen farm and its influence on some physical, chemical and biological parameter [J]. J. Soil water Conserv.1998,53:194-199
    [86]黄细喜,等.土壤自调性与少免耕法[J].土壤通报,1987,18(3):111-114.
    [87]牟正国.免耕对土壤松紧状况的影响[J].中国少耕免耕与覆盖技术研究.北京:北京科学技术出版社,1991,34-40.
    [88]Ghuman P W. Land clearing and use in the humid Nigeriern tropics:I. Soil physical properties [J]. Soil Sci.Soc.AM.J,1991,55(1):178-183.
    [89]王志芬,陈学留,余美炎.等.大田冬小麦根系吸收活力的空间分布及其变化动态研究[J].作物学报,1998,24(3):354-360.
    [90]Sharratt B. S. Tillage and straw management for modifying physical properties of asubarctic soil [J]. Soil and Tillage Research,1996,38:239-250.
    [91]许迪.夏玉米耕作方式对耕层土壤特性时间变异性的影响[J].水土保持学报,2000,14(1):64-87.
    [92]孙志强,王宗胜,鲍国军等.施肥对黄土高原旱地冬小麦根系生长的影响[J].水土保持研究,2003,10(4):141-143.
    [93]朱文珊.谈具有明显经济和生态效益的耕作法残茬覆盖减耕法的科研新进展[J].中国科学,1995,(2):39-40.
    [94]范爱武,刘伟,王崇琦.土壤温度和水分日变化实验[J].太阳能学报,2002,23(6):721-723.
    [95]范爱武,刘伟,王崇琦.不同环境条件下土壤温度日变化的计算模拟[J].太阳能学报,2002,24(3):167-171.
    [96]朱德峰,林贤青,曹卫星.水稻根系生长及其对土壤紧密度的反应[J].应用生态学报,2002,13(1):60-62.
    [97]李鲁华,秦莉等.不同土壤水分条件下春小麦品种根系功能效应的研究.中国农业科学,2002,35(7):867-871.
    [98]丁昆仑,M.J. Hann.秸秆覆盖对土壤水分及夏玉米产量的影响[J].中国农村水利水电,1999,6(2)46-48.
    [99]余泳昌,刘晓文,李明枝.玉米免耕秸秆覆盖机械化栽培技术的研究.河南农业大学学报,2002,36(4):309-312.
    [100]魏朝富,车福才,高明,等.垄作稻田和垄作养鱼稻田土壤结构与肥力特征研究[J].生态学杂志,1989,8(1):22-261.
    [101]秦耀东,朱文珊.覆盖免耕土壤棵间蒸发的研究[J].土壤通报,2003,34(4):259-261.
    [102]张仁陟.不同保护性耕作措施对旱作农田土壤水分的影响.生态学报,2005,25(9):2326-2332.
    [103]朱自玺,方文松,赵国强.麦秸和残茬覆盖对夏玉米农田小气候的影响[J].干旱地区农业研究,2000,18(2):19-24
    [104]李立科.小麦留茬少耕秸秆全程覆盖新技术[J].陕西农业科学,1999,2(4):40-41.
    [105]李昱,李问盈.冷凉风沙区机械化保护性耕作技术体系试验研究[J].中国农业大学学报,2004,9(3):16-20.
    [106]卢良恕等,机械化旱作农业与节水灌溉技术研究会论文集,中国农业工程学会,1998.
    [107]杨光立,黄凤球,李林,杨忠炬.洞庭湖集约农区农作物秸秆还田现状与发展趋势[J].湖南农业科学,1998,5:28-30.
    [108]郜庆炉,宋留轩,杨怀森.不同覆盖物对米生长发育和土壤性状的影响[J].河南职技师院学报,1996,24(2):6-16.
    [109]贾彦宙,王俊英,庞黄亚,等.土壤保护性耕作技术应用研究[J].内蒙古农业科技,2002,(6):12-13.
    [110]贾树龙,孟春香,任图生,杨云马.耕作及残茬管理对作物产量及土壤性状的影响.河北农业科学,2004,8(4):37-42.
    [111]田秀平,陶永香,王立军,等.不同耕作处理对白浆土养分状况及农作物产量的影响[J].黑龙江八一农垦大学学报,2002,14(3):9-11.
    [112]Lindwall C W, Andson D T. Effects of different seeding machines on spring wheat production under various conditions of stable residue and soil compaction in no-tillage rotation. Can. J. Soil Sci,1977,57:81-92
    [113]Karlen D L. Conservation tillage research needs. Journal of Soil and Water Conservation.1995,(5-6):365-369
    [114]马世均.国外农业的发展现状[J].中国农学通报,1989,14(2):30-31.
    [115]陈君达,李洪文,邓键,旱地玉米保护性耕作技术与机具体系[J].中国农业大学!学报,1998,5(4):68-72.
    [116]赵聚宝,刁凤贵.秸秆覆盖对旱地作物水分利用效率的影响[J],中国农业科学,1996,29(2):59-66.
    [117]蔺海明,陈垣.半干旱地区少免耕对土壤水分动态的影响[J].甘肃农业大学学报,1996,1(3):32-35.
    [118]赵印英,王瑞芬,刘威,等.麦秸秆覆盖节水增产机理探讨[J].山西水利科技,1998,15(3):33-34.
    [119]袁家福.麦田秸秆覆盖及增产作用[J].生态农业研究,1996,4(3):61-65.
    [120]王晓燕,毛宁.等.保护性耕作的不同因素对降雨入渗的影响[J].中国农业大学学报,2001,6(6):42-47
    [121]严健汉,詹重慈.环境土壤学[M].武汉:华中师范大学出版社,1985.
    [122]金轲,蔡典雄,吕军杰,等.耕作对坡耕地水土流失和冬小麦产量的影响[J].水土保持学报,2006,20(4):1-5.
    [123]常旭虹,赵广才,杨丽珍,等.农牧交错区保护性耕作对土壤含水量和温度的影响[J].土壤,2006,38(3):328-332.
    [124]蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成既有机碳含量的影响[J].水土保持学报,2008,22(2).60-66.
    [125]文倩,关欣.土壤团聚体形成的研究进展[J].干旱地区研究,2004,21(4):434=438.
    [126]巩杰,黄高宝,李延梅,等.少免耕耕作法的农田效应[J].耕作与栽培,2002(4):13-14.
    [127]刘梦云,常庆瑞,齐雁冰,等.土地利用方式对土壤团聚体及微团聚体的影响[J].中国农学通报,2005,21(11):247-250.
    [128]上官周平,邵明安.改善旱区作物水分利用的生理调控机制[J].水利学报,1999,21(10):33-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700