用户名: 密码: 验证码:
缝隙连接通讯对脑缺血边缘区及远隔区神经元损伤的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Connexin43基因敲除小鼠的繁殖鉴定及小鼠局灶性脑缺血模型的建立
     目的:缝隙连接(gap junction,GJ)是由缝隙连接蛋白(connexin,Cx)组成的细胞间通道。在中枢神经系统中,缝隙连接广泛存在于胶质细胞之间,以及神经元和胶质细胞之间。在脑缺血状态下,这些通道仍然部分开放,在脑缺血的病理生理过程中扮演了重要的角色。在本部分研究中,我们探讨了connexin43基因敲除小鼠的繁殖及鉴定,并用大脑中动脉闭塞及光化学两种造模方法,在该小鼠建立了局灶性脑缺血模型,用于后续研究。
     方法:connexin43基因敲除小鼠种鼠购自The Jackson Laboratory,独立送回风净化笼中饲养,繁殖。新生小鼠剪尾提取DNA后,PCR鉴定其基因型,分组用于后续实验。大脑中动脉闭塞模型采用线栓法。光化学血栓形成法采用腹腔注射玫瑰红后颅脑局部冷光源照射法。术后进行行为学评分,红四氮唑(TTC)染色观察脑梗死。
     结果:connexin43基因敲除小鼠种鼠繁殖情况良好。新生小鼠中,CX43-/-小鼠由于心脏右室流出道畸形,出生后即死亡;CX43+/-小鼠及CX43+/+小鼠存活率基本相当,基因型鉴定结果稳定。线栓法大脑中动脉闭塞缺血模型造模成功,缺血后小鼠体征明显,TTC染色提示缺血侧皮层及(或)皮层下局灶性梗死;光化学法皮层局灶性缺血模型造模成功,TTC染色提示冷光源照射处皮层局灶性梗死。
     结论:本部分研究成功繁殖了connexin 43基因敲除小鼠,基因型鉴定结果稳定。用线栓法和光化学法两种不同的造模方法制作小鼠局灶性脑缺血模型,模型成功率稳定。用于后期的相关机制研究。
     第二部分缝隙连接通讯对小鼠大脑中动脉闭塞后海马迟发性神经元死亡的影响及机制研究
     目的:海马(hippocampus)的血供并不来源于大脑中动脉,然而大脑中动脉缺血后却观察到了远隔的、非大脑中动脉供血区海马的迟发性神经元死亡(delayed neuronal death,DND)现象。在中枢神经系统中,广泛存在的缝隙连接(gap junction,GJ),是小分子物质(如,钙离子)快速扩散和交流传播的通道。本部分实验观察了减少缝隙连接通讯,对大脑中动脉闭塞后海马迟发性神经元死亡的影响,并对其机制进行了初步的探讨。
     方法:根据基因型鉴定结果,实验小鼠分为假手术组、CX43+/+小鼠脑缺血组和CX43+/-小鼠脑缺血组,建立MCAO模型,术后1d,比较各实验组之间的神经功能评分,部分小鼠处死,TTC染色计算梗死灶体积。其余小鼠分别于缺血后3d、7d处死,断头取脑,利用尼氏染色和TUNEL技术检测海马神经元结构变化及丢失及凋亡细胞百分率;脑片钙成像技术观察海马区细胞内钙离子浓度:荧光定量试剂盒检测海马区钙蛋白酶(calpain)活性。缺血后30d,进行水迷宫测试,观察各组小鼠学习记忆功能(海马相关)有无差别。
     结果:假手术组小鼠术后1d,无神经功能缺失,TTC染色未见梗死区。缺血后3d、7d海马区均未见神经元凋亡:钙成像观察海马荧光弱:海马钙蛋白酶活性低。缺血30d后水迷宫测试,提示学习记忆功能正常。CX43+/+小鼠脑缺血组术后1d,神经功能缺失明显,TTC染色可见明显缺血侧梗死区。缺血后3d、7d,部分小鼠海马区可见神经元凋亡;钙成像可见海马区荧光强度显著增高:同时海马钙蛋白酶活性显著增高。缺血30d后水迷宫测试,提示学习记忆功能受损明显。相对野生型小鼠,CX43+/-小鼠术后1d,神经功能缺失显著降低,TTC染色提示梗死灶也明显减小。缺血后3d、7d,CX43+/-小鼠出现海马区DND(+)比例明显低于CX43+/+小鼠组,凋亡细胞百分率也低于CX43+/+小鼠组;钙成像的荧光强度较CX43+/+小鼠组弱,但较假手术组明显增强;海马钙蛋白酶活性较假手术组增高,但低于CX43+/+小鼠组。缺血30d后水迷宫测试,提示学习记忆功能受损,但程度较CX43+/+小鼠组轻。
     结论:减少缝隙连接通讯,减轻了MCAO后小鼠神经功能缺失症状,减小梗死体积,减少海马区的钙离子浓度增加及钙依赖性钙蛋白酶(calpain)活性,降低海马迟发性神经元死亡的发生率及DND(+)细胞百分率,改善缺血后远期的学习记忆功能。提示缝隙连接通讯在局灶性脑缺血后远隔的海马区域的迟发性损伤的形成中起到了一定的作用,可能与钙离子通过缝隙连接的传播和扩散有关。
     第三部分缝隙连接通讯对小鼠局灶性皮层缺血边缘区神经元凋亡的影响及机制研究
     目的:观察缝隙连接通讯对小鼠局灶性皮层缺血边缘区神经元凋亡的影响,并初步探讨其信号通路。
     方法:根据基因型鉴定结果,实验小鼠分为假手术组、CX43+/+小鼠脑缺血组和CX43+/-小鼠脑缺血组,建立光化学血栓形成模型。分别于缺血后2h、6h、12h、1d、3d、7d处死动物,断头取脑,免疫荧光技术观察缺血边缘区神经元内calpain、Bax、caspase12及活化的caspase3蛋白表达,计算阳性细胞百分比。
     结果:(1)假手术组可见极少量活化的caspase3蛋白,缺血后,CX43+/+小鼠脑缺血组和CX43+/-小鼠脑缺血组活化的caspase3蛋白的表达明显增多,随时间呈逐渐上升趋势,7d时达到顶峰,CX43+/+小鼠脑缺血组的表达多于CX43+/-小鼠脑缺血组,在2h和7d时,两组差异明显。(2)假手术组可见calpain蛋白表达,缺血后,CX43+/+小鼠脑缺血组和CX43+/-小鼠脑缺血组calpain蛋白的表达明显增多,1d时达到顶峰,后又下降,CX43+/+小鼠脑缺血组的表达多于CX43+/-小鼠脑缺血组,在12h和1d时,两组差异明显。(3)假手术组可见caspase12蛋白表达,缺血后2h,CX43+/+小鼠脑缺血组caspase12蛋白表达迅速增高并达到顶峰,随后下降,1d时再次增高,呈双峰型;CX43+/-小鼠脑缺血组caspase12蛋白的表达峰值推后,于缺血后6h达到顶峰,后逐渐下降,7d时稍有上升,略呈双峰型;在2h、6h、12h和1d时,两组差异明显。(4)假手术组可见Bax蛋白表达;缺血后2h,CX43+/+小鼠脑缺血组Bax蛋白表达迅速增高,随后下降,1d时再次增高,并达到顶峰,且核表达增加明显,呈双峰型;CX43+/-小鼠脑缺血组缺血后2h即开始增高,逐渐缓慢上升,峰值出现在缺血后3d;CX43+/+小鼠脑缺血组的表达多于CX43+/-小鼠脑缺血组,在2h、6h、1d、7d时,两组差异明显。
     结论:局灶性皮层缺血后缺血边缘区进入凋亡的神经元逐渐增多;calpain的激活是神经元凋亡的机制之一:Bax(线粒体通路)和caspase12(内质网通路)参与了calpain相关的信号转导:CX43+/-小鼠脑缺血组Bax和caspase12的表达少于CX43+/+小鼠脑缺血组,差异明显,且峰值表达时间点推后。
Part One To make photothrombosis and middle carotid arteryocclusion model in heterozygous connexin 43 null mice
     Objective: Gap junctions assemble astrocytes into syncytia, allowing exchange ofmetabolites, catabolites, and second-messenger molecules. Connexin 43 is the predominantconnexin of astrocytic gap junctions. Astrocytic gap junctions remain open during ischemicconditions. Gap junctions therefore may link ischemic astrocytes in an evolving infarct withthe surroundings. In this part, we used the heterozygous connexin 43 null mice, whichexhibit reduced cx43 expression, to made photothrombosis and MCAO model.
     Materials and Methods: Heterozygous connexin 43 null mice mice were buyed fromThe Jackson Laboratory. The genotypes of the newborns were judged by protocols fromThe Jackson Laboratory. According to their genotype, mice were divided into 2 groups:cx43+/+ group and cx43+/- group. Middle carotid artery occlusion (MCAO) model andphotothrombosis model were made. Behavior test were carried out 24h after ischemia andthe infarct volume were calculated by TTC staining.
     Results: According to protocol from The Jackson Laboratory, the genotypes ofnewborn mice were judged successfully. Although cx43-/- die immediately after birth,heterozygous cx43 null mice cx43+/- are viable. Middle carotid artery occlusion (MCAO)model and photothrombosis model are successfully made in heterozygous cx43 null miceand the wildtyp ones. The infracted tissue are white with TTC staining.
     Conclusion: Middle carotid artery occlusion (MCAO) model and photothrombosismodel are successfully made in heterozygous cx43 null mice.
     Part Two Effect of gap junction communication on delayedneuronal cell death in mouse hippocampus after MCAO
     Objective: Delayed neuronal death (DND) was found in hippocampus, which is notsupplied by middle carotid artery, after middle carotid artery occlution (MCAO). In brain,astrocytes are coupled extensively by gap junctions, which are highly conductive channelsthat allow the direct transfer of intracellular messengers such as Ca~(2+) and inositoltriphosphate (IP3) between interconnected cells. In this part, we observed the effect ofblocking gap junction communication after MCAO on the delayed neurnal death inipsilateral hippocampus and explored the mechanism.
     Materials and Methods: Mice were divided into CX43+/+ sham group, CX43+/-sham group, CX43+/+ MCAO group and CX43+/- MCAO group, according to theirgenotypes, 1d after surgery, behavior test and TTC staining were carried out. Then micewere killed at 3d and 7d post ischemia respectively, and the samples were harvested forfurther use. Neuronal cell popotosis were measured by TUENL; the calcium in neurons ofhippocampus were measured by two-photon calcium imaging; the calpain activity weremeasured by Calpain Activity Assay Kit and water maze were carried out 30d afterischemia.
     Results: Our results showed that compared with CX43+/+ MCAO group, behaviortest scores and infarct volum were low in CX43+/- MCAO group. DND were detected infewer mice in CX43+/- MCAO group and the calcium concentration and calpain activitywere low in this group. 30 days after ishchmia, mice of CX43+/- MCAO groupperformaced better in water maze task than those of CX43+/+ MCAO group.
     Conclusion: Blocking gap junction communication may reduce the infart volume and incidence rate of delayed neuronal death in hippocampus after middle carotid arteryocclusion. The free exchange of intracellular calcium between dying cells and those inremote region might contribute to expansion of ischemic damage.
     Part Three Effect of gap junction communication on neuronalcell death in perilesional zone after focal cerebral ischemia in mice
     Objective: To explore the effect of gap junction communication on neuronal cell deathin perilesional zone after focal cerebral ischemia in mice and the mechanism.
     Methods: Mice were divided into CX43+/+ sham group, CX43+/- sham group,CX43+/+ ischemia group and CX43+/- ischemia group, according to their genotypes.Photothrombosis were made. Mice were killed at 2h, 6h, 12h, 1d, 3d and 7d post ischemiarespectively, and then the samples were harvested for further use. calpain、Bax、caspase 12、and actived-caspase3 were detected by immunofluorescence.
     Results: (1) Actived-caspase3 protein increased post ischemia and actived-caspase3positive cells were fewer in CX43+/- ischemia group. (2) Calpain protein increased postischemia and reach the summit at 1 day post ischemia. Calpain-positive cells were fewer inCX43+/- ischemia group. (3) Caspase 12 protein increased post ischemia and reached thesummit at 2h post ischemia in CX43+/+ ischemia group, but the time in CX43+/- ischemiagroup was 6h. Caspasel2-positive cells were fewer in CX43+/- ischemia group. (4) Baxprotein increased post ischemia and reached the summit at 1d post ischemia in CX43+/+ischemia group, but the time in CX43+/- ischemia group was 3d. Bax-positive cells werefewer in CX43+/- ischemia group.
     Conclusion: Apopotosis neurons increased in prelesional zone post focal ishchemia.Calpain, Bax and caspase12 take part in the neurnal apoptosis. The Bax- andcaspase12-positive cells were fewer in CX43+/- ischemia group.
引文
[1] Retamal MA, Froger N, Palacios-Prado N, et al. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 2007, 27:13781-13792.
    [2] Orthmann-Murphy JL, Freidin M, Fischer E, et al. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 2007, 27:13949-13957.
    [3] Rash JE, Yasumura T, Dudek FE, et al. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.J Neurosci 2001, 21:1983-2000.
    [4] Thomas MA, Zosso N, Scerri I, et al. A tyrosine-based sorting signal is involved in connexin43 stability and gap junction turnover. J Cell Sci 2003, 116:2213-2222.
    [5] Solan JL, Lampe PD. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 2005,1711:154-163.
    [6] Contreras JE, Saez JC, Bukauskas FF, et al. Gating and regulation of connexin 43 (Cx43) hemichannels.Proc Natl Acad Sci USA 2003,100:11388-11393.
    [7] Yamane Y, Shiga H, Asou H, et al. GAP junctional channel inhibition alters actin organization and calcium propagation in rat cultured astrocytes. Neuroscience 2002,112:593-603.
    [8] Scemes E, Dermietzel R, Spray DC. Calcium waves between astrocytes from Cx43 knockout mice. Glia 1998, 24:65-73.
    [9] Cotrina ML, Kang J, Lin JH, et al. Astrocytic gap junctions remain open during ischemic conditions.J Neurosci 1998, 18:2520-2537.
    [10] Frantseva MV, Kokarovtseva L, Perez Velazquez JL. Ischemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab 2002, 22:453-462.
    [11] Ozog MA, Siushansian R, Naus CC. Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures. J Neuropathol Exp Neurol 2002, 61: 132-141.
    [12] Krutovskikh VA, Piccoli C, Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene 2002, 21: 1989-1999.
    [13] Rawanduzy A, Hansen A, Hansen TW, et al. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 1997, 87: 916-920.
    [14] Nodin C, Nilsson M, Blomstrand F. Gap junction blockage limits intercellular spreading of astrocytic apoptosis induced by metabolic depression. J Neurochem 2005, 94: 1111-1123.
    [15] Wang W, Redecker C, Bidmon HJ, et al. Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischemia. Brain Res 2004, 1023: 92-101.
    [16] 杜一星,徐沙贝,喻志源等.扩散性抑制对脑缺血后海马迟发性神经元死亡的影响.中国组织化学与细胞化学杂志,16(2007),419-423.
    [17] Somjen GG, Aitken PG, Czeh GL, et al. Mechanism of spreading depression: a review of recent findings and a hypothesis. Can J Physiol Pharmacol 1992, 70 Suppl: S248-254.
    [1] Orthmann-Murphy JL, Freidin M, Fischer E, et al. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 2007, 27:13949-13957.
    [10] Contreras JE, Saez JC, Bukauskas FF, et al. Gating and regulation of connexin 43 (Cx43) hemichannels.Proc Natl Acad Sci USA 2003,100:11388-11393.
    [2] Rutkowski R, Kosztyla-Hojna B, Kanczuga-Koda L, et al. [Structure and physiological function of connexin proteins]. Postepy Hig Med Dosw (Online) 2008, 62:632-641.
    [3] Suadicani SO, Flores CE, Urban-Maldonado M, et al. Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 2004, 48:217-229.
    [4] Connolly ES, Jr., Winfree CJ, Stern DM, et al. Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 1996, 38:523-531; discussion 532.
    [5] Hata R, Mies G, Wiessner C, et al. A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 1998,18:367-375.
    [6] Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986,17:472-476.
    [7] Watson BD, Dietrich WD, Busto R, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis.Ann Neurol 1985,17:497-504.
    [8] Salameh A. Life cycle of connexins: regulation of connexin synthesis and degradation.Adv Cardiol 2006,42:57-70.
    [9] Matsue H, Yao J, Matsue K, et al. Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs.J Immunol 2006,176:181-190.
    [11] Rana S, Dringen R. Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 2007, 415:45-48.
    [12] Scemes E. Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 2008,56:145-153.
    [13] Jiang JX, Gu S. Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 2005,1711:208-214.
    [14] Plotkin LI, Bellido T. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through Src/ERK pathway: a gap junction-independent action of connexin43. Cell CommunAdhes 2001, 8:377-382.
    [15] Thompson RJ, Zhou N, MacVicar BA. Ischemia opens neuronal gap junction hemichannels. Science 2006, 312:924-927.
    [16] Das S, Lin D, Jena S, et al. Protection of retinal cells from ischemia by a novel gap junction inhibitor. Biochem Biophys Res Commun 2008, 373:504-508.
    [17] Talhouk RS, Zeinieh MP, Mikati MA, et al. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 2008,84:57-76.
    [18] Saltman AE, Aksehirli TO, Valiunas V, et al. Gap junction uncoupling protects the heart against ischemia. J Thorac Cardiovasc Surg 2002,124:371-376.
    [19] de Pina-Benabou MH, Szostak V, Kyrozis A, et al. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 2005,36:2232-2237.
    [20] Figiel M, Allritz C, Lehmann C, et al. Gap junctional control of glial glutamate transporter expression. Mol Cell Neurosci 2007, 35:130-137.
    [1] Padosch SA, Bottiger BW. Neuronal apoptosis following cerebral ischaemia: pathophysiology and possible therapeutic implications. Curr Opin Anaesthesiol 2003, 16: 439-445.
    [2] Walker EJ, Rosenberg GA. TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Exp Neurol 2009, 216: 122-131.
    [3] Kumaran D, Udayabanu M, Nair RU, et al. Benzamide protects delayed neuronal death and behavioural impairment in a mouse model of global cerebral ischemia. Behav Brain Res 2008, 192: 178-184.
    [4] Wang W, Redecker C, Bidmon HJ, et al. Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral
    [5] States BA, Honkaniemi J, Weinstein PR, et al. DNA fragmentation and HSP70 protein induction in hippocampus and cortex occurs in separate neurons following permanent middle cerebral artery occlusions. J Cereb Blood Flow Metab 1996, 16: 1165-1175.
    [6] Butler TL, Kassed CA, Sanberg PR, et al. Neurodegeneration in the rat hippocampus and striatum after middle cerebral artery occlusion. Brain Res 2002, 929: 252-260.
    [7] Wang W, Redecker C, Yu ZY, et al. Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. J Clin Neurosci 2008, 15: 278-285.
    [8] 杜一星,徐沙贝,喻志源等.扩散性抑制对脑缺血后海马迟发性神经元死亡的影响.中国组织化学与细胞化学杂志,16(2007),419-423.
    [9] Butkevich E, Hulsmann S, Wenzel D, et al. Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 2004, 14:650-658.
    [10] Contreras JE, Sanchez HA, Eugenin EA, et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 2002,99:495-500.
    [11] Peters O, Schipke CG, Hashimoto Y, et al. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci 2003, 23:9888-9896.
    [12] Araque A. Astrocytes process synaptic information. Neuron Glia Biol 2008,4:3-10.
    [13] Honkaniemi J, States BA, Weinstein PR, et al. Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 1997,17:636-646.
    [14] Hung J, Colicos MA. Astrocytic Ca(2+) waves guide CNS growth cones to remote regions of neuronal activity. PLoS ONE 2008, 3:e3692.
    [15] Connolly ES, Jr., Winfree CJ, Stern DM, et al. Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia.Neurosurgery 1996, 38:523-531; discussion 532.
    [16] Hata R, Mies G, Wiessner C, et al. A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 1998,18:367-375.
    [17] Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986,17:472-476.
    [18] Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994, 36:557-565.
    [19] Ozaki Y, Kato T, Kitagawa M, et al. Calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of protein kinase A and protein kinase A-mediated stabilization of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Arch Biochem Biophys 2008, 477:227-231.
    [20] Sedding DG, Homann M, Seay U, et al. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J 2008,22:579-589.
    [21] Richter F, Ebersberger A, Schaible HG Blockade of voltage-gated calcium channels in rat inhibits repetitive cortical spreading depression. Neurosci Lett 2002,334:123-126.
    [22] Bennett MR, Farnell L, Gibson WG A quantitative model of cortical spreading depression due to purinergic and gap-junction transmission in astrocyte networks. Biophys J 2008, 95:5648-5660.
    [23] Lian XY, Stringer JL. Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression. Brain Res 2004,1012:177-184.
    [24] Grafstein B, Liu S, Cotrina ML, et al. Meningeal cells can communicate with astrocytes by calcium signaling.Ann Neurol 2000, 47:18-25.
    [25] Yamane Y, Shiga H, Asou H, et al. GAP junctional channel inhibition alters actin organization and calcium propagation in rat cultured astrocytes. Neuroscience 2002,112:593-603.
    [26] Blanc EM, Bruce-Keller AJ, Mattson MP. Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death.J Neurochem 1998, 70:958-970.
    [27] Siushansian R, Bechberger JF, Cechetto DF, et al. Connexin43 null mutation increases infarct size after stroke. J Comp Neurol 2001, 440:387-394.
    [28] Frantseva MV, Kokarovtseva L, Perez Velazquez JL. Ischemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab 2002, 22:453-462.
    [29] Rawanduzy A, Hansen A, Hansen TW, et al. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 1997, 87:916-920.
    [30] Rami A, Volkmann T, Winckler J. Effective reduction of neuronal death by inhibiting gap junctional intercellular communication in a rodent model of global transient cerebral ischemia. Exp Neurol 2001,170:297-304.
    [31] Lin JH, Weigel H, Cotrina ML, et al. Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1998,1:494-500.
    [32] Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A 2001, 98:473-478.
    [33] Szondy Z. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms. BiochemJ 1994, 304 (pt 3):877-885.
    [34] Kobayashi N, Hiromatsu K, Matsuzaki G, et al. A sustained increase of cytosolic Ca2+ in gammadelta T cells triggered by co-stimulation via TCR/CD3 and LFA-1.Cell Calcium 1997, 22:421-430.
    [35] Kimura C, Zhao QL, Kondo T, et al. Mechanism of UV-induced apoptosis in human leukemia cells: roles of Ca2+/Mg(2+)-dependent endonuclease, caspase-3, and stress-activated protein kinases. Exp Cell Res 1998, 239:411-422.
    [36] Sasaki Y, Takimoto M, Oda K, et al. Endothelin evokes efflux of glutamate in cultures of rat astrocytes.J Neurochem 1997, 68:2194-2200.
    [1] Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003,4:552-565.
    [2] Treiman M. Regulation of the endoplasmic reticulum calcium storage during the unfolded protein response-significance in tissue ischemia? Trends Cardiovasc Med 2002,12:57-62.
    [3] Pu Y, Luo KQ, Chang DC. A Ca2+ signal is found upstream of cytochrome c release during apoptosis in HeLa cells. Biochem Biophys Res Commun 2002, 299:762-769.
    [4] McConkey DJ, Lin Y, Nutt LK, et al. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 2000, 60:3807-3812.
    [5] Norberg E, Gogvadze V, Ott M, et al. An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ 2008,15:1857-1864.
    [6] Hanna RA, Campbell RL, Davies PL. Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 2008, 456:409-412.
    [7] Coulis G, Becila S, Herrera-Mendez CH, et al. Calpain 1 binding capacities of the N1-line region of titin are significantly enhanced by physiological concentrations of calcium. Biochemistry 2008, 47:9174-9183.
    [8] Dubai DB, Shughrue PJ, Wilson ME, et al. Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors. J Neurosci 1999,19:6385-6393.
    [9] Neumar RW, Meng FH, Mills AM, et al. Calpain activity in the rat brain after transient forebrain ischemia. Exp Neurol 2001,170:27-35.
    [10] Oh SH, Lee BH, Lim SC. Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 2004, 68:1845-1855.
    [11] Altznauer F, Conus S, Cavalli A, et al. Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J Biol Chem 2004, 279:5947-5957.
    [12] Toyota H, Yanase N, Yoshimoto T, et al. Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 2003, 189:221-230.
    [13] Matzno S, Yasuda S, Kitada Y, et al. Clofibrate-induced apoptosis is mediated by Ca2+-dependent caspase-12 activation. Life Sci 2006, 78:1892-1899.
    [14] Chien CM, Yang SH, Chang LS, et al. Involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in cardiotoxin Ill-induced apoptosis in HL-60 cells. Clin Exp Pharmacol Physiol 2008, 35:1059-1064.
    [15] Oda T, Kosuge Y, Arakawa M, et al. Distinct mechanism of cell death is responsible for tunicamycin-induced ER stress in SK-N-SH and SH-SY5Y cells. Neurosci Res 2008, 60:29-39.
    [16] Haughey NJ, Mattson MP. Alzheimer's amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromolecular Med 2003,3:173-180.
    [17] Blomstrand F, Aberg ND, Eriksson PS, et al. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 1999, 92:255-265.
    [18] Inoue T. Dynamics of calcium and its roles in the dendrite of the cerebellar Purkinje cell. Keio J Med 2003, 52:244-249.
    [19] Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J Cell Mol Med 2003, 7:351-361.
    [20] Paschen W. Mechanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments. Cell Calcium 2003, 34:305-310.
    [21] Berliocchi L, Bano D, Nicotera P. Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci 2005, 360:2255-2258.
    [22] Zhang M, Li Y, Zhang H, et al. BAPTA blocks DNA fragmentation and chromatin condensation downstream of caspase-3 and DFF activation in HT-induced apoptosis in HL-60 cells.Apoptosis 2001, 6:291-297.
    [23] Cusato K, Ripps H, Zakevicius J, er al. Gap junctions remain open during cytochrome c-induced cell death: relationship of conductance to 'bystander' cell killing. Cell Death Differ 2006,13:1707-1714.
    [24] Pearson RA, Catsicas M, Becker DL, et al. Ca(2+) signalling and gap junction coupling within and between pigment epithelium and neural retina in the developing chick. Eur J Neurosci 2004,19:2435-2445.
    [25] de Pina-Benabou MH, Szostak V, Kyrozis A, et al. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 2005, 36:2232-2237.
    [26] Smith PD, Mount MP, Shree R, et al. Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2.J Neurosci 2006, 26:440-447.
    [27] Pang Z, Bondada V, Sengoku T, et al. Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology. J Neuropathol ExpNeurol 2003, 62:633-643.
    [28] Nasr P, Gursahani HI, Pang Z, et al. Influence of cytosolic and mitochondrial Ca2+, ATP, mitochondrial membrane potential, and calpain activity on the mechanism of neuron death induced by 3-nitropropionic acid. Neurochem Int 2003, 43:89-99.
    [29] Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999, 79:1431-1568.
    [30] Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000,150:887-894.
    [31] Wood DE, Thomas A, Devi LA, et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 1998,17:1069-1078.
    [32] Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12.J Biol Chem 2002, 277:34287-34294.
    [33] Shimizu S, Ide T, Yanagida T, et al. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c.J Biol Chem 2000, 275:12321-12325.
    [34] Nutt LK, Pataer A, Pahler J, et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 2002,277:9219-9225.
    [35] Panaretakis T, Pokrovskaja K, Shoshan MC, et al. Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem 2002, 277:44317-44326.
    [1] Ishrat T, Sayeed I, Atif F, et al. Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Res 2009,1257:94-101.
    [2] Jensen UR, Liu JR, Eschenfelder C, et al. The correlation between quantitative T2' and regional cerebral blood flow after acute brain ischemia in early reperfusion as demonstrated in a middle cerebral artery occlusion/reperfusion model of the rat. J Neurosci Methods 2009,178:55-58.
    [3] Lenzser G, Kis B, Bari F, et al. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Res 2005,1051:72-80.
    [4] Jiang JY, Xu W, Yang PF, et al. Marked protection by selective cerebral profound hypothermia after complete cerebral ischemia in primates. J Neurotrauma 2006, 23:1847-1856.
    [5] Spandou E, Soubasi V, Papoutsopoulou S, et al. Neuroprotective effect of long-term MgSO4 administration after cerebral hypoxia-ischemia in newborn rats is related to the severity of brain damage. Reprod Sci 2007,14:667-677.
    [6] Jiang SX, Lertvorachon J, Hou ST, et al. Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia.J Biol Chem 2005, 280:33811-33818.
    [7] Copin JC, Goodyear MC, Gidday JM, et al. Role of matrix metalloproteinases in apoptosis after transient focal cerebral ischemia in rats and mice. Eur J Neurosci 2005, 22:1597-1608.
    [8] Yang G, Jiang C, Tang Y, et al. Effects of L-tetrahydropalmatine on neuron apoptosis during acute cerebral ischemia-reperfusion of rats. J Tongji Med Univ 2000, 20:106-108.
    [9] Tsuzuki N, Miyazawa T, Matsumoto K, et al. Hepatocyte growth factor reduces infarct volume after transient focal cerebral ischemia in rats. Acta Neurochir Suppl 2000,76:311-316.
    [10] Heurteaux C, Laigle C, Blondeau N, et al. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 2006,137:241-251.
    [11] Kulinskii VI, Gavrilina TV, Minakina LN, et al. [Biochemical and pharmacological mechanisms of different types of hypoxic preconditioning in cerebral ischemia in mice]. Biomed Khim 2006, 52:309-316.
    [12] Kulikovskii VI, Gavrilina TV, Minakina LN, et al. [The importance of hypothermia in the preconditioning increase of ischemic tolerance to global cerebral ischemia]. Ross Fiziol Zh Im I M Sechenova 2006, 92:607-614.
    [13] Mahura IS. [Cerebral ischemia-hypoxia and biophysical mechanisms of neurodeg-eneration and neuroprotection effects]. Fiziol Zh 2003, 49:7-12.
    [14] Nelson RM, Lambert DG, Richard Green A, et al. Pharmacology of ischemia- induced glutamate efflux from rat cerebral cortex in vitro. Brain Res 2003, 964:1-8.
    [15] Dai Y, Tang J, Zhang JH. Role of Cl- in cerebral vascular tone and expression of Na+-K+-2C1- co-transporter after neonatal hypoxia-ischemia. Can J Physiol Pharmacol 2005, 83:767-773.
    [16] Chen H, Yang Y, Yao HH, et al. Protective effects of iptakalim, a novel ATP-sensitive potassium channel opener, on global cerebral ischemia-evoked insult in gerbils.Acta Pharmacol Sin 2006, 27:665-672.
    [17] Zhang QG, Xu YL, Li HC, et al. NMDA receptor/L-VGCC-dependent expression and AMPA/KA receptor-dependent activation of c-Jun induced by cerebral ischemia in rat hippocampus. Neurosci Lett 2006, 398:268-273.
    [18] Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. NeurolClin 2006, 24:1-21.
    [19] Weng YC, Kriz J. Differential neuroprotective effects of a minocycline-based drug cocktail in transient and permanent focal cerebral ischemia. Exp Neurol 2007, 204:433-442.
    [20] Li XM, Yang JM, Hu DH, et al. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion.J Neurosci 2007, 27:5249-5259.
    [21] Sun L, Du J, Zhang G, et al. Aberration of L-type calcium channel in cardiac myocytes is one of the mechanisms of arrhythmia induced by cerebral ischemia. Cell Physiol Biochem 2008, 22:147-156.
    [22] Krnjevic K. Electrophysiology of cerebral ischemia. Neuropharmacology 2008, 55:319-333.
    [23] Gomi S, Burnett MG, Karp A, et al. Nimodipine does not affect the flow-metabolism couple in permanent cerebral ischemia. Exp Brain Res 2004, 155:469-476.
    [24] Chen ZC, Kuo JR, Huang YP, et al. Mu-opioid receptor blockade protects against circulatory shock and cerebral ischemia during heatstroke. J Cardiovasc Pharmacol 2005,46:754-760.
    [25] Sun N, Zou X, Shi J, et al. Electroacupuncture regulates NMDA receptor NR1 subunit expression via PI3-K pathway in a rat model of cerebral ischemia-reperfusion. Brain Res 2005,1064:98-107.
    [26] Tian H, Zhang QG, Zhu GX, et al. Activation of c-Jun NH2-terminal kinase 3 is mediated by the GluR6.PSD-95.MLK3 signaling module following cerebral ischemia in rat hippocampus. Brain Res 2005,1061:57-66.
    [27] Zhang QG, Tian H, Li HC, et al. Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus. Neurosci Lett 2006, 408:159-164.
    [28] Elger B, Gieseler M, Schmuecker O, et al. Extended therapeutic time window after focal cerebral ischemia by non-competitive inhibition of AMPA receptors. Brain Res 2006,1085:189-194.
    [29] Mongin AA. Disruption of ionic and cell volume homeostasis in cerebral ischemia:The perfect storm. Pathophysiology 2007,14:183-193.
    [30] Egashira N, Hayakawa K, Osajima M, et al. Involvement of GABA(A) receptors in the neuroprotective effect of theanine on focal cerebral ischemia in mice. J Pharmacol Sci 2007,105:211-214.
    [31] Ouyang C, Guo L, Lu Q, et al. Enhanced activity of GABA receptors inhibits glutamate release induced by focal cerebral ischemia in rat striatum. Neurosci Lett 2007,420:174-178.
    [32] Wang GH, Jiang ZL, Fan XJ, et al. Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology 2007,52:1199-1209.
    [33] Zhou C, Li C, Yu HM, et al. Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. J Neurosci Res 2008, 86:2973-2983.
    [34] Yanagisawa D, Kitamura Y, Takata K, et al. Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull 2008, 31:1121-1130.
    [35] Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. (1992).J Neurosurg 2008,108:616-631.
    [36] Ahmad M, Saleem S, Zhuang H, et al. 1-hydroxyPGE reduces infarction volume in mouse transient cerebral ischemia. Eur J Neurosci 2006, 23:35-42.
    [37] Franke H, Gunther A, Grosche J, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 2004, 63:686-699.
    [38] Yoshida M, Nakakimura K, Cui YJ, et al. Adenosine A(1) receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004, 24:771-779.
    [39] Korde AS, Pettigrew LC, Craddock SD, et al. The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia. J Neurochem 2005, 94:1676-1684.
    [40] Li LL, Sun LN, Zhou HY, et al. Selective alteration of expression of Na+/Ca2+ exchanger isoforms after transient focal cerebral ischemia in rats. Neurosci Lett 2006,404:249-253.
    [41] Christophe M, Nicolas S. Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr Pharm Des 2006,12:739-757.
    [42] Jeffs GJ, Meloni BP, Sokolow S, et al. NCX3 knockout mice exhibit increased hippocampal CA1 and CA2 neuronal damage compared to wild-type mice following global cerebral ischemia. Exp Neurol 2008, 210:268-273.
    [43] Bojarski C, Meloni BP, Moore SR, et al. Na+/Ca2+ exchanger subtype (NCX1, NCX2, NCX3) protein expression in the rat hippocampus following 3 min and 8 min durations of global cerebral ischemia. Brain Res 2008,1189:198-202.
    [44] Jeon D, Chu K, Jung KH, et al.: Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium 2008,43:482-491.
    [45] Matsuzaki T, Kano T, Katayama Y, et al. Intravenous infusion of calcium antagonist, nicardipine, does not increase intracranial pressure: evaluation in a rat model of transient cerebral ischemia and reperfusion. Neurol Res 2008, 30:531-535.
    [46] Karas MG, Francescone S, Segal AZ, et al. Relation between mitral annular calcium and complex aortic atheroma in patients with cerebral ischemia referred for transesophageal echocardiography.Am J Cardiol 2007, 99:1306-1311.
    [47] Cuomo O, Pignataro G, Gala R, et la. Involvement of the potassium-dependent sodium/calcium exchanger gene product NCKX2 in the brain insult induced by permanent focal cerebral ischemia.Ann N YAcad Sci 2007,1099:486-489.
    [48] Thomas BP, Larson Iii TC. Quantitative carotid calcium scoring and cerebral ischemia - a pilot study and review of recent literature. Cerebrovasc Dis 2007, 23:453-456.
    [49] Hao ZB, Pei DS, Guan QH, et al. Calcium/calmodulin-dependent protein kinase Ⅱ (CaMKII), through NMDA receptors and L-Voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus. Brain Res Mol Brain Res 2005,140:55-62.
    [50] Du C, Koretsky AP, Izrailtyan I, et al. Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence. J Cereb Blood Flow Metab 2005, 25:1078-1092.
    [51] Dahl C, Haug LS, Spilsberg B, et al. Reduced [3H]IP3 binding but unchanged IP3 receptor levels in the rat hippocampus CA1 region following transient global ischemia and tolerance induction. Neurochem Int 2000, 36:379-388.
    [52] Cotrina ML, Kang J, Lin JH, et al. Astrocytic gap junctions remain open during ischemic conditions.J Neurosci 1998, 18:2520-2537.
    [53] Erin N, Billingsley ML. Domoic acid enhances Bcl-2-calcineurin-inositol-l,4, 5-trisphosphate receptor interactions and delayed neuronal death in rat brain slices. Brain Res 2004,1014:45-52.
    [54] Li SQ, Zhang Y, Tang DB. Possible mechanisms of Cyclosporin A ameliorated the ischemic microenvironment and inhibited mitochondria stress in tree shrews' hippocampus. Pathophysiology 2009.
    [55] Tian J, Zhang S, Li G, et al. 20(S)-ginsenoside Rg3, a neuroprotective agent, inhibits mitochondrial permeability transition pores in rat brain. Phytother Res 2009, 23:486-491.
    [56] Diaz-Prieto N, Herrera-Peco I, de Diego AM, et al. Bcl2 mitigates Ca2+ entry and mitochondrial Ca2+ overload through downregulation of L-type Ca2+ channels in PC12 cells. Cell Calcium 2008, 44:339-352.
    [57] Collino M, Thiemermann C, Mastrocola R, et al. Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus. Shock 2008, 30:299-307.
    [58] Fernandez-Gomez FJ, Hernandez F, Argandona L, et al. [Pharmacology of neuroprotection in acute ischemic stroke], Rev Neurol 2008, 47:253-260.
    [59] Dai W, Cheng HL, Huang RQ, et al. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury. Brain Res 2009,1251:287-295.
    [60] Lee JY, Kim YJ, Kim TY, et la. Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection.J Neurosci 2008, 28:10919-10927.
    [61] Li J, Lu Z, Li WL, et al. Cell death and proliferation in NF-kappaB p50 knockout mouse after cerebral ischemia. Brain Res 2008,1230:281-289.
    [62] Bright R, Sun GH, Yenari MA, et al. epsilonPKC confers acute tolerance to cerebral ischemic reperfusion injury. Neurosci Lett 2008, 441:120-124.
    [63] Song B, Meng F, Yan X, et al. Cerebral ischemia immediately increases serine phosphorylation of the synaptic RAS-GTPase activating protein SynGAP by calcium/calmodulin-dependent protein kinase Ⅱ alpha in hippocampus of rats. Neurosci Lett 2003, 349:183-186.
    [64] Murotomi K, Takagi N, Takayanagi G, et al. mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia. J Neurochem 2008,105:1625-1634.
    [65] Timsit S, Menn B. Cerebral ischemia, cell cycle elements and Cdk5. Biotechnol J 2007, 2:958-966.
    [66] Weishaupt JH, Kussmaul L, Grotsch P, et al. Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 2003, 24:489-502.
    [67] Zhou Y, Bhatia I, Cai Z, et al. Proteomic analysis of neonatal mouse brain: evidence for hypoxia- and ischemia-induced dephosphorylation of collapsin response mediator proteins.J Proteome Res 2008, 7:2507-2515.
    [68] Garcia-Bonilla L, Burda J, Pineiro D, et al. Calpain-induced proteolysis after transient global cerebral ischemia and ischemic tolerance in a rat model. Neurochem Res 2006, 31:1433-1441.
    [69] Chaitanya GV, Babu PP. Multiple apoptogenic proteins are involved in the nuclear translocation of Apoptosis Inducing Factor during transient focal cerebral ischemia in rat. Brain Res 2008,1246:178-190.
    [70] Tsubokawa T, Yamaguchi-Okada M, Calvert JW, et al. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res 2006, 84:832-840.
    [71] Liebetrau M, Martens H, Thomassen N, et al. Calpain inhibitor A-558693 in experimental focal cerebral ischemia in rats. Neurol Res 2005, 27:466-470.
    [72] Tsubokawa T, Solaroglu I, Yatsushige H, et al. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 2006,37:1888-1894.
    [73] Chaitanya GV, Babu PP. Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res 2008, 33:2178-2186.
    [74] Rami A, Agarwal R, Spahn A. Synergetic effects of caspase 3 and mu-calpain in XIAP-breakdown upon focal cerebral ischemia. Neurochem Res 2007, 32:2072-2079.
    [75] Kambe A, Yokota M, Saido TC, et al. Spatial resolution of calpain-catalyzed proteolysis in focal cerebral ischemia. Brain Res 2005,1040:36-43.
    [1] Pape M, Engelhard K, Eberspacher E, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth Analg 2006,103:173-179, table of contents.
    [2] Endo H, Kamada H, Nito C, et al. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 2006, 26:7974-7983.
    [3] Kamiya T, Jacewicz M, Nowak TS, et al. Cerebral blood flow thresholds for mRNA synthesis after focal ischemia and the effect of MK-801. Stroke 2005, 36:2463-2467.
    [4] Schneider A, Fischer A, Weber D, et al. Restriction-mediated differential display (RMDD) identifies pip92 as a pro-apoptotic gene product induced during focal cerebral ischemia. J Cereb Blood Flow Metab 2004, 24:224-236.
    [5] Hata R, Mies G, Wiessner C, et al. Differential expression of c-fos and hsp72 mRNA in focal cerebral ischemia of mice. Neuroreport 1998, 9:27-32.
    [6] Rau SW, Dubai DB, Bottner M, et al. Estradiol differentially regulates c-Fos after focal cerebral ischemia.J Neurosci 2003, 23:10487-10494.
    [7] Ginet V, Puyal J, Magnin G, et al. Limited role of the c-Jun N-terminal kinase pathway in a neonatal rat model of cerebral hypoxia-ischemia. J Neurochem 2009, 108:552-562.
    [8] Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 2009,117:497-509.
    [9] Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009, 29:464-479.
    [10] Hu Z, Fan J, Zeng L, et al. Transient cerebral ischemia leads to TGF-beta2 expression in Golgi apparatus organelles. Curr Neurovasc Res 2008, 5:178-184.
    [11] Zhang HX, Liu LG, Zhou L, et al. [Effect of scalp acupuncture on inflammatory response in rats with acute cerebral ischemia-reperfusion injury]. Zhong Xi Yi Jie He Xue Bao 2007,5:686-691.
    [12] Zhang YL, Liu XM, Liu HS, et al. [Effect of Xinnao Shutong capsule on apoptosis after cerebral ischemia and reperfusion in rats]. Zhongguo Zhong Yao Za Zhi 2008, 33:1188-1191.
    [13] Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 2008,15:1-14.
    [14] Li C, Han D, Zhang F, et al. Preconditioning ischemia attenuates increased neurexin-neuroligin1-PSD-95 interaction after transient cerebral ischemia in rat hippocampus. Neurosci Lett 2007, 426:192-197.
    [15] Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007, 54:34-66.
    [16] Fabian RH, Perez-Polo JR, Kent TA. Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischemia. Am J Physiol Heart Circ Physiol 2008,295:H1809-1814.
    [17] Guo Y, Chen ZW. Protective effects of total flavones of rhododendra on cerebral ischemia reperfusion injury. Am J Chin Med 2008, 36:343-354.
    [18] Dutra AV, Lin HF, Juo SH, et al. Analysis of the endothelial nitric oxide synthase gene as a modifier of the cerebral response to ischemia. J Stroke Cerebrovasc Dis 2006,15:128-131.
    [19] Tsai SK, Hung LM, Fu YT, et al. Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. J Vase Surg 2007, 46:346-353.
    [20] Brahma MK, Dohare P, Varma S, et al. The neuronal apoptotic death in global cerebral ischemia in gerbil: important role for sodium channel modulator. J Neurosci Res 2009, 87:1400-1411.
    [21] Nonaka Y, Shimazawa M, Yoshimura S, et al. Combination effects of normobaric hyperoxia and edaravone on focal cerebral ischemia-induced neuronal damage in mice. Neurosci Lett 2008, 441:224-228.
    [22] Fraser M, Bennet L, Van Ziji1 PL, et al. Extracellular amino acids and lipid peroxidation products in periventricular white matter during and after cerebral ischemia in preterm fetal sheep. J Neurochem 2008.
    [23] Raghavendra M, Trigunayat A, Singh RK, et al. Effect of ethanolic extract of root of Pongamia pinnata (L) pierre on oxidative stress, behavioral and histopathological alterations induced by cerebral ischemia-reperfusion and long-term hypoperfusion in rats. Indian JExp Biol 2007, 45:868-876.
    [24] Hendryk S, Czuba ZP, Jedrzejowska-Szypulka H, et al. Influence of 5-aminoisoquinolin-1-one (5-AIQ) on neutrophil chemiluminescence in rats with transient and prolonged focal cerebral ischemia and after reperfusion. J Physiol Pharmacol 2008,59:811-822.
    [25] Yun W, Qing-Cheng L, Lei Y, et al. Mucosal tolerance to E-selectin provides protection against cerebral ischemia-reperfusion injury in rats. J Neuroimmunol 2008, 205:73-79.
    [26] Dmitrieva VG, Dergunova LV, Povarova OV, et al. The effect of semax and the C-terminal peptide PGP on expression of growth factor genes and receptors in rats under conditions of experimental cerebral ischemia. Dokl Biochem Biophys 2008, 422:261-264.
    [27] Foster KA, Regan HK, Danziger AP, et al. Attenuation of edema and infarct volume following focal cerebral ischemia by early but not delayed administration of a novel small molecule KDR kinase inhibitor. Neurosci Res 2009, 63:10-16.
    [28] Berry D, Ren J, Kwan CP, et al. Dimeric fibroblast growth factor-2 enhances functional recovery after focal cerebral ischemia. Restor Neurol Neurosci 2005, 23: 251-256.
    [29] Haqqani AS, Nesic M, Preston E, et al. Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEBJ 2005, 19: 1809-1821.
    [30] Kalesnykas G, Tuulos T, Uusitalo H, et al. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 2008, 155: 937-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700