用户名: 密码: 验证码:
热休克蛋白70在苯并(a)芘所致DNA损伤修复中的作用和交互作用蛋白分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物和原核生物在物理、化学和生物应激因素(如高温、多环芳烃、病毒感染等)的作用下,机体会迅速启动高度程序化的热休克反应(heat shock response,HSR),诱导合成一组高度保守的热休克蛋白(heat shock proteins, HSPs)。HSPs是生物界(包括从细菌到人类)经过长期进化仍保留下来的、对体内外不良因素起保护作用的一类蛋白质。根据HSPs在SDS-PAGE上的结果,按其分子量大小将HSPs分为如下几个家族:大分子HSPs (≥100 KD),HSP90 (81 - 99 KD),HSP70(65 - 80 KD),HSP60(55 - 64 KD),HSP40(35 - 54 KD),小分子HSPs(≤34 KD),其中最为主要和重要的是HSP70家族的Hsp70。许多研究提示了其可能的作用和功能如下:1) Hsp70保护细胞或生物免遭各种应激因素的损害,赋予它们从各种应激中恢复的能力;其中,表现最为明显的是热耐受能力的形成,即当细胞或生物接触亚致死温度后,表现对致死温度的存活率明显增加,并且对其他性质的致死性应激的抵抗能力也可能增强;2) Hsp70对细胞内重要遗传物质DNA可能具有重要保护作用,且在生物生长、发育和分化过程中也起着重要作用;3) Hsp70与体内许多重要生物活性物质(如类固醇、肿瘤坏死因子等)有着密切的联系,参与体内许多调节过程;4)更重要的是,Hsp70作为分子伴侣,促进蛋白质的合成、折叠、装配和运输,还参与变性蛋白质的清除,这种重要功能可能与热耐受、毒物耐受有关。
     苯并(a)芘(BaP)是一类来源于有机物不完全燃烧、有致癌性的多环芳烃,可以和DNA结合形成加合物,这样的损伤经由核苷酸切除修复途径修复。此外,在BaP代谢过程中产生的反应活性氧(ROS)也能对生物大分子造成损害。ROS对DNA造成的损伤经由碱基切除修复途径修复。本实验在人群和细胞水平的研究结果显示Hsp70的表达水平和残留的BaP导致的DNA损伤负相关,提示Hsp70可能在对BaP所致DNA损伤的修复方面发挥了一定作用。Hsp70正常时主要分布在细胞浆,而有害因素应激时转移入核,且分布于染色体周围,这个重要现象也提示了Hsp70在DNA保护中的可能作用与意义。DNA修复在肿瘤形成和治疗方面是一个重要的研究方向,而既往的大多数研究从不同的DNA修复途径分别研究它们的重要作用与机制。而多数情况下,环境有害物质对DNA造成的损伤需要多种修复途径共同进行修复,需要同时考虑多种蛋白质在DNA修复中的作用。Hsp70是重要的分子伴侣,参与蛋白质的合成、折叠、装配、运输和变性蛋白质的清除等,无疑它也可能与DNA修复相关蛋白有关。
     本研究通过构建高表达和低表达Hsp70两种细胞模型,用BaP处理细胞,利用彗星实验、宿主细胞再活化实验来观察Hsp70表达水平不同细胞中修复能力的差异,同时用免疫共沉淀和高效液相色谱-电喷雾-串联质谱检测在DNA修复过程中和Hsp70结合存在的各种蛋白,从中筛选出可能的Hsp70作用底物。并对筛选出来的Hsp70交互作用蛋白利用免疫共沉淀、激光共聚焦和放射性自显影进行进一步的确证,为阐述Hsp70在BaP染毒修复过程中的作用机制提供科学依据。本研究共分四部分。
     第一部分高和低表达Hsp70细胞模型的建立
     对于Hsp70高表达细胞模型的建立,我们通过转染16HBE细胞pcDNA3.1/pcDNA3.1-hsp70重组质粒,并用G418筛选稳定的Hsp70高表达细胞株(16HBE/hsp70)。用转染空载体质粒pcDNA3.1的16HBE细胞作为转染对照(16HBE /pcDNA)。
     对于Hsp70低表达细胞模型的建立我们采用了槲皮素抑制Hsp70表达和RNA干扰技术两种方法,通过对Hsp70的表达水平的验证对进行两种方法的效果进行比较。
     槲皮素(QCT)是一种广泛存在的生物黄酮类物质,可以抑制某些肿瘤细胞Hsp70的合成,使Hsp70表达降低。我们首先采用不同浓度槲皮素(50、100、150、200μM)处理16HBE细胞6h,监测细胞存活率的同时用Western-blot技术检测槲皮素处理后,16HBE细胞中Hsp70蛋白的表达。结果发现,随着槲皮素浓度的增加,16HBE细胞的Hsp70的表达呈下降趋势。50μM槲皮素处理时,Hsp70表达即观察到显著下降(P<0.01),这样一直到200μM。而细胞存活率在浓度小于150μM时,均大于90%,在QCT浓度为150μM时,细胞存活率为87%。因此,结合Western Blot和细胞存活率实验,最终确定100μM槲皮素处理6h作为抑制Hsp70表达的模型,0.01%的DMSO处理作为溶剂对照(16HBE/DMSO)。
     RNA干扰(RNAi)是近年来发展起来的一种研究基因功能的新方法。RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,该技术已被广泛用于探索基因的功能。运用这项技术时,可以通过转染编码shRNA的质粒、小干扰RNA等达到特异性降低目的基因的目的。在本研究中,采用转染质粒的方法,在瞬时转染48小时后,对Hsp70的表达进行检测,从而对沉默效果进行评估。
     最后我们对高表达和低表达Hsp70的细胞模型进行了鉴定。利用细胞免疫荧光技术和Western-blot技术检测各组细胞中Hsp70的表达。细胞免疫荧光结果发现RNAi组细胞(16HBE/RNAi)的荧光强度明显低于正常培养的16HBE组细胞,而高表达Hsp70组(16HBE/hsp70)细胞的胞浆内荧光强度明显高于正常培养的16HBE组细胞;Western-blot检测发现,与16HBE组相比,16HBE /RNAi组Hsp70表达降低了42% (P﹤0.01),16HBE /hsp70组Hsp70表达增加了78% (P﹤0.01)。16HBE /DMSO、16HBE/HK和16HBE /pcDNA组Hsp70的表达未见明显变化(P > 0.05)。槲皮素浓度为100μM时,对Hsp70的表达抑制了53%,稍高于沉默组,但是由于槲皮素对Hsp70的抑制是非特异性的,因而采用RNA干扰技术进行后续的相关研究。
     第二部分Hsp70在B(a)P、BPDE所致DNA损伤修复中的作用
     为比较B(a)P染毒后,不同Hsp70表达水平的16HBE细胞DNA修复能力的差异,本部分首先用彗星试验检测16μM BaP染毒16HBE细胞2h,恢复不同时间(0,2,4,8,24h),Hsp70表达水平不同的细胞对DNA损伤的修复差异。所设八组细胞Control、16HBE/HK、16HBE /RNAi、16HBE /hsp70、16HBE/pcDNA、DMSO、S9、NC(normal cultured)在处理后存活率均大于80%,并且在DMSO、S9和NC组中,存活率大于90%,均符合毒理学要求。彗星实验结果表明随着恢复时间的延长,各组细胞OTMs均下降,说明残留DNA损伤的减少。在恢复前2h内,降低迅速,提示这个时间段为修复最活跃阶段。在2h到8h,速度减慢。24h后,OTMs基本达到正常水平(NC,normal cultured,显示正常培养时的OTMs),提示修复过程基本完成。高表达Hsp70组在修复最活跃的前2h相对于对照组,OTMs值降低更迅速,说明高表达Hsp70组修复进行得更快。并且在恢复的各个时间点,高表达Hsp70组残留的OTMs值均小于对照组,且差异有极显著性(P<0.01)。而在低表达Hsp70组中,在修复最活跃的前2h内OTMs的降低速度和对照组相比明显减慢(P<0.01)。由此可见,在修复最活跃的前2h的结果提示,Hsp70参与了BaP造成的DNA损伤的修复过程,它可以促进细胞对这种损伤的修复。这可能与作为分子伴侣的Hsp70可以帮助变性受损的蛋白质复性或降解有关,高表达的Hsp70增强了分子伴侣作用,保持了蛋白质的稳态,减轻了细胞的损伤。
     BPDE是BaP的代谢终产物,可以与DNA的亲核位点,即鸟嘌呤的外环胺基端共价结合形成BPDE-DNA加合物,导致特异性突变。这样的加合物损伤可以通过核苷酸切除修复(NER)途径修复,如果没有得到及时有效的修复就会导致肿瘤的形成。Hsp70是HSPs家族中的重要成员,多项研究显示在DNA毒性应激因素作用下,Hsp70的表达水平和残留的DNA损伤负相关。有研究发现这种伴侣蛋白在碱基切除机制修复(BER)和错配修复(MMR)中都发挥了一定的作用,但在NER方面,真核生物方面尚缺乏相关研究。故本部分拟在这方面作一些探讨,研究Hsp70是否参与了对BPDE所致加合物损伤的核苷酸切除修复。宿主细胞再活化实验(HCR)是通过瞬时转染被不同浓度BPDE(10、20、30、40μM)损伤的萤火虫荧光素酶报告基因的pCMVluc质粒,40h后检测宿主细胞对损伤质粒DNA的修复情况,根据宿主细胞表达荧光物质的含量来评估宿主细胞的DNA整体修复能力。高表达Hsp70组相对对照组,荧光素酶的表达明显提高,说明对加合物损伤的修复能力的增强,且在10μM时,P<0.01,在20μM时,P<0.05。低表达Hsp70组相对对照组,荧光素酶的表达显著降低,提示其修复能力的减弱,且在10μM时,P<0.05。
     第三部分BaP作用下Hsp70交互作用蛋白的鉴定
     本研究第二部分的研究结果显示,Hsp70表达不同的16HBE细胞在对BaP、BPDE所致DNA损伤的修复中,表现不同的修复能力。这样的结果提示Hsp70可能在这一过程中发挥了作用。Hsp70作为一种分子伴侣,可以帮助蛋白质维持正确的构象、对变性蛋白进行修复或者降解,因此,我们猜想可能存在一些蛋白底物,Hsp70通过和这些蛋白底物作用而在DNA修复过程中发挥一定的作用。在本部分中,16μM B(a)P染毒16HBE细胞2h恢复4h后,运用免疫共沉淀把在修复过程中和Hsp70有交互作用的所有蛋白沉淀下来,并对其进行高效液相色谱电喷雾串联质谱分析(HPLC ESI MS/MS)。样本中总共有730种蛋白被检测,我们对其中含量较高的84种蛋白进行了分析,根据swiss-prot database蛋白质数据库(http://www.expasy.org)提供了蛋白质的各种说明,包括蛋白名称、起源、功能、交互作用、结果等,把这84种蛋白分成了13个功能组,分别是细胞结构和移动(14%)、蛋白质代谢和修饰(12%)、DNA稳定性(6%)、细胞内和细胞间信号(7%)、细胞分化和增殖(74%)、蛋白交互作用(6%)、凋亡(5%)、核酸代谢(5%)、生理功能的执行(6%),细胞损伤保护(2%)、能量代谢(1%),未知部分和其他部分(27%)。从结果可见,在修复过程中,Hsp70不仅和参与生理功能的蛋白质有交互作用,而且和维持DNA稳定、抵抗细胞损伤的蛋白质之间也有交互作用,Hsp70可能是通过复杂的功能网络参与BaP所致损伤的修复,这为进一步阐述Hsp70在修复过程中所发挥的多重功能提供了线索。
     第四部分BaP作用下Hsp70和CKII的交互作用及Hsp70对CKII活性的影响
     多种研究结果提示Hsp70和DNA修复关系密切。Bases首先发现Hsp70能促进人白血病细胞对射线照射的修复,参与了氧化性损伤的碱基切除修复过程。而后有研究者报道Hsp70通过促进碱基切除修复过程中关键酶的活性,如APE和polyβ而促进修复。原核生物中的Hsp70,即DnaK也参与了核苷酸切除修复过程。在前一部分的结果中的酪蛋白激酶II(CKII),它是恢复阶段和Hsp70相互作用的重要蛋白。CKII本身是一种丝氨酸/苏氨酸激酶,可以通过磷酸化XRCC1、XRCC4和APE而促进氧化性损伤的修复,此外,CKII也和核苷酸切除修复途径的重要修复酶XPB有关。由于Hsp70和CKII在DNA修复方面都参与了NER和BER,在BER过程中有共同底物的APE,而我们上部分的结果发现两者在修复过程中是复合存在的。故在本部分中,运用免疫共沉淀和激光共聚焦技术对两者的交互作用进行深入研究,并用放射性自显影技术检测Hsp70是否对CKII的活性有影响。。
     Hsp70和CKII免疫共沉淀结果显示,在兔抗人Hsp70抗体沉淀下来的复合物中,有CKII的存在。逆向免疫共沉淀即在羊抗人CKII抗体沉淀下来的复合物中也检测到了Hsp70的存在。在16HBE细胞BaP染毒和不染毒时,我们得到了相同的结果。考虑到DNA修复是发生在细胞核内的,我们进一步用激光共聚焦技术来检测这两种蛋白质的位置关系,结果发现Hsp70和CKII在不染毒时主要分布在细胞浆,两者大部分重合。在BaP染毒后这两种蛋白均有一部分进入了细胞核,并且在某些位置明显重合。而测定不同Hsp70表达水平的细胞中的CKII活性结果显示高表达Hsp70细胞CKII活性比对照组增高(P<0.05)而低表达Hsp70细胞中CKII活性则降低。
     综上所述,本研究的结果如下:
     (1)确定了100μM的槲皮素为抑制16HBE细胞Hsp70表达的最佳剂量,采用含hsp70基因的cDNA重组质粒进行细胞转染并经筛选建立了稳定的Hsp70高表达细胞株。
     (2)Hsp70可以增强BaP、BPDE所致DNA损伤的修复。
     (3)在B(a)P染毒恢复阶段,Hsp70与维持DNA稳定、细胞结构和移动等多种功能的蛋白质结合存在。
     (4) Hsp70和修复密切相关的蛋白CKII在未染毒时在胞浆结合,染毒后均进入胞核并结合存在,并且高表达的Hsp70可以增强CKII的活性。
     本研究的创新之处在于:(1)同时使用了高表达和低表达Hsp70的细胞模型,为探讨Hsp70的功能提供有力的依据,可以从正反两个方面同时验证Hsp70的功能;(2)考虑到了Hsp70作为分子伴侣的性质,从对其底物的研究入手以阐述它在DNA修复中的具体作用。
     本课题有待深入研究的方面有:(1) Hsp70和CKII的相互关系尚需进一步研究,特别是Hsp70参与DNA修复的具体机制还有待深入的阐述;(2) DNA整体修复能力的测定如何应用于人群现场流行病学调查,如何应用于职业性有害因素对机体DNA损伤修复的评价,还需要进一步的探讨。
Heat shock proteins (Hsps) are highly conserved proteins which are triggered in all organisms exposed to environmental stressors such as elevated temperature, nicotinamide, carbon monoxide, heavy metals, ionization, ischemia and hypoxia. Based upon their apparent molecular weight, HSPs are divided into many groups such as high-molecular-mass HSPs (≥100 kD), HSP90 (81 to 99 kD), HSP70 (65 to 80 kD), HSP60 (55 to 64 kD), HSP40 (35 to 54 kD), and small HSPs (≤34 kD). The HSP70 family have been extensively studied which are found to function as molecular chaperones, assisting nascent polypeptides proper configuration and facilitating the misfolding peptides degradation. Their overexpressions greatly change the tolerance and sensitivity of organism to physical, chemical and biological harmful stimuli. Hsp70 was mainly in cytoplasm under physiological condition but moved to nucleus when organism was under stress, besides, two previous research in our lab found that Hsp70 level was inversely correlated to residual DNA damage, which both hint that Hsp70 may be involved in DNA repair. However, many related research was base on a relation between Hsp70 and DNA repair and that whether Hsp70 plays a role in the DNA repair remains unknowed. Considering the molecular chaperone essence of Hsp70, there may be some protein substrates, through which Hsp70 modulate the DNA repair process.
     In this study, we investigated the possible roles of Hsp70 in DNA repair in 16HBE cells by either knocking-down or overexpressing Hsp70 expression level under BaP treatment. The repair of BaP-induced damage, assessed by residual DNA damage, was measured by comet assay and the repair of DNA adducts was assessed by host cell reactivation assay. Later, immunoprecipitation(IP) and high performance liquid chromatography electrospray ionisation tandem mass spectrometry (HPLC ESI MS/MS) were further applied to detect the Hsp70-interacting proteins, among which casein kinase II(CKII), a Ser/Thr protein kinase, was an important protein involved in DNA repair. IP assay, confocal microscopy analysis and autoradiography were further performed to characterize the interaction between Hsp70 and CKII.
     PartⅠEstablishment of 16HBE cell models with over-expressed and knocked-down Hsp70 levels
     16HBE cells were transfected with recombinant plasmid pcDNA3.1/hsp70. And the positive clones appeared after a selection for 2 weeks by 800μg/ml G418 (neomycin). Positive clones were expanded and analyzed with the expression of Hsp70. The control group was transfected with pcDNA3.1 plasmids containing the neomycin resistance gene but not hsp70 cDNA. We developed stably transfected 16HBE cell lines with overexpressed Hsp70 (16HBE/hsp70) or with neomycin resistance gene but not hsp70 cDNA (16HBE /pcDNA).
     To inhibit the expression of Hsp70, 16HBE cells were treated with different concentrations of quercetin (QCT) (50, 100, 150, 200μM) for 6h, then water bathing for 1h at 42°C. The leves of Hsp70 in different dose groups were assessed by western blot. Compared with the control group, there was a significant decrease of Hsp70 in 50μM group (P < 0.01) and in the following dose groups (P < 0.01). As for cell survival rate, it was above 90% when the concentration of QCT was less than 150μM and it decreased to 87% when the concentration of QCT was 150μM. According to both cell survival rate and Hsp70 levels caused by different concentrations of QCT, 100μM QCT, which can inhibit Hsp70 level to 47%, were chosen to inhibit Hsp70 expression of 16HBE cells in QCT treatment model.
     RNA interference (RNAi) is the technique employing double-stranded RNA to target the destruction of homologous messenger RNAs. RNAi utilizes short double-stranded RNA to selectively inhibit gene expression of complementary RNA nucleotide sequences after transcription, but prior to translation. It has gained wide usage in genetics, having the potential for many practical applications. Because of the great progress made during the development, RNAi was estimated the top 10 scientific advancement in 2001. We could transfect plasmid coding small hairpin RNA (shRNA) or small interference RNA (siRNA) to specifically knock down certein gene, in this study, we selected the former to knock down the expression of Hsp70. Forty-eight hour after transfection, we appraised the expression levels of Hsp70 with western blot. The result showed that Hsp70 expression was decreased by approximately 50%. And we determined to apply RNAi to knock down Hsp70 level in the following study.
     Later we applied immunocytochemistry and western blot to assess the Hsp70 expression in five groups, 16HBE/hsp70, 16HBE/pcDNA, 16HBE/RNAi, 16HBE/HK and 16HBE. The signals in 16HBE/hsp70 group was obviously enhanced, while in 16HBE/RNAi group, relative weak signal was observed. There were almost similar signals among 16HBE, 16HBE/HK and 16HBE/pcDNA groups. We next validated the results of immunocytochemistry signals by western blot. Results demonstrated that 16HBE/RNAi group intensity was notably reduced while intensity was greatly enhanced in 16HBE/hsp70 group. The quantified results showed that compared with the 16HBE group, the Hsp70 expressions in 16HBE/RNAi group was decreased by approximately 50% and in 16HBE/hsp70 groups, it was nearly 200% both with statistical significance (P<0.01).
     PartⅡRoles of Hsp70 plays in the DNA repair of BaP- and BPDE-induced damages
     To evaluate the effect of Hsp70 on DNA repair, we exposed cells with knocked-down, normal and over-expressed Hsp70 to benzo a pyrene (BaP) and incubated cells for 0, 2, 4, 8 and 24h. The repair kinetics of the different groups, measured as a reduction of OTMs with time, was determined by alkaline comet assay. Survival rate was above 80% in all groups and was above 90% in DMSO, S9 and NC group determined by trypan blue exclusion experiment and an electronic counter, which accorded with the requirement of toxicology. The result of comet assay showed that the OTMs in all groups decreased with the repair time, indicating that the residual DNA damage decreased. The formation of DNA stand lesion induced by BaP appeared to be a rapid event. After BaP exposure, the extent of DNA migration in all groups was significantly increased (P< 0.01), compared with the NC group, indicative of the initial excision repair or lasting strand lesion. The DNA migration decreased promptly within 2h, appeared to be somewhat slower afterward and nearly came to the level similar to the NC group at 24 h, suggestive the almost completion of the repair at this time point. In overexpressed Hsp70 group, i.e. the 16HBE/hsp70 group, the OTMs in the early 2h decreased faster than those in the control group with statistical difference (P < 0.01), presenting an enhanced DNA repair capacity of 16HBE with a higher Hsp70 level. While in the knocked-down Hsp70 group, namely, the 16HBE/RNAi group, the OTMs in the early 2h decreased slower than those in the control group with statistically significant difference (P < 0.01), suggesting a reduced repair capacity of 16HBE with a lower Hsp70 level.
     BaP treatment induced very little late apoptosis which gived no false positive results in the comet assay. No statistical significances were found among control, HK, pcDNA3.1, S9 and DMSO groups at all the repair time points. Our resuts indicated that Hsp70 can promote the repair of damages induced by BaP, which to some extent, may result from the chaperone function of Hsp70.
     The ultimate metabolite of BaP, (t)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) can also results in DNA lesion by forming covalent DNA adducts, which were repaired by nucleotide excision repair (NER) or resulted in cancer. Several studies showed that the expression of Hsp70 reversely related to the residual DNA damage.
     And other researchers reported that this chaperone was involved in base excision repair (BER) as well as mismatch repair (MMR). In NER, research related to Escherichia coli supported the involvement of DnaK (Hsp70) in NER, whereas in eukaryote, whether Hsp70 plays a role in DNA repair remains unknowed. In the following study, we plan to explore whether Hsp70 is involved in DNA adduct repair capacity. A host cell reactivation assay was conducted in which BPDE-damaged luciferase reporter plasmid was transiently transfected into cells for DNA repair and luciferase gene expression. The concentrations of BPDE were 10, 20, 30 and 40μM. As a control, undamaged luciferase plasmid was also transfected into cells for luciferase expression. Effective repair of the BPDE-caused adducts in the plasmid led to the expression of the luciferase reporter gene. If the adducts were not repaired, expression of the luciferase reporter gene would be blocked. Our result revealed that inhibition of Hsp70 expression by RNAi, indeed, led to a significant decrease in reactivation of the luciferase reporter plasmid damaged by various doses of BPDE. A statistically significant difference was observed in the 10μM group (P<0.05). Additionally, overexpression of Hsp70 resulted in a clear increase in reporter reactivation with statistically significant difference in 10μM group (P<0.01) and 20μM group (P<0.05). These results indicated that changes in Hsp70 expression level contributed to, at least in part, the changes in DNA adduct repair capacity in 16HBE cells. No statistical significance was observed among control, HK and pcDNA3.1 groups.
     PartⅢIdentification of proteins interacting with Hsp70 under BaP treatment
     Results in partⅡshowed that 16HBE cell with different Hsp70 level had different repair capacity of damages caused by BaP or BPDE. Hsp70, an important molecular chaperone, can modulate protein maturation and repair misfolded proteins, so there may be some protein substrates through which Hsp70 affect the DNA repair.
     In this part, we identified proteins co-immunoprecipitated by anti-Hsp70 antibody in human bronchial epithelium (16HBE) exposed to BaP using combined one-dimensional SDS-polyacrylamide gel electrophoresisgels (SDS-PAGE) and high performance liquid chromatography electrospray ionisation tandem mass spectrometry (HPLC ESI MS/MS). Our results showed that approximately 730 proteins were combined with Hsp70 and 84 of them were analyzed, which were categorized into 13 functional groups based on the annotation in Swiss-Prot database (http://www.expasy.org), including cell structure and motility, protein metabolism and modification, DNA stability, intracellular and intercellular signals, cell differentiation and proliferation, protein interaction, apoptosis, nucleic acid metabolism, physiologic function executant, cell damage protection, and energy metabolism. In addition, some identified proteins were annotated as hypothetical proteins or short of annotations.
     PartⅣInteraction between Hsp70 and CKII and the effect of Hsp70 on the activity of CKII under BaP treatment
     Lots of reports reveal that Hsp70 is involved in DNA repair. Bases first reported that Hsp70 could enhance the repair of damages induced by ionizing radiation in human leukemia cells and play a role in BER. Afterward, some researchers reported Hsp70 could promote the activation of some critical enzymes in BER such as APE, polyβ, thus enhancing the repair capacity. In prokaryote, research related to Escherichia coli supported the involvement of DnaK (Hsp70) in NER. Casein kinase II(CKII), a Ser/Thr protein kinase, was among identified Hsp70-interacting proteins. Several lines of evidence validated that CKII was involved in DNA repair by phosphorylation of some critical repair enzymes such as XRCC1, XRCC4 and APE. Because of the functional overlapping of Hsp70 and CKII and the identical substrate protein, namely, APE, we applied immunoprecipitation and confocal microscopy analysis to further explore the interaction between these two proteins. We immunoprecipitated endogenous Hsp70 by rabbit anti-Hsp70 antibody from the 16HBE cells and examined the association of CKII in the immunoprecipitated complexes by western blot, followed by an inverse IP. Significantly, CKII was co-immunoprecipitated with Hsp70 and as expected Hsp70 was also co-immunoprecipitated with CKII with or without BaP treatment. The immunofluorescence results showed that Hsp70 and CKII presented a diffuse distribution throughout the cytoplasm at physiological condition.
     However, after BaP treatment, fraction of them was distributed in the cell nucleus as well as the cytoplasm. The overlapped figure of confocal fluorescence microscopic analysis presented that the majority of CKII co-localized with Hsp70 but only visible in cytoplasm at physiological condition. And this co-localization could be detected in nuclear region as well as in cytoplasm after cells were exposed to BaP. Furthermore, the result from autoradiography revealed that overexpression of Hsp70 may promote the activity of CKII.
     Perspectives:
     1, The optimal concentration of QCT suppressing Hsp70 expression was determined as 100μmol/L and we established stable 16HBE cell overexpressed Hsp70 by transfection plasmid harboring hsp70 gene and selection by G418 for 14 days.
     2, Hsp70 reduced the damage caused by BaP or BPDE.
     3, During the recovery period, Hsp70 interacted with many proteins related to DNA stability, cell structure and motion and so on..
     4, Hsp70 co-localized with CKII in cytoplasm at physiological condition and at DNA repair condition, their colocalization was detected both in nuclear region and in cytoplasm. Furthermore, over-expression of Hsp70 promotes the activity of CKII.
引文
1 Macario AJ, Conway de Macario E. Sick chaperones, cellular stress, and disease. New Eng J Med, 2005, 353(14):1489-1501.
    2. Macario AJ, Lange M, Ahring BK, et al. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev, 1999, 63(4):923-967, table of contents.
    3. Lindquist S, Craig EA. The heat-shock proteins. Annual review of genetics, 1988, 22:631-677.
    4. Angelidis CE, Lazaridis I, Pagoulatos GN. Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance. European journal of biochemistry / FEBS, 1991, 199(1):35-39.
    5. Laszlo A. Evidence for two states of thermotolerance in mammalian cells. Int J Hyperthermia, 1988, 4(5):513-526.
    6. Currie RW, Tanguay RM, Kingma JG, Jr. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation, 1993, 87(3):963-971.
    7. Hotchkiss R, Nunnally I, Lindquist S, et al. Hyperthermia protects mice against the lethal effects of endotoxin. The American journal of physiology, 1993, 265(6 Pt 2):R1447-1457.
    8. Gething MJ, Sambrook J. Protein folding in the cell. Nature, 1992, 355(6355):33-45.
    9. Galvano F, Campisi A, Russo A, et al. DNA damage in astrocytes exposed to fumonisin B1. Neurochem Res, 2002, 27(4):345-351.
    10. Schroder HC, Hassanein HM, Lauenroth S, et al. Induction of DNA strand breaks and expression of HSP70 and GRP78 homolog by cadmium in the marine sponge Suberites domuncula. Archives of environmental contamination and toxicology, 1999, 36(1):47-55.
    11. Gao YJ, Xiao CF, Chen S, et al. In vitro study on role of Hsp70 expression in DNA damage of human embryonic lung cells exposed to Benzo[a]pyrene. Biomed Environ Sci, 2004, 17(2):144-152.
    12. Xiao C, Chen S, Li J, et al. Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission. Cell stress & chaperones, 2002, 7(4):396-402.
    13. Fleck O, Nielsen O. DNA repair. Journal of cell science, 2004, 117(Pt 4):515-517.
    14. Stewart GS, Wang B, Bignell CR, et al. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 2003, 421(6926):961-966.
    15. Wei Q, Cheng L, Amos CI, et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. Journal of the National Cancer Institute, 2000, 92(21):1764-1772.
    16. Wei Q, Lee JE, Gershenwald JE, et al. Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. Journal of the National Cancer Institute, 2003, 95(4):308-315.
    17. Zheng Y, Shen H, Sturgis EM, et al. Cyclin D1 polymorphism and risk for squamous cell carcinoma of the head and neck: a case-control study. Carcinogenesis, 2001, 22(8):1195-1199.
    18. Zheng Y, Shen H, Sturgis EM, et al. Haplotypes of two variants in p16 (CDKN2/MTS-1/INK4a) exon 3 and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Epidemiol Biomarkers Prev, 2002, 11(7):640-645.
    19. Mendez F, Sandigursky M, Kureekattil RP, et al. Specific stimulation of human apurinic/apyrimidinic endonuclease by heat shock protein 70. DNA repair, 2003, 2(3):259-271.
    20. Mendez F, Kozin E, Bases R. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta. Cell stress & chaperones, 2003, 8(2):153-161.
    21. Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 1979, 7(6):1513-1523.
    22. Sayers JR, Evans D, Thomson JB. Identification and eradication of a denatured DNA isolated during alkaline lysis-based plasmid purificationprocedures. Analytical biochemistry, 1996, 241(2):186-189.
    23. Murphy JC, Wibbenmeyer JA, Fox GE, et al. Purification of plasmid DNA using selective precipitation by compaction agents. Nature biotechnology, 1999, 17(8):822-823.
    24. Mourich DV, Munks MW, Murphy JC, et al. Spermine compaction is an efficient and economical method of producing vaccination-grade DNA. Journal of immunological methods, 2003, 274(1-2):257-264.
    25. Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123(4):631-640.
    26. Wu-Scharf D, Jeong B, Zhang C, et al. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science (New York, NY 2000, 290(5494):1159-1162.
    27. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 2001, 106(1):23-34.
    28. Dalmay T, Hamilton A, Rudd S, et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 2000, 101(5):543-553.
    29. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818):363-366.
    30. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836):494-498.
    31. Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection. Nature medicine, 2002, 8(7):681-686.
    32. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of molecular biology, 2003, 327(4):761-766.
    33. Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. The journal of gene medicine, 2003, 5(12):1039-1045.
    34. van Roessel P, Brand AH. Spreading silence with Sid. Genome biology, 2004, 5(2):208.
    35. Schmidt-Rose T, Pollet D, Will K, et al. Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells. Journal of photochemistry and photobiology, 1999, 53(1-3):144-152.
    36. Subramaniam K, Seydoux G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development (Cambridge, England), 1999, 126(21):4861-4871.
    37. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 1998, 95(7):1017-1026.
    38. Fraser AG, Kamath RS, Zipperlen P et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 2000, 408(6810):325-330.
    39. Davidson BL, Paulson HL. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet neurology 2004, 3(3):145-149.
    40. Echeverri CJ, Perrimon N. High-throughput RNAi screening in cultured cells: a user's guide. Nature reviews, 2006, 7(5):373-384.
    41. Janitz M, Vanhecke D, Lehrach H. High-throughput RNA interference in functional genomics. Handbook of experimental pharmacology, 2006(173):97-104.
    42. Li GC, Mivechi NF, Weitzel G.: Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia, 1995, 11(4):459-488.
    43. Lee YJ, Curetty L, Hou ZZ, et al. Effect of pH on quercetin-induced suppression of heat shock gene expression and thermotolerance developmentin HT-29 cells. Biochemical and biophysical research communications, 1992, 186(2):1121-1128.
    44. Elia G, Santoro MG. Regulation of heat shock protein synthesis by quercetin in human erythroleukaemia cells. The Biochemical journal, 1994, 300 ( Pt 1):201-209.
    45. Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell, 1991, 66(2):191-197.
    46. Hertog MG, Sweetnam PM, Fehily AM, et al.Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. The American journal of clinical nutrition, 1997, 65(5):1489-1494.
    47. Lee YJ, Erdos G, Hou ZZ, et al. Mechanism of quercetin-induced suppression and delay of heat shock gene expression and thermotolerance development in HT-29 cells. Molecular and cellular biochemistry, 1994, 137(2):141-154.
    48. Hosokawa N, Hirayoshi K, Kudo H, et al. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Molecular and cellular biology, 1992, 12(8):3490-3498.
    49. Elia G, Amici C, Rossi A, et al. Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70. Cancer research, 1996, 56(1):210-217.
    50. Rohde M, Daugaard M, Jensen MH, et al. Members of the heat-shock protein
    70 family promote cancer cell growth by distinct mechanisms. Genes & development, 2005, 19(5):570-582.
    51. Kwak HJ, Jun CD, Pae HO, et al. The role of inducible 70-kDa heat shock protein in cell cycle control, differentiation, and apoptotic cell death of the human myeloid leukemic HL-60 cells. Cellular immunology, 1998, 187(1):1-12.
    52. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. Journal of the National Cancer Institute, 2000, 92(19):1564-1572.
    53. Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation andmitogenic signal transduction: a review. Cell proliferation, 2000, 33(6):341-365.
    54. Vargas-Roig LM, Fanelli MA, Lopez LA, et al. Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer detection and prevention, 1997, 21(5):441-451.
    55. Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research, 1988, 175(1):184-191.
    56. Zhu Z, Zhuang Z, Huang Y, et al. Design and application of image analysis system to single cell gel electrophoresis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2001, 19:298-300
    57. Olive PL, Banath JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiation research, 1990, 122(1):86-94.
    58. Abe T, Konishi T, Hirano T et al. Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus. Biochemical and biophysical research communications, 1995, 206(2):548-555.
    59. Niu P, Liu L, Gong Z, et al. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell stress & chaperones, 2006, 11(2):162-169.
    60. Bases R. Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70. Cell stress & chaperones, 2005, 10(1):37-45.
    61. Yang J, Liu X, Niu P, et al. Dynamic changes of XPA, XPC, XPF, XPG and ERCC1 protein expression and their correlations with levels of DNA damage in human bronchial epithelia cells exposed to benzo[a]pyrene. Toxicology letters, 2007, 174(1-3):10-17.
    62. Zou Y, Crowley DJ, Van Houten B. Involvement of molecular chaperonins in nucleotide excision repair. Dnak leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance. TheJournal of biological chemistry, 1998, 273(21):12887-12892.
    63. Jernstrom B, Graslund A. Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: molecular structures, induced mutations and biological consequences. Biophysical chemistry, 1994, 49(3):185-199.
    64. Gao D, Luo Y, Guevara D, et al. Benzo[a]pyrene and its metabolites combined with ultraviolet A synergistically induce 8-hydroxy-2'-deoxyguanosine via reactive oxygen species. Free radical biology & medicine, 2005, 39(9):1177-1183.
    65. Craig EA, Gambill BD, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiological reviews, 1993, 57(2):402-414.
    66. Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annual review of cell biology, 1993, 9:601-634.
    67. Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annual review of biochemistry, 1993, 62:349-384.
    68. Kim SR, Kokubo K, Matsui K, et al. Light-dependent mutagenesis by benzo[a]pyrene is mediated via oxidative DNA damage. Environmental and molecular mutagenesis, 2005, 46(3):141-149.
    69. Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicology and applied pharmacology, 2005, 206(1):73-93.
    70. Kenny MK, Mendez F, Sandigursky M, et al. Heat shock protein 70 binds to human apurinic/apyrimidinic endonuclease and stimulates endonuclease activity at abasic sites. The Journal of biological chemistry, 2001, 276(12):9532-9536.
    71. Chow KC. Hsp70 (DnaK)--an evolution facilitator? Trends Genet, 2000, 16(11):484-485.
    72. Kubo Y, Tsunehiro T, Nishikawa S, et al. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system. Journal of molecular biology, 1999, 286(2):447-464.
    73. Musch MW, Kapil A, Chang EB. Heat shock protein 72 binds and protects dihydrofolate reductase against oxidative injury. Biochemical and biophysical research communications, 2004, 313(1):185-192.
    74. MacCoss MJ, Yates JR. Proteomics: analytical tools and techniques. Current opinion in clinical nutrition and metabolic care, 2001, 4(5):369-375.
    75. Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nature genetics, 2003, 33 Suppl:311-323.
    76. Shen J, Behrens C, Wistuba, II, et al. Identification and validation of differences in protein levels in normal, premalignant, and malignant lung cells and tissues using high-throughput Western Array and immunohistochemistry. Cancer research, 2006, 66(23):11194-11206.
    77. Miles RR, Crockett DK, Lim MS, et al. Analysis of BCL6-interacting proteins by tandem mass spectrometry. Mol Cell Proteomics, 2005, 4(12):1898-1909.
    78. Sanders SL, Jennings J, Canutescu A, et al. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Molecular and cellular biology, 2002, 22(13):4723-4738.
    79. Hsing A, Faller DV, Vaziri C. DNA-damaging aryl hydrocarbons induce Mdm2 expression via p53-independent post-transcriptional mechanisms. The Journal of biological chemistry, 2000, 275(34):26024-26031.
    80. Pei XH, Nakanishi Y, Takayama K, et al. Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor kappaB activity. The Journal of biological chemistry, 1999, 274(49):35240-35246.
    81. Sriram M, Osipiuk J, Freeman B, et al. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure, 1997, 5(3):403-414.
    82. Christmann M, Tomicic MT, Roos WP, et al. Mechanisms of human DNA repair: an update. Toxicology, 2003, 193(1-2):3-34.
    83. Dong Z, Tomkinson AE. ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIalpha. Nucleic acids research, 2006,34(20):5721-5279.
    84. Fritz G, Kaina B. Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene, 1999, 18(4):1033-1040.
    85. Iles N, Rulten S, El-Khamisy SF, et al. APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Molecular and cellular biology, 2007, 27(10):3793-3803.
    86. Loizou JI, El-Khamisy SF, Zlatanou A, et al. The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell, 2004, 117(1):17-28.
    87. Tokunaga K, Nakamura Y, Sakata K, et al. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer research, 1987, 47(21):5616-5619.
    88. Lau WY, Lai PB, Leung MF, et al. Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis. Oncology research, 2000, 12(2):59-69.
    89. Vila MR, Nicolas A, Morote J, et al. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer, 2000, 89(1):152-164.
    90. Revillion F, Pawlowski V, Hornez L, et al. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer, 2000, 36(8):1038-1042.
    91. Schek N, Hall BL, Finn OJ. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human pancreatic adenocarcinoma. Cancer research, 1988, 48(22):6354-6359.
    92. Sirover MA. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. Journal of cellular biochemistry, 1997, 66(2):133-140.
    93. Sirover MA. Minireview. Emerging new functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. Life Science, 1996, 58(25):2271-2277.
    94. Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et biophysica acta, 1999, 1432(2):159-184.
    95. Coin F, Auriol J, Tapias A, et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. The EMBO journal, 2004, 23(24):4835-4846.
    96. Banan A, Choudhary S, Zhang Y, et al. Ethanol-induced barrier dysfunction and its prevention by growth factors in human intestinal monolayers: evidence for oxidative and cytoskeletal mechanisms. The Journal of pharmacology and experimental therapeutics, 1999, 291(3):1075-1085.
    97. de Oliveira RB, Klamt F, Castro MA, et al. Morphological and oxidative alterations on Sertoli cells cytoskeleton due to retinol-induced reactive oxygen species. Molecular and cellular biochemistry, 2005, 271(1-2):189-196.
    98. Ding WX, Shen HM, Ong CN. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. Journal of toxicology and environmental health, 2001, 64(6):507-519.
    99. Pelham HR. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. The EMBO journal, 1984, 3(13):3095-3100.
    100. Qian SB, Princiotta MF, Bennink JR, et al. Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control. The Journal of biological chemistry, 2006, 281(1):392-400.
    101. Luo J, Shen G, Yan J, et al. AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J 2006, 46(4):649-657.
    102. Fratta P, Engel WK, McFerrin J, et al. Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. The American journal of pathology, 2005, 167(2):517-526.
    103. Sherman MY, Goldberg AL. Involvement of molecular chaperones in intracellular protein breakdown. Exs, 1996, 77:57-78.
    104. Verma R, Chen S, Feldman R, et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Molecular biology of the cell, 2000, 11(10):3425-3439.
    105. Arya R, Mallik M, Lakhotia SC. Heat shock genes - integrating cell survival and death. Journal of biosciences, 2007, 32(3):595-610.
    106. Afanasyeva EA, Komarova EY, Larsson LG, et al. Drug-induced Myc-mediated apoptosis of cancer cells is inhibited by stress protein Hsp70. International journal of cancer, 2007, 121(12):2615-2621.
    107. Carrizo LC, Ruete CM, Manucha WA, et al. Heat shock protein 70 expression is associated with inhibition of renal tubule epithelial cell apoptosis during recovery from low-protein feeding. Cell stress & chaperones, 2006, 11(4):309-324.
    108. Zhang L, Lun Y, Yan D, et al. Proteomic analysis of macrophages: a new way to identify novel cell-surface antigens. Journal of immunological methods, 2007, 321(1-2):80-85.
    109. Bases R Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation. Cell stress & chaperones, 2006, 11(3):240-249.
    110. Miyata Y, Yahara I The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. The Journal of biological chemistry, 1992, 267(10):7042-7047.
    111. Shi Y, Brown ED, Walsh CT.Expression of recombinant human casein kinase II and recombinant heat shock protein 90 in Escherichia coli and characterization of their interactions. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(7):2767-2771.
    112. Gao T, Newton AC. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. The Journal of biological chemistry, 2002, 277(35):31585-31592.
    1 Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356):737-738.
    2. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822):860-921.
    3. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science (New York, NY 2001, 291(5507):1304-1351.
    4. Ronen A, Glickman BW. Human DNA repair genes. Environmental and molecular mutagenesis, 2001, 37(3):241-283.
    5. Wood RD, Mitchell M, Sgouros J, et al. Human DNA repair genes. Science New York, NY 2001, 291(5507):1284-1289.
    6. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411(6835):366-374.
    7. Lehmann AR. Replication of damaged DNA in mammalian cells: new solutions to an old problem. Mutation research, 2002, 509(1-2):23-34.
    8. Lindahl T. Keynote: past, present, and future aspects of base excision repair. Progress in nucleic acid research and molecular biology, 2001, 68:xvii-xxx.
    9. Svejstrup JQ. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol, 2002, 3(1):21-29.
    10. Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutation research, 1990, 31(1):11-30.
    11. Sedgwick B, Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene, 2002, 21(58):8886-8894.
    12. Tano K, Shiota S, Collier J, et al. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(2):686-690.
    13. Pegg AE, Dolan ME, Moschel RC. Structure, function, and inhibition ofO6-alkylguanine-DNA alkyltransferase. Progress in nucleic acid research and molecular biology, 1995, 51:167-223.
    14. Margison GP, Povey AC, Kaina B, et al. Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis, 2003, 24(4):625-635.
    15. Day RS, 3rd, Ziolkowski CH, Scudiero DA, Meyer SA, Lubiniecki AS, Girardi AJ, Galloway SM, Bynum GD: Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature, 1980, 288(5792):724-727.
    16. Yarosh DB, Foote RS, Mitra S, et al. Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains. Carcinogenesis, 1983, 4(2):199-205.
    17. Kaina B, Fritz G, Mitra S, et al. Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis, 1991, 12(10):1857-1867.
    18. Tsuzuki T, Sakumi K, Shiraishi A, et al. Targeted disruption of the DNA repair methyltransferase gene renders mice hypersensitive to alkylating agent. Carcinogenesis, 1996, 17(6):1215-1220.
    19. Becker K, Dosch J, Gregel CM, et al. Targeted expression of human O(6)-methylguanine-DNA methyltransferase (MGMT) in transgenic mice protects against tumor initiation in two-stage skin carcinogenesis. Cancer research, 1996, 56(14):3244-3249.
    20. Dumenco LL, Allay E, Norton K, et al. The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science, 1993, 259(5092):219-222.
    21. Nakatsuru Y, Matsukuma S, Nemoto N, et al. O6-methylguanine-DNA methyltransferase protects against nitrosamine-induced hepatocarcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(14):6468-6472.
    22. Becker K, Gregel CM, Kaina B. The DNA repair proteinO6-methylguanine-DNA methyltransferase protects against skin tumor formation induced by antineoplastic chloroethylnitrosourea. Cancer research, 1997, 57(16):3335-3338.
    23. Becker K, Gregel C, Fricke C, et al. DNA repair protein MGMT protects against N-methyl-N-nitrosourea-induced conversion of benign into malignant tumors. Carcinogenesis, 2003, 24(3):541-546.
    24. Fritz G, Tano K, Mitra S, et al. Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Molecular and cellular biology, 1991, 11(9):4660-4668.
    25. Biswas T, Ramana CV, Srinivasan G, et al. Activation of human O6-methylguanine-DNA methyltransferase gene by glucocorticoid hormone. Oncogene, 1999, 18(2):525-532.
    26. Grombacher T, Mitra S, Kaina B: Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis, 1996, 17(11):2329-2336.
    27. Qian X, von Wronski MA, Brent TP. Localization of methylation sites in the human O6-methylguanine-DNA methyltransferase promoter: correlation with gene suppression. Carcinogenesis, 1995, 16(6):1385-1390.
    28. Christmann M, Pick M, Lage H, et al. Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT. International journal of cancer, 2001, 92(1):123-129.
    29. Chen BJ, Carroll P, Samson L. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. Journal of bacteriology, 1994, 176(20):6255-6261.
    30. Dinglay S, Trewick SC, Lindahl T, et al. Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes & development, 2000, 14(16):2097-2105.
    31. Falnes PO, Johansen RF, Seeberg E. AlkB-mediated oxidative demethylationreverses DNA damage in Escherichia coli. Nature, 2002, 419(6903):178-182.
    32. Trewick SC, Henshaw TF, Hausinger RP, et al. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature, 2002, 419(6903):174-178.
    33. Wei YF, Carter KC, Wang RP, et al. Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic acids research, 1996, 24(5):931-937.
    34. Aas PA, Otterlei M, Falnes PO, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature, 2003, 421(6925):859-863.
    35. Duncan T, Trewick SC, Koivisto P, et al. Reversal of DNA alkylation damage by two human dioxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26):16660-16665.
    36. Hsu DS, Zhao X, Zhao S, et al. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry, 1996, 35(44):13871-13877.
    37. Thresher RJ, Vitaterna MH, Miyamoto Y, et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science, 1998, 282(5393):1490-1494.
    38. van der Horst GT, Muijtjens M, Kobayashi K, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 1999, 398(6728):627-630.
    39. Vitaterna MH, Selby CP, Todo T, et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(21):12114-12119.
    40. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annual review of biochemistry, 1996, 65:101-133.
    41. Umar A, Kunkel TA. DNA-replication fidelity, mismatch repair and genomeinstability in cancer cells. European journal of biochemistry / FEBS, 1996, 238(2):297-307.
    42. Lindahl T. Repair of intrinsic DNA lesions. Mutation research, 1990, 238(3):305-311.
    43. Loeb LA. Apurinic sites as mutagenic intermediates. Cell, 1985, 40(3):483-484.
    44. Scharer OD, Jiricny J: Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays, 2001, 23(3):270-281.
    45. Vidal AE, Boiteux S, Hickson ID, et al. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. The EMBO journal, 2001, 20(22):6530-6539.
    46. Matsumoto Y, Kim K.: Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science, 1995, 269(5224):699-702.
    47. Prasad R, Beard WA, Strauss PR, et al. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. The Journal of biological chemistry, 1998, 273(24):15263-15270.
    48. Sobol RW, Prasad R, Evenski A, et al. The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature, 2000, 405(6788):807-810.
    49. Nakamura J, La DK, Swenberg JA. 5'-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. The Journal of biological chemistry, 2000, 275(8):5323-5328.
    50. Frosina G, Fortini P, Rossi O, et al. Two pathways for base excision repair in mammalian cells. The Journal of biological chemistry, 1996, 271(16):9573-9578.
    51. Matsumoto Y, Kim K, Hurwitz J, et al. Reconstitution of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites with purified human proteins. The Journal of biological chemistry, 1999, 274(47):33703-33708.
    52. Dianov G, Bischoff C, Piotrowski J, et al. Repair pathways for processing of8-oxoguanine in DNA by mammalian cell extracts. The Journal of biological chemistry, 1998, 273(50):33811-33816.
    53. Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). The EMBO journal, 1997, 16(11):3341-3348.
    54. Tomkinson AE, Chen L, Dong Z, et al. Completion of base excision repair by mammalian DNA ligases. Progress in nucleic acid research and molecular biology, 2001, 68:151-164.
    55. Prasad R, Singhal RK, Srivastava DK, et al. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. The Journal of biological chemistry, 1996, 271(27):16000-16007.
    56. Srivastava DK, Berg BJ, Prasad R, et al. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. The Journal of biological chemistry, 1998, 273(33):21203-21209.
    57. Kubota Y, Nash RA, Klungland A, et al. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. The EMBO journal, 1996, 15(23):6662-6670.
    58. Seo YR, Fishel ML, Amundson S, et al. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene, 2002, 21(5):731-737.
    59. Lackinger D, Kaina B. Primary mouse fibroblasts deficient for c-Fos, p53 or for both proteins are hypersensitive to UV light and alkylating agent-induced chromosomal breakage and apoptosis. Mutation research, 2000, 457(1-2):113-123.
    60. Cabelof DC, Raffoul JJ, Yanamadala S, et al. Induction of DNA polymerase beta-dependent base excision repair in response to oxidative stress in vivo. Carcinogenesis, 2002, 23(9):1419-1425.
    61. Furuichi M, Yoshida MC, Oda H, et al. Genomic structure and chromosome location of the human mutT homologue gene MTH1 encoding 8-oxo-dGTPasefor prevention of A:T to C:G transversion. Genomics, 1994, 24(3):485-490.
    62. Sakumi K, Furuichi M, Tsuzuki T, et al. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. The Journal of biological chemistry, 1993, 268(31):23524-23530.
    63. Fang WH, Modrich P. Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. The Journal of biological chemistry, 1993, 268(16):11838-11844.
    64. Duckett DR, Drummond JT, Murchie AI, et al. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(13):6443-6447.
    65. Mello JA, Acharya S, Fishel R, et al. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chemistry & biology, 1996, 3(7):579-589.
    66. Yamada A, Masutani C, Iwai S, et al. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase eta. Nucleic acids research, 2000, 28(13):2473-2480.
    67. Wang H, Lawrence CW, et al. Specific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases. The Journal of biological chemistry 1999, 274(24):16894-16900.
    68. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science, 1993, 260(5109):812-816.
    69. Lynch HT, Smyrk TC, Watson P, et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology, 1993, 104(5):1535-1549.
    70. Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 1993, 75(5):1027-1038.
    71. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M et al: Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993, 75(6):1215-1225.
    72. Acharya S, Wilson T, Gradia S, et al. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24):13629-13634.
    73. Palombo F, Iaccarino I, Nakajima E, et al. hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol, 1996, 6(9):1181-1184.
    74. Umar A, Boyer JC, Kunkel TA. DNA loop repair by human cell extracts. Science, 1994, 266(5186):814-816.
    75. Genschel J, Littman SJ, Drummond JT, et al. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. The Journal of biological chemistry, 1998, 273(31):19895-19901.
    76. Thomas DC, Roberts JD, Kunkel TA. Heteroduplex repair in extracts of human HeLa cells. The Journal of biological chemistry, 1991, 266(6):3744-3751.
    77. Gradia S, Subramanian D, Wilson T, et al. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Molecular cell, 1999, 3(2):255-261.
    78. Fishel R. Mismatch repair, molecular switches, and signal transduction. Genes & development, 1998, 12(14):2096-2101.
    79. Gradia S, Acharya S, Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell, 1997, 91(7):995-1005.
    80. Berardini M, Mazurek A, Fishel R. The effect of O6-methylguanine DNA adducts on the adenosine nucleotide switch functions of hMSH2-hMSH6 and hMSH2-hMSH3. The Journal of biological chemistry, 2000, 275(36):27851-27857.
    81. Gradia S, Acharya S, Fishel R. The role of mismatched nucleotides in activatingthe hMSH2-hMSH6 molecular switch. The Journal of biological chemistry, 2000, 275(6):3922-3930.
    82. Alani E, Sokolsky T, Studamire B, et al. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Molecular and cellular biology, 1997, 17(5):2436-2447.
    83. Iaccarino I, Marra G, Palombo F, et al. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. The EMBO journal, 1998, 17(9):2677-2686.
    84. Blackwell LJ, Bjornson KP, Modrich P. DNA-dependent activation of the hMutSalpha ATPase. The Journal of biological chemistry, 1998, 273(48):32049-32054.
    85. Blackwell LJ, Martik D, Bjornson KP, et al. Nucleotide-promoted release of hMutSalpha from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. The Journal of biological chemistry, 1998, 273(48):32055-32062.
    86. Blackwell LJ, Bjornson KP, Allen DJ, et al. Distinct MutS DNA-binding modes that are differentially modulated by ATP binding and hydrolysis. The Journal of biological chemistry, 2001, 276(36):34339-34347.
    87. Genschel J, Bazemore LR, Modrich P. Human exonuclease I is required for 5' and 3' mismatch repair. The Journal of biological chemistry, 2002, 277(15):13302-13311.
    88. Longley MJ, Pierce AJ, Modrich P. DNA polymerase delta is required for human mismatch repair in vitro. The Journal of biological chemistry, 1997, 272(16):10917-10921.
    89. Schreiber V, Ame JC, Dolle P, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. The Journal of biological chemistry, 2002, 277(25):23028-23036.
    90. Christmann M, Kaina B. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. The Journal ofbiological chemistry, 2000, 275(46):36256-36262.
    91. Friedberg EC. How nucleotide excision repair protects against cancer. Nature reviews, 2001, 1(1):22-33.
    92. Hanawalt PC. Controlling the efficiency of excision repair. Mutation research, 2001, 485(1):3-13.
    93. Mullenders LH, Berneburg M. Photoimmunology and nucleotide excision repair: impact of transcription coupled and global genome excision repair. Journal of photochemistry and photobiology, 2001, 65(2-3):97-100.
    94. Vermeulen W, de Boer J, Citterio E, et al. Mammalian nucleotide excision repair and syndromes. Biochemical Society transactions, 1997, 25(1):309-315.
    95. Hanawalt PC. Subpathways of nucleotide excision repair and their regulation. Oncogene, 2002, 21(58):8949-8956.
    96. Bohr VA, Smith CA, Okumoto DS, et al. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell, 1985, 40(2):359-369.
    97. Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell, 1987, 51(2):241-249.
    98. van Hoffen A, Natarajan AT, Mayne LV, et al. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic acids research, 1993, 21(25):5890-5895.
    99. Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell, 1995, 82(4):555-564.
    100. Evans MK, Bohr VA. Gene-specific DNA repair of UV-induced cyclobutane pyrimidine dimers in some cancer-prone and premature-aging human syndromes. Mutation research, 1994, 314(3):221-231.
    101. Venema J, Mullenders LH, Natarajan AT, et al. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proceedings of the National Academy of Sciencesof the United States of America, 1990, 87(12):4707-4711.
    102. Ljungman M, Zhang F. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene, 1996, 13(4):823-831.
    103. Le Page F, Kwoh EE, Avrutskaya A, et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell, 2000, 101(2):159-171.
    104. Schaeffer L, Roy R, Humbert S, et al. a component of BTF2 (TFIIH) basic transcription factor. Science, 1993, 260(5104):58-63.
    105. Selby CP, Drapkin R, Reinberg D, et al. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic acids research, 1997, 25(4):787-793.
    106. Balajee AS, May A, Dianov GL, et al. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9):4306-4311.
    107. Dianov GL, Houle JF, Iyer N, et al. Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic acids research, 1997, 25(18):3636-3642.
    108. Tantin D, Kansal A, Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Molecular and cellular biology, 1997, 17(12):6803-6814.
    109. van Gool AJ, Citterio E, Rademakers S, et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. The EMBO journal, 1997, 16(19):5955-5965.
    110. Iyer N, Reagan MS, Wu KJ, et al. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry, 1996, 35(7):2157-2167.
    111. Bregman DB, Halaban R, van Gool AJ, et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(21):11586-11590.
    112. Yang LY, Jiang H, Rangel KM.RNA polymerase II stalled on a DNA template during transcription elongation is ubiquitinated and the ubiquitination facilitates displacement of the elongation complex. International journal of oncology, 2003, 22(3):683-689.
    113. van Gool AJ, Verhage R, Swagemakers SM, et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. The EMBO journal, 1994, 13(22):5361-5369.
    114. Woudstra EC, Gilbert C, Fellows J, J et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature, 2002, 415(6874):929-933.
    115. Rockx DA, Mason R, van Hoffen A, et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(19):10503-10508.
    116. Tornaletti S, Reines D, Hanawalt PC. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. The Journal of biological chemistry, 1999, 274(34):24124-24130.
    117. Liu M, Xie Z, Price DH. A human RNA polymerase II transcription termination factor is a SWI2/SNF2 family member. The Journal of biological chemistry, 1998, 273(40):25541-25544.
    118. Hara R, Selby CP, Liu M, et al. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. The Journal of biological chemistry, 1999, 274(35):24779-24786.
    119. Itoh T, Fujiwara Y, Ono T, et al. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. American journal of human genetics, 1995, 56(6):1267-1276.
    120. Spivak G, Itoh T, Matsunaga T, et al. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers. DNA repair, 2002, 1(8):629-643.
    121. Hey T, Lipps G, Sugasawa K, et al. The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry, 2002, 41(21):6583-6587.
    122. Kusumoto R, Masutani C, Sugasawa K, et al. Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutation research, 2001, 485(3):219-227.
    123. Burns JL, Guzder SN, Sung P, et al. An affinity of human replication protein A for ultraviolet-damaged DNA. The Journal of biological chemistry, 1996, 271(20):11607-11610.
    124. He Z, Henricksen LA, Wold MS, et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature, 1995, 374(6522):566-569.
    125. Jones CJ, Wood RD. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry, 1993, 32(45):12096-12104.
    126. Vasquez KM, Christensen J, Li L, et al. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9):5848-5853.
    127. Sugasawa K, Okamoto T, Shimizu Y, et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes & development, 2001, 15(5):507-521.
    128. Wakasugi M, Sancar A. Order of assembly of human DNA repair excision nuclease. The Journal of biological chemistry, 1999, 274(26):18759-18768.
    129. Tang J, Chu G. Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA repair, 2002, 1(8):601-616.
    130. Hwang BJ, Ford JM, Hanawalt PC, et al. Expression of the p48 xerodermapigmentosum gene is p53-dependent and is involved in global genomic repair. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2):424-428.
    131. Wakasugi M, Shimizu M, Morioka H, et al. Damaged DNA-binding protein DDB stimulates the excision of cyclobutane pyrimidine dimers in vitro in concert with XPA and replication protein A. The Journal of biological chemistry, 2001, 276(18):15434-15440.
    132. Wakasugi M, Kawashima A, Morioka H, et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. The Journal of biological chemistry, 2002, 277(3):1637-1640.
    133. Ford JM, Hanawalt PC. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(19):8876-8880.
    134. Ford JM, Hanawalt PC. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. The Journal of biological chemistry, 1997, 272(44):28073-28080.
    135. Adimoolam S, Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20):12985-12990.
    136. Amundson SA, Patterson A, Do KT, et al. A nucleotide excision repair master-switch: p53 regulated coordinate induction of global genomic repair genes. Cancer biology & therapy, 2002, 1(2):145-149.
    137. Wang A, Gu J, Judson-Kremer K, et al. Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel regulatory pathways. Carcinogenesis, 2003, 24(2):225-234.
    138. Tan T, Chu G. p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Molecular and cellular biology, 2002, 22(10):3247-3254.
    139. Hartman AR, Ford JM. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature genetics, 2002, 32(1):180-184.
    140. Takao M, Kanno S, Kobayashi K, et al. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. The Journal of biological chemistry, 2002, 277(44):42205-42213.
    141. Yokoi M, Masutani C, Maekawa T, et al. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. The Journal of biological chemistry, 2000, 275(13):9870-9875.
    142. Schaeffer L, Moncollin V, Roy R, et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. The EMBO journal, 1994, 13(10):2388-2392.
    143. Habraken Y, Sung P, Prakash L, et al. A conserved 5' to 3' exonuclease activity in the yeast and human nucleotide excision repair proteins RAD2 and XPG. The Journal of biological chemistry, 1994, 269(50):31342-31345.
    144. Sijbers AM, de Laat WL, Ariza RR, et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell, 1996, 86(5):811-822.
    145. Aboussekhra A, Biggerstaff M, Shivji MK, et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 1995, 80(6):859-868.
    146. Mu D, Park CH, Matsunaga T, et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. The Journal of biological chemistry, 1995, 270(6):2415-2418.
    147. Dikomey E, Dahm-Daphi J, Brammer I, et al. Correlation between cellular radiosensitivity and non-repaired double-strand breaks studied in nine mammalian cell lines. International journal of radiation biology, 1998, 73(3):269-278.
    148. Lips J, Kaina B. DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis, 2001, 22(4):579-585.
    149. Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis, 2000, 15(4):289-302.
    150. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature, 2000, 407(6805):777-783.
    151. Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Molecular cell, 2001, 8(6):1163-1174.
    152. Haber JE. Partners and pathwaysrepairing a double-strand break. Trends Genet, 2000, 16(6):259-264.
    153. Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. The EMBO journal, 1998, 17(18):5497-5508.
    154. Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends in biochemical sciences, 1998, 23(10):394-398.
    155. Reeves WH, Sthoeger ZM. Molecular cloning of cDNA encoding the p70 (Ku) lupus autoantigen. The Journal of biological chemistry, 1989, 264(9):5047-5052.
    156. Jeggo PA, Hafezparast M, Thompson AF, et al. Localization of a DNA repair gene (XRCC5) involved in double-strand-break rejoining to human chromosome 2. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(14):6423-6427.
    157. Sipley JD, Menninger JC, Hartley KO, et al. Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(16):7515-7519.
    158. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 1993, 72(1):131-142.
    159. Leber R, Wise TW, Mizuta R, et al. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. The Journal of biologicalchemistry, 1998, 273(3):1794-1801.
    160. Lee JW, Yannone SM, Chen DJ, et al. Requirement for XRCC4 and DNA ligase IV in alignment-based gap filling for nonhomologous DNA end joining in vitro. Cancer research, 2003, 63(1):22-24.
    161. Maser RS, Monsen KJ, Nelms BE, et al. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Molecular and cellular biology, 1997, 17(10):6087-6096.
    162. Nelms BE, Maser RS, MacKay JF, et al. In situ visualization of DNA double-strand break repair in human fibroblasts. Science, 1998, 280(5363):590-592.
    163. Paull TT, Gellert M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes & development, 1999, 13(10):1276-1288.
    164. Trujillo KM, Yuan SS, Lee EY, et al. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. The Journal of biological chemistry, 1998, 273(34):21447-21450.
    165. Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell, 2001, 105(2):177-186.
    166. Ma Q, Baldwin KT, Renzelli AJ, et al. TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochemical and biophysical research communications, 2001, 289(2):499-506.
    167. Stasiak AZ, Larquet E, Stasiak A, et al. The human Rad52 protein exists as a heptameric ring. Curr Biol, 2000, 10(6):337-340.
    168. Van Dyck E, Stasiak AZ, Stasiak A, et al. Binding of double-strand breaks in DNA by human Rad52 protein. Nature, 1999, 398(6729):728-731.
    169. Kagawa W, Kurumizaka H, Ikawa S, et al. Homologous pairing promoted by the human Rad52 protein. The Journal of biological chemistry, 2001, 276(37):35201-35208.
    170. Reddy G, Golub EI, Radding CM. Human Rad52 protein promotes single-strandDNA annealing followed by branch migration. Mutation research, 1997, 377(1):53-59.
    171. Shen Z, Cloud KG, Chen DJ, et al. Specific interactions between the human RAD51 and RAD52 proteins. The Journal of biological chemistry, 1996, 271(1):148-152.
    172. Park MS, Ludwig DL, Stigger E, et al. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. The Journal of biological chemistry, 1996, 271(31):18996-19000.
    173. New JH, Sugiyama T, Zaitseva E, et al. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature, 1998, 391(6665):407-410.
    174. Benson FE, Stasiak A, West SC. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. The EMBO journal, 1994, 13(23):5764-5771.
    175. Sigurdsson S, Van Komen S, Bussen W, et al. Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes & development, 2001, 15(24):3308-3318.
    176. Baumann P, West SC. The human Rad51 protein: polarity of strand transfer and stimulation by hRP-A. The EMBO journal 1997, 16(17):5198-5206.
    177. Gupta RC, Golub EI, Wold MS, et al. Polarity of DNA strand exchange promoted by recombination proteins of the RecA family. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(17):9843-9848.
    178. Petukhova G, Stratton S, Sung P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature, 1998, 393(6680):91-94.
    179. Liu N, Schild D, Thelen MP, et al. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic acids research, 2002, 30(4):1009-1015.
    180. Masson JY, Tarsounas MC, Stasiak AZ, et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes & development, 2001, 15(24):3296-3307.
    181. Schild D, Lio YC, Collins DW, et al. Evidence for simultaneous protein interactions between human Rad51 paralogs. The Journal of biological chemistry, 2000, 275(22):16443-16449.
    182. Golub EI, Gupta RC, Haaf T, et al. Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic acids research, 1998, 26(23):5388-5393.
    183. Eggler AL, Inman RB, Cox MM. The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A. The Journal of biological chemistry, 2002, 277(42):39280-39288.
    184. Constantinou A, Davies AA, West SC. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell, 2001, 104(2):259-268.
    185. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 1995, 268(5218):1749-1753.
    186. Kim ST, Lim DS, Canman CE, et al. Substrate specificities and identification of putative substrates of ATM kinase family members. The Journal of biological chemistry, 1999, 274(53):37538-37543.
    187. Unsal-Kacmaz K, Makhov AM, Griffith JD, et al. Preferential binding of ATR protein to UV-damaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(10):6673-6678.
    188. Suzuki K, Kodama S, Watanabe M. Recruitment of ATM protein to double strand DNA irradiated with ionizing radiation. The Journal of biological chemistry, 1999, 274(36):25571-25575.
    189. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003, 421(6922):499-506.
    190. Wang Y, Cortez D, Yazdi P, et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes & development, 2000, 14(8):927-939.
    191. Brown KD, Rathi A, Kamath R, et al. The mismatch repair system is required for S-phase checkpoint activation. Nature genetics, 2003, 33(1):80-84.
    192. Matsuoka S, Rotman G, Ogawa A, et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(19):10389-10394.
    193. Zou L, Cortez D, Elledge SJ.: Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes & development, 2002, 16(2):198-208.
    194. Guo Z, Kumagai A, Wang SX, et al. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes & development, 2000, 14(21):2745-2756.
    195. Liu Q, Guntuku S, Cui XS, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & development, 2000, 14(12):1448-1459.
    196. Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & development, 2000, 14(3):289-300.
    197. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998, 281(5383):1674-1677.
    198. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 1998, 281(5383):1677-1679.
    199. Peng CY, Graves PR, Thoma RS, et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 1997, 277(5331):1501-1505.
    200. Sanchez Y, Wong C, Thoma RS, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. In: Science, 1997: 1497-1501.
    201. Dalal SN, Schweitzer CM, Gan J, et al. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Molecular and cellular biology, 1999, 19(6):4465-4479.
    202. Gatei M, Young D, Cerosaletti KM, et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature genetics, 2000, 25(1):115-119.
    203. Lim DS, Kim ST, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature, 2000, 404(6778):613-617.
    204. Xu B, O'Donnell AH, Kim ST, et al. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer research, 2002, 62(16):4588-4591.
    205. Chen MJ, Lin YT, Lieberman HB, et al. ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation. The Journal of biological chemistry, 2001, 276(19):16580-16586.
    206. Chen G, Yuan SS, Liu W, et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. The Journal of biological chemistry, 1999, 274(18):12748-12752.
    207. Burtelow MA, Roos-Mattjus PM, Rauen M, et al. Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. The Journal of biological chemistry, 2001, 276(28):25903-25909.
    208. Wang JY. Regulation of cell death by the Abl tyrosine kinase. Oncogene, 2000, 19(49):5643-5650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700