用户名: 密码: 验证码:
CpG ODN对Con A诱导的小鼠肝损伤保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性肝炎、药物性肝损害、自身免疫性肝炎、肝硬化及肝癌等肝病已成为世界范围内威胁人群健康的主要疾病之一。已有研究表明,肝炎病毒并非直接导致细胞病理性改变,而主要是通过诱导宿主产生针对病毒感染肝细胞的免疫应答,继而损伤肝脏细胞。
     炎症是不同类型急性和慢性肝病普遍存在的病理现象,它与进行性肝脏损伤和肝组织纤维化有关。现已发现,固有免疫系统的各类细胞通过模式识别受体(patternrecognition receptors,PRR)识别病原微生物,从而被活化,参与启动和维持肝脏炎症过程。这些固有免疫细胞中,树突状细胞可通过处理、加工和提呈抗原而引起适应性T细胞应答;活化的kupffer细胞、募集到肝脏的巨噬细胞及其他炎症细胞可产生大量细胞因子、趋化因子,引起炎症反应反复发生和肝细胞损伤。
     TLR(Toll-like receptor)是一类重要的PRR,因其与果蝇Toll蛋白家族在结构上具有同源性而得名,TLR通过识别不同病原微生物的PAMP(pathogen associatedmolecular partem)在抗感染固有免疫中发挥重要作用。其中,表达于细胞内TLR9通过识别细菌和病毒DNA中的非甲基化CpG基序或人工合成的脱氧寡核糖核酸(CpG-containing oligodeoxynucleotides,CpG ODNs)序列而被活化,继而促进B细胞增殖、分化,促进DC成熟,上调共刺激分子表达,并诱导Th1细胞应答。
     目前已知有3种CpG ODN,即D-型(A-class)、K-型(B-class)及C-型,三者结构中均含非甲基化CpG二核苷酸序列,且因结构各异而具有不同生物学功能。CpG ODNs已被用于治疗某些感染性疾病、肿瘤及变态反应性疾病等。
     本课题研究目标为:建立Con A诱导的小鼠肝损伤模型,观察不同给药时间、不同剂量CpG ODN对肝损伤的影响;用CpG ODN 100μg预处理小鼠3h,初步探讨CpGODN对ConA诱导肝损伤的保护作用及其机制。
     一、CpG ODN对ConA诱导肝损伤的影响
     (一)实验分组
     PBS正常对照组(PBS组)
     PBS预处理组(PBS/ConA组)
     CpG ODN预处理组(CpG ODN/ConA组)
     (二)CpG ODN预处理对ConA诱导肝损伤的影响
     CpG ODN(100μg/只小鼠)或PBS由尾静脉注射,3h后尾静脉注射Con A(15μg/g体重),12h后采集血清和肝脏组织,进行血清转氨酶和肝脏组织学检测。
     1.血清转氨酶检测:PBS预处理组,Con A静脉注射导致ALT与AST水平急剧升高。CpG ODN预处理可使Con A注射后ALT与AST水平显著降低。CpG ODN单独作用未引起转氨酶升高。
     2.组织学检测:PBS预处理组肝脏大面积坏死,CpG ODN预处理组肝组织未见明显炎性病灶和坏死区域。
     (三)CpG ODN对Con A诱导肝脏损伤的保护作用具有时间和剂量依赖性
     1.Con A注射前后不同时间点经尾静脉注射CpG ODN(100μg/小鼠);
     2.Con A注射前3h,尾静脉注射不同剂量CpG ODN;ConA.注射后12h采集血清。
     3.血清转氨酶检测:
     (1)CpG ODN预处理1 2h和3h对Con A所致肝损伤均具有保护作用;Con A注射后2h给予同等剂量CpG ODN,未见有保护作用。
     (2)静脉注射CpG ODN 50μg/小鼠和100μg/小鼠均可对Con A所致肝损伤产生保护作用。
     (四)CpG ODN预处理对小鼠存活时间的影响
     静脉注射CpG ODN 100μg/小鼠,3h后尾静脉注射致死剂量Con A(25μg/g体重),观察小鼠存活时间。
     小鼠存活率分析:CpG ODN预处理可明显延长小鼠存活时间,与PBS预处理组相比有显著差异
     (五)CpG预处理对肝脏SOD、MDA、MPO表达的影响
     检测肝脏组织超氧化物歧化酶(SOD)、丙二醛(MDA)及髓过氧化物酶(MPO):与PBS预处理组(PBS/ConA组)相比,CpG ODN预处理组(CpG ODN/ConA组)SOD水平在Con A注射后12h和24h明显升高,而MDA在6h和24h水平显著下降。检测肝组织MPO含量可间接反映中性粒细胞浸润情况,CpG ODN预处理组(CpGODN/ConA组)MPO水平明显低于PBS预处理组。
     上述结果显示,CpG ODN对Con A所致肝损伤具有保护作用,该效应具有时间和剂量依赖性,以CpG ODN(100μg/小鼠)预处理小鼠3h保护作用最显著,可明显提高小鼠存活率。
     二、CpG ODN预处理对Con A所致肝损伤保护作用的机制
     (一)实验分组
     PBS正常对照组(PBS组)
     PBS预处理组(PBS/ConA组)
     CpG ODN预处理组(CpG ODN/ConA组)
     尾静脉注射CpG ODN(100μg/只小鼠)或PBS,3小时后尾静脉注射Con A(15μg/g体重),于ConA注射后不同时间点收集肝组织和血清。
     (二)CpG ODN预处理对Con A所致肝细胞凋亡的影响
     1.TUNEL检测:PBS预处理组(PBS/ConA组)注射ConA 12h后,肝细胞出现大范围凋亡,而CpG ODN预处理组(CpG ODN/ConA组)肝细胞凋亡明显减轻。
     2.RT-PCR检测bcl-2和bax mRNA表达水平:与PBS预处理组(PBS/ConA组)相比,CpG ODN预处理组(CpG ODN/Con A组)抗凋亡基因bcl-2 mRNA表达水平明显增加,而促凋亡基因bax mRNA表达水平下降。
     (三)CpG ODN预处理抑制Con A所致炎症反应
     1.ELISA检测血清细胞因子水平:与PBS预处理组(PBS/ConA组)相比,CpGODN预处理组(CpG ODN/ConA组)血清IFN-γ水平在6h和12h明显降低。PBS预处理组(PBS/Con A组)动物血清中TNF-α水平在Con A注射后2h达到最高,而CpG ODN预处理组(CpG ODN/Con A组)TNF-α水平显著下降;Con A注射后12h后,PBS预处理组(PBS/ConA组)和CpG ODN预处理组(CpG ODN/ConA组)血清中均未检出TNF-α。
     2.RT-PCR检测肝脏IFN-γ和TNF-αmRNA水平:CpG ODN预处理组(CpGODN/Con A组)肝组织IFN-γ和TNF-αmRNA表达水平比PBS预处理组(PBS/Con A组)明显降低。
     (四)CpG ODN预处理对肝脏组织NF-κB活性的影响
     1.EMSA检测NF-κB的活性:与PBS预处理组(PBS/ConA组)相比,CpG ODN预处理组ConA注射2h后可显著抑制NF-κB活性。
     2.Western blot检测IκB降解:CpG ODN预处理可明显抑制IκB降解。
     (五)CpG ODN预处理对肝脏和脾脏淋巴细胞的影响
     流式细胞术检测肝脏和脾脏淋巴细胞亚群:与PBS预处理组(PBS/ConA组)相比,CpG ODN预处理组(CpG ODN/ConA组)肝脏和脾脏T细胞(CD3~+)、NKT细胞(CD3~+NK1.1~+)、NK细胞(CD3~+NK1.1~-)比例无明显变化,但CpG预处理可抑制肝脏中三类细胞活化(CD69~+)。
     以上结果表明:CpG ODN预处理可明显抑制肝脏细胞凋亡,减弱Con A所致炎症反应,抑制淋巴细胞活化。
     三、CpG ODN预处理对巨噬细胞的影响
     小鼠巨噬细胞系RAW264.7体外培养;
     实验分组:CpG ODN单独作用组(5μg/ml)Con A单独作用组(10μg/ml)CpG ODN预处理加Con A作用组[CpG ODN(5μg/ml)+Con A(10μg/ml)]于不同时间点收集上清和细胞
     1.ELISA检测:与ConA单独作用组相比,CpG ODN预处理组上清中TNF-α水平明显降低。
     2.RT-PCR检测:与CpG ODN单独作用组和Con A单独作用组相比,CpG ODN预处理组IRAK1 mRNA表达水平明显降低,而IRAK-M mRNA表达水平无明显变化。
     上述结果提示:CpG ODN预处理可使巨噬细胞对Con A刺激产生耐受,其机制可能与IRAK1表达水平下降相关。
     结论
     1.CpG ODN预处理对Con A所致肝损伤具有保护作用;
     2.CpG ODN预处理对ConA所致肝损伤保护作用的机制可能为:抑制淋巴细胞活化;诱导巨噬细胞低反应性;减弱ConA所致炎症反应;抑制肝细胞凋亡。
Viral hepatitis,drug-induced hepatic injury,autoimmune hepatitis,hepatic cirrhosisand other liver diseases are major threats to human health worldwide.It has been shownthat hepatitis virus itself can not induce liver injury,which mostly mediated by the immuneresponse to the hepatocyte infected with virus.
     It has been shown that the inflammatory response play an key role in pathogenesis ofdifferent types of acute and chronic liver diseases,which contributes to liver damage,fibrosis and dysfunction.There are approximately 10~(10)lymphocytes in human liver,including lymphocyte subpopulations of the innate systems such as NKT and NK cells,andadaptive immune systems,for example T and B cells.For its large population of innateimmune cells,the liver is considered to be an organ with innate immunity features.Emerging evidence suggests that liver play critical roles in first line of host immunedefense against invading microorganisms and modulation of liver injury and repair.
     Cells of the innate immune system recognized microorganisms by pattern recognitionreceptors(PRR)and then were activated to produce various proinflammatory cytokine andother mediator,which lead to initiate and maintain hepatic inflammation and hepatocytedamage.Innate immune cells,particularly dendritic cells,have a pivotal role in processingpathogens and initiating adaptive immune responses.Moreover,activated Kupffer cells,macrophages which were recruited to liver from blood and other inflammatory cells releasecytokines and chemokines that contribute to liver injury and impaired liver regeneration.
     Toll-like receptors(TLRs)are the best understood family of PRRs and are highlyevolutionarily conserved.There are 13 members in the TLRs family.TLRs recognize related PAMPs and trigger the downstream signaling pathway and production ofproinflammatory cytokines and chemokines.It has been well knon that TLR9 canrecognize not only the unmethylated CpG motifs from bacteria/virus but also syntheticoligodeoxynucleotides(ODNs)that contain CpG motifs.
     There are three types of CpG ODN:D-type(A-class),K-type(B-class)and C-class,all of which possess unmethylated CpG dinucleotides.CpG-containingoligodeoxynucleotides(CpG ODNs)activate the innate/adaptive immune system throughbinding to TLR9 which is expressed in many immunological cells such as B cells,macrophages and plasmacytoid dendritic cells(pDCs).The TLR9 is then activated toinduce Thl-based immune responses.To our current understanding,the potentialtherapeutic uses of these CpG ODNs have been focused on infectious disease,cancer andallergy therapy.
     A recent study suggested that CpG ODN have a protective effect on the CpGODN/D-GalN-induced hepatic injury.However.the effects of CpG ODN on ConA-induced hepatitis are less known and need to be further investigated.In the presentstudy,we demonstrated that CpG ODN pretreatment can protect the mice from ConA-induced liver injury.Furthermore,we explored the possible mechanisms underlying thisprotective effect.
     1.The effect of CpG ODN on Con A-induced hepatitis
     To determine the effect of CpG ODN on Con A-induced hepatitis,CpG ODN(100μgper mouse)was administered to mice through the caudal vein three hours before Con A(15μg/g body weight)injection.Serum aminotransferase levels were determined twelvehours after Con A injection.Serum ALT levels were slightly elevated in mice treated withCpG ODN alone.As expected,Con A administration significantly increased the serum levelof aminotransferase.However,the Con A induced ALT was markedly decreased in micepretreated with CpG ODN,but not in mice pretreated with non-CpG ODN.H&E stainingshowed that Con A injection caused massive necrosis in the liver,which was nearlyabolished by CpG ODN pretreatment.The protective effect of CpG ODN on ConA-induced liver injury was dose-dependent.Furthermore,CpG ODN pretreatment beforeCon A challenged(-12hCpG/Con A or -3hCpG/Con A)protected the mice from hepatitis. Delaying ODN administration until 2 h after Con A challenged(2hCpG/Con A)did notprovide any protection.Next,we determined whether CpG ODN pretreatment protectedmice from lethal dose of Con A(25μg/g body weight).CpG ODN pretreatmentdramatically increased mice survival.
     2.The possible mechanisms underlying this protective effect.
     Mice were treated with PBS or CpG(100μg/mouse),and three hours later,Con A wasinjected(15μg/g).Liver and serum samples were collected at indicated time pionts afterCon A injection.
     (1)CpG ODN pretreatment prevents hepatocytes apoptosis in Con A-induced hepatitis
     The extent of hepatocytes apoptosis was determined by TUNEL assay,massivehepatocytes apoptosis were detected in the livers of mice treated with Con A.CpG ODNpretreatment markedly prevented the apoptosis induced by Con A.Furthermore,weexamined the mRNA expression of antiapoptotic protein Bcl-2 and proapoptotic proteinBax in the livers.Con A upregulated the expression of Bax.On the contrary,CpG ODNpretreatment downregulated the mRNA expression level of Bax and upregulated the mRNAexpression level of Bcl-2.
     (2)CpG ODN pretreatment inhibits the release of cytokines in Con A- treated mice
     The level of IFN-γand TNF-αin serum were measured by ELISA.CpG ODNpretreatment significantly suppressed the elevation of serum IFN-γlevels at 6 h,12 h afterCon A administration.Furthermore,CpG ODN pretreatment inhibited the secretion ofTNF-αat early stage,especially two hours after Con A injection.Of note,TNF-a wasundetectable in serum at 12 h after Con A administration.Furthermore,we analyzed theexpression of proinflammatory cytokines in livers by RT-PCR.CpG ODN pretreatmentdownregulated the levels of both IFN-γand TNF-αin the livers.
     (3)The effect of CpG ODN pretreatment on NF-κB DNA binding activity.
     Nuclear and cytoplasmic extracts of liver tissues were subjected to EMSA and westernblot respectively.CpG ODN pretreatment significantly inhibited the activation of NF-κBand the phosphorylation of IκBα.
     (4)The effect of CpG ODN on subset of lymphocyte in liver/spleen
     The effect of CpG ODN on subset of lymphocyte in liver/spleen were measured byFACS.CpG ODN pretreatment failed to prevent Con A-induced recruitment of these cells into the livers.But CpG ODN pretreatment significantly suppressed the activation of T cells(CD3~+),NK cells(CD3~-NK1.1~+).and NKT cells(CD3~+NK1.1~+).
     3.The effect of CpG ODN on macrophage cells
     RAW 264.7 cells were stimulated with CpG ODN(5μg/ml)for three hours,and thenrinsed with PBS for three times.The cells were then cultured with Con A(10μg/ml).Thesupernatants and cells were collected at indicated time points after Con A added.TheTNF-αlevel in supernatants was determined with ELISA.The mRNA expression ofIRAK-1 and IRAK-M were measured by RT-PCR.CpG ODN pretreatment markedlyinhibited the production of TNF-αreleased by RAW 264.7 cells in response to Con A.Meanwhile,CpG ODN pretreatment downregulated the levels of IRAK-1,but had no effecton the IRAK-M expression.
     Conclusion
     CpG ODN pretreatment can protect mice from Con A-induced hepatitis throughsuppressing the activation of intra-hepatic leukocvtes,preventing the expression ofproinflammatory mediators,inhibiting the apoptosis of hepatocytes.Our study suggests thatCpG ODN may have therapeutic benefits to protect liver from virus infection.
引文
1. Racanelli V, Rehermann B The liver as an immunological organ. Hepatology. 2006;43:S54-62.
    2. Gao B, Jeong WI, Tian Z. Liver: An organ with predominant innate immunity. Hepatology 2008;47:729-36
    3. Lai CL, Ratziu V, Yuen MF, Poynard T. Viral hepatitis B. Lancet 2003;362:2089-2094.
    4. Robin MA, Le Roy M, Descatoire V, Pessayre D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug induced hepatitis. J Hepatol 1997;26:23-30.
    5. Manns MP, Strassburg CP. Autoimmune hepatitis: clinical challenges. Gastroenterology 2001; 120:1502-1517.
    6. Kita H, Imawari M, Gershwin ME. Cellular immune response in primary biliary cirrhosis. Hepatol Res 2004;28:12-17.
    7. Herkel J, Schuchmann M, Tiegs G, Lohse AW.Immune-mediated liver injury.J Hepatol. 2005;42:920-3.
    8. Tiegs G. Cellular and cytokine-mediated mechanisms of inflammation and its modulation in immune-mediated liver injury. Z Gastroenterol. 2007;45:63-70
    9. Eksteen B, Afford SC, Wigmore SJ, Holt AP, Adams DH. Immune-mediated liver injury. Semin Liver Dis. 2007;27:351-66.
    10. Kremer AE, Rust C, Eichhorn P, Beuers U, Holdenrieder S. Immune-mediated liver diseases: programmed cell death ligands and circulating apoptotic markers. Expert Rev Mol Diagn. 2009 ;9:139-56
    11. Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992; 90: 196-203.
    12. Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 1996;111:462-471.
    13. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. Concanavalin A-induced T cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 1995;21: 190-198.
    14. Yamanaka A, Hamano S, Miyazaki Y, Ishii K, Takeda A, Mak TW, et al. Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells in concanavalin A-induced hepatitis. J Immunol 2004; 172: 3590-3596.
    15. Jaruga B, Hong F, Sun S, Radaeva S, Gao B. Crucial role of IL-4/STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 2003; 171: 3233-3244.
    16. Louis H, Moine A Le, Flamand V, Nagy N, Quertinmont E, Paulart F. Critical role of interleukin 5 and eosinophils in concanavalin A- induced hepatitis in mice. Gastroenterology 2002; 122: 2001-2010.
    17. Schumann J, Wolf D, Pahl A, Brune K, Papadopoulos T, van Rooijen N, et al. Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol 2000;157: 1671-1683.
    18. Akira, S., and Takeda, K. Toll-like receptor signalling. Nat. Rev Immunol. 2004 4. 499-511
    19. Beutler. B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004 430, 257-263.
    20. Janeway, C.A., Jr., and Medzhitov, R. Innate immune recognition.Annu. Rev. Immunol. 2002 20,197-216.
    21. Imler, J. L. & Hoffmann, J. A. Toll signaling: the TIReless quest for specificity. Nature Immunol. 2003 4, 105-106.
    22. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416,2002 640-644.
    23. Zhang, D. et al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004 303,1522-1526
    24. Ulevitch RJ. Therapeutics targeting the innate immune system. Nat Rev Immunol. 2004 7:512-20.
    25. E. Latz, A. Schoenemeyer, A. Visintin, K.A. Fitzgerald, B.G. Monks, C.F. Knetter, E. Lien, N.J. Nilsen, T. Espevik, D.T. Golenbock, TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5 2004 190-198
    26. H. Hacker, R.M. Vabulas, O. Takeuchi, K. Hoshino, S. Akira, H.Wagner, Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6, J. Exp. Med. 2000 192 595-600.
    27. L.A. O'Neill, A.G. Bowie, The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling, Nat. Rev. Immunol. 2007 7 353-364.
    28. Krieg, A.M. Therapeutic potential of Toll-like receptor9 activation. Nat. Rev. Drug Discov. 2006 5, 471-484
    29. Verthelyi, D., Ishii, K. J., Gursel, M., Takeshita. F. & Klinman, D. M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 2001 166,2372-2377
    30. Hartmann G, Battiany J, Poeck H, Wagner M, Kerkmann M, Lubenow N, Rothenfusser S, Endres S. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN- inductio n in plasmacytoid dendritic cells. Eur. J Immunol. 2003 33,1633-1641
    31. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J, Coffman RL, Van Nest G. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol. 2003 73.781-792
    32. Hartmann, G. & Krieg, A. M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells J. Immunol. 2000 164, 944-952
    33. Slotta JE, Scheuer C, Menger MD, Vollmar B. Immunostimulatory CpG-oligodeoxynucleotides (CpG-ODN) induce early hepatic injury, but provide a late window for protection against endotoxin-mediated liver damage. J Hepatol. 2006;44:576-85.
    34. Yi AK, Yoon H, Park JE, Kim BS, Kim HJ, Martinez-Hernandez A. CpG DNA-mediated induction of acute liver injury in D-galactosamine-sensitized mice: the mitochondrial apoptotic pathway-dependent death of hepatocytes. J Biol Chem. 2006;281:15001-12
    35. Kim YI, Park JE, Martinez-Hernandez A, Yi AK. CpG ODN prevents liver injury and shock-mediated death by modulating expression of interleukin-1 receptor-associated kinases. J Biol Chem 2008; 283: 15258-15270.
    36. Shirota H, Gursel I, Gursel M, Klinman DM. Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock. J Immunol 2005; 174: 4579-4583
    37. Jiang W, Sun R, Zhou R, Wei H, Tian Z.TLR-9 activation aggravates concanavalin A-induced hepatitis via promoting accumulation and activation of liver CD4+ NKT cells. J Immunol 2009; 182:3768-74.
    38. Agrawal S, Kandimalla ER. Modulation of Toll-like receptor 9 responses through synthetic immunostimulatory motifs of DNA.. Ann N Y Acad Sci. 2003; 1002:30-42 .
    39. Dalpke AH, Lehner MD, Hartung T, Heeg K. Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology. 2005 116 :203-12
    40. Schuchmann M, Hermann F, Herkel J, van der Zee R, Galle PR, Lohse AW. HSP60 and CpG-DNA-oligonucleotides differentially regulate LPS-tolerance of hepatic Kupffer cells. Immunol Lett. 2004;93:199-204
    41. Yeo SJ, Yoon JG, Hong SC, Yi AK. CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in response to CpG DNA and lipopolysaccharide: alterations in IL-1 receptor-associated kinase expression. J Immunol. 2003; 170:1052-61
    42. Park JE, Kang YJ, Park MK, Lee YS, Kim HJ, Seo HG, et al. Enantiomers of higenamine inhibit LPS-induced iNOS in a macrophage cell line and improve the survival of mice with experimental endotoxemia. Int Immunopharmacol. 2006:6:226-23
    43. Tamaru M, Nishioji K, Kobayashi Y, Watanabe Y, Itoh Y, Okanoue T, et al. Liver-infiltrating T lymphocytes are attracted selectively by IFN-inducible protein-10. Cytokine 2000; 12: 299-308.
    44. Tagawa Y, Sekikawa K, Iwakura Y. Suppression of concanavalin A-induced hepatitis in IFN-gamma(-/-) mice, but not in TNFalpha(-/-) mice: role for IFN-gamma in activating apoptosis of hepatocytes. J Immunol 1997; 159: 1418-1428.
    45. Mizuhara H, O'Neill E, Seki N, Ogawa T, Kusunoki C, Otsuka K, et al. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med 1994: 179: 1529-1537
    46. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49-62.
    47. Imose M, Nagaki M, Kimura K, Takai S, Imao M, Naiki T, et al. Leflunomide protects from T-cell-mediated liver injury in mice through inhibition of nuclear factor kappaB. Hepatology 2004; 40: 1160-9.
    48. Feng D, Mei Y, Wang Y, Zhang B, Wang C, Xu L.Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-kappaB activation. Immunol Lett 2008; 121: 127-33.
    49. Rice L, Orlow D, Ceonzo K, Stahl GL, Tzianabos AO, Wada H, et al. CpG oligodeoxynucleotide protection in polymicrobial sepsis is dependent oninterleukin-17. J Infect Dis 2005; 19: 1368-1376.
    50. Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci 2000; 97: 5498-5503.
    51. Wang J, Sun R, Wei H, Dong Z, Gao B, Tian Z. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J Hepatol 2006; 44: 446-454
    52 Sodhi A. Tarang S, Kesherwani V. Concanavalin A induced expression of Toll-like receptors in murine peritoneal macrophages in vitro. Int Immunopharmacol. 2007;7:454-63.
    53. Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 2003;24:528-33
    54. Miggin SM, O'Neill LAJ. New insights into the regulation of TLR signaling. J Leuko Biol 2006;80:220-6.
    55. An H, Xu H, Yu Y, Zhang M, Qi R, Yan X, et al. Upregulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kB, ERK and p38 MAPK signal pathways. Immunol Lett 2002;81:165-9
    56. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801.
    57. Jacinto R, Hartung T, McCall C, Li L. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase. J Immunol. 2002;168:6136-41
    58. Siedlar M, Frankenberger M, Benkhart E, Espevik T, Quirling M, Brand K, Zembala M, Ziegler-Heitbrock L. Tolerance induced by the lipopeptide Pam3Cys is due to ablation of IL-lR-associated kinase-1. J Immunol. 2004;173:2736-45
    59. Adib-Conquy M, Cavaillon JM. Gamma interferon and granulocyte/monocyte colony-stimulating factor prevent endotoxin tolerance in human monocytes by promoting interleukin-1 receptor-associated kinase expression and its association to MyD88 and not by modulating TLR4 expression. J Biol Chem. 2002;277:27927-34
    60. Li L, Cousart S, Hu J, McCall CE. Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J Biol Chem. 2000; 275:23340-5
    61. Medvedev AE, Lentschat A, Wahl LM, Golenbock DT, Vogel SN. Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J Immunol. 2002 169:5209-16
    62. Kobayashi K, Hernandez LD, Gal(?)n JE, Janeway CA Jr, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell. 2002 110 2:191-202
    1. Medzhitov, R., Janeway Jr., C.A. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997,91,295-298.
    2. Medzhitov, R., Janeway Jr., C. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 2000.173, 89-97.
    3. Akira, S., Uematsu, S., Takeuchi, 0. Pathogen recognition and innate immunity. Cell 2006. 124,783-801.
    4. Krieg, A.M., Yi, A.K., Matson, S., Waldschmidt, T.J., Bishop, G.A., Teasdale, R., Koretzky, G.A., Klinman, D.M. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995. 374, 546-549.
    5. Krieg, A.M., Wu, T., Weeratna, R., Efler, S.M., Love-Homan,L., Yang, L., Yi, A.K., Short, D., Davis, H.L.,. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc. Natl. Acad. Sci. USA1998. 95, 12631-12636
    6. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., Akira, S. A Toll-like receptor recognizes bacterial DNA. Nature 2000. 408, 740-745
    7. Okabe Y Kawane K, Akira S, Taniguchi T. Nagata S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 2005. 202, 1333-1339
    8. Martin, D.A. and Elkon, K.B. Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway. Arthritis Rheum. 2006. 54, 951-962
    9. Rankin R, Pontarollo R, Ioannou X, Krieg AM, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev. 11, 333-340 (2001).
    10. Yi, A. K., Chang, M., Peckham, D. W., Krieg, A. M. & Ashman, R. F. CpG oligodeoxyribonucleotides rescuemature spleen B cells from spontaneous apoptosis andpromote cell cycle entry. J. Immunol. 1998 160, 5898-5906.
    11. Hartmann, G. & Krieg, A. M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 2000.164, 944-953
    12. Krieg, A.M. Therapeutic potential of Toll-like receptor9 activation. Nat. Rev. Drug Discov. 2006 5,471-484
    13. Verthelyi, D., Ishii, K. J., Gursel, M., Takeshita, F, Klinman, D. M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 2001 166,2372-2377
    14. Hartmann G, Battiany J, Poeck H, Wagner M, Kerkmann M, Lubenow N, Rothenfusser S, Endres S. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN- induction in plasmacytoid dendritic cells. Eur. J Immunol. 2003 33,1633-1641
    15. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J. Coffman RL, Van Nest G. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol. 2003 73, 781-792
    16. Ballas, Z. K., Rasmussen, W. L., Krieg, A. M.Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 1996 157, 1840-1845
    17. Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. ImmunoL 2000 164, 1617-1624
    18. Pisetsky, D. S., Reich, C. F., Ⅲ. The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology 1998 40,199-208.
    19. Roberts, T. L., Sweet, M. J., Hume, D. A. Stacey, K. J. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioatemodified oligonucleotides. J. Immunol. 2005 174,605-608
    20. Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure , expression , and evolution . Eur Cytokine Network ,2000 ,11 :362 -371
    21. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004 5, 190-198
    22. Chuang T H , Ulevitch R J . Cloning and charcterization of a sub-family of human Toll-like receptors : hTLR7 , hTLR8 and hTLR9. Eur Cytokine Network ,2000 ,11 :372 -378.
    23. Cornelie S, Hoebeke J, Schacht AM, Bertin B, Vicogne J, Capron M, Riveau G. Direct evidence that toll-like receptor 9 (TLR9) functionally binds plasmid DNA by specific cytosinephosphate- guanine motif recognition. J. Biol. Chem. 2004 279,15124-15129
    24. Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S. Toll-like receptor 9 binds single-stranded CpGDNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 2004 34,2541-2550
    25. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 2002 32, 1958-1968
    26. Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol. 2004 173, 1179-1183
    27. Lindmo, K. and Stenmark, H. Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci. 2006 119, 605-614
    28. Ishii KJ, Takeshita F, Gursel I, Gursel M, Conover J, Nussenzweig A, Klinman DM. Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J. Exp. Med. 2002 196, 269-274
    29. Kuo CC, Lin WT, Liang CM, Liang SM Class Ⅰ and Ⅲ phosphatidylinositol 3'-kinase play distinct roles in TLR signaling pathway. J. Immunol. 2006 176, 5943-5949
    30. Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B. The Unc93bl mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9.Nat. Immunol. 2006 7,156-164
    31. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-Ⅰ interferon induction. Nature 2005 434, 1035-1040
    32. Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T, Lee KD, Coffman RL, Barrat FJ. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med. 2006 203,1999-2008
    33. Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006 124,997-1009
    34. Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 2006 7,49-56
    35. Ishii KJ, Coban C, Akira S. Manifold mechanisms of toll-like receptor-ligand recognition. J. Clin. Immunol. 2005 25, 511-521
    36. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 2005 6,1087-1095
    37. Yamamoto M, Okamoto T. Takeda K, Sato S, Sanjo H, Uematsu S, Saitoh T, Yamamoto N, Sakurai H, Ishii KJ, Yamaoka S, Kawai T, Matsuura Y, Takeuchi O, Akira S. Key function for the Ubc 13 E2 ubiquitinconjugating enzyme in immune receptor signaling. Nat. Immunol. 2006 7,962-970
    38. Kawai, T. and Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 2006 7,131-137
    39. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006 439,208-211
    40. Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, Mann M, Karin M. Specificity in Toll-like receptor signaling through distinct effector functions of TRAF3 and TRAF6. Nature 2006 439, 204-207
    41. Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M, Hemmi H, Ohara O, Akira S, Kaisho T. IkB kinase-a is critical for interferon-a production induced by Toll-like receptors 7 and 9. Nature 2006 440, 949-953
    42. Naka T, Fujimoto M, Tsutsui H, Yoshimura A. Negative regulation of cytokine and TLR signalings by SOCS and others. Adv. Immunol. 2005 87, 61-122
    43. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T, Honda K. Negative regulation of Toll-likereceptor signaling by IRF-4. Proc. Natl. Acad. Sci. U. S. A. 2005 102,15989-15994
    44. Takeshita F, Ishii KJ, Kobiyama K, Kojima Y, Coban C, Sasaki S, Ishii N, Klinman DM, Okuda K, Akira S, Suzuki K. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur. J.Immunol. 2005 35, 2477-2485
    45. Hernandez LD, Gal(?)n JE, Janeway CA Jr, Medzhitov R. Flavell RA, Kobayashi K. IRAK-M is a negative regulator of Toll-like receptor signaling.,. Cell. 2002 110:191-202
    46. Baetz A, Frey M, Heeg K, Dalpke AH.Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Biol Chem. 2004 279: 54708-15
    47. Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003 7 :358-63.
    48. Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004 4:249-58
    49. Wagner, H. The immunobiology of the TLR9 subfamily. Trends Immunol. 2004 25, 381-386
    50. Takeshita F, Suzuki K, Sasaki S, Ishii N, Klinman DM, Ishii KJ. Transcriptional regulation of the human TLR9 gene. J. Immunol. 2004 173, 2552-2561
    51. Guo Z, Garg S, Hill KM, Jayashankar L, Mooney MR, Hoelscher M, Katz JM, Boss JM, Sambhara S. A distal regulatory region is required for constitutive and IFN-b-induced expression of murine TLR9 gene. J. Immunol. 2005 175, 7407-7418
    52. Guo Z, Garg S, Hill KM, Jayashankar L, Mooney MR, Hoelscher M, Katz JM, Boss JM, Sambhara S. IFN-g overcomes low responsiveness of myeloid dendritic cells to CpG DNA. Immunol. Cell Biol. 2005 83, 92-95
    53. Adachi Y, Kindzelskii AL, Petty AR, Huang JB. Maeda N, Yotsumoto S, Aratani Y, Ohno N, Petty HR. IFN-g primes RAW264.7 macrophages and human monocytes for enhanced oxidant production in response to CpG DNA via metabolic signaling: roles of TLR9 and myeloperoxidase trafficking. J. Immunol. 2006 176, 5033-5040
    54. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood 2003 102, 2660-2669
    55. Jozsef L, Khreiss T, El Kebir D, Filep JG. Activation of TLR-9 induces IL-8 secretion through peroxynitrite signaling in human neutrophils. J. Immunol. 2006 176, 1195-1202
    56. Miller LS, S(?)rensen OE, Liu PT, Jalian HR, Eshtiaghpour D, Behmanesh BE, Chung W, Starner TD, Kim J, Sieling PA. Ganz T, Modlin RL TGF-a regulates TLR expression and function on epidermal keratinocytes. J. Immunol. 2005 174, 6137-6143
    57. Ishii KJ, Ito S, Tamura T, Hemmi H, Conover J, Ozato K, Akira S, Klinman DM. CpG-activated Thy1.2+ dendritic cells protect against lethal Listeria monocytogenes infection. Eur. J. Immunol. 2005 35,2397-2405
    58. Kuwajima S, Sato T, Ishida K, Tada H, Tezuka H. Ohteki T. Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpGinduced immune activation. Nat. Immunol. 2006 7, 740-746
    59. Shen, H. and Iwasaki, A. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN-based vaginal microbicide. J. Clin. Invest. 2006 116, 2237-2243
    60. M. Lucas, W. Schachterle, K. Oberle, P. Aichele, A. Diefenbach, Dendritic cells prime natural killer cells by trans-presenting interleukin 15, Immunity 2007 26 503-517.
    61. A. Krug, A.R. French, W. Barchet, J.A. Fischer, A. Dzionek, J.T. Pingel, M.M. Orihuela, S. Akira, W.M. Yokoyama, M. Colonna, TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function, Immunity 2004 21 107-119.
    62. L. Lin, A.J. Gerth, S.L. Peng. CpG DNA redirects class-switching towards "Th1-like" Ig isotype production via TLR9 and MyD88, Eur. J.Immunol. 2004 34 1483-1487.
    63. N. Liu, N. Ohnishi, L. Ni, S. Akira, K.B. Bacon, CpG directly induces Tbet expression and inhibits IgG1 and IgE switching in B cells, Nat. Immunol. 2003 4 687-693.
    64. C. Pasare, R. Medzhitov, Control of B-cell responses by Toll-like receptors, Nature 2005 438 364-368.
    65. A.L. Gavin, K. Hoebe, B. Duong, T. Ota, C. Martin, B. Beutler, D. Nemazee, Adjuvant-enhanced antibody responses in the absence of Tolllike receptor signaling, Science 2006 314 1936-1938
    66. Kumagai Y, Takeuchi 0, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev. 2008 60 :795-804
    67. Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, Bauer S, Hochrein H, Wagner H. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J. Immunol. 2005 174, 6129-6136
    68. Yasuda K, Ogawa Y, Yamane I, Nishikawa M, Takakura Y. Macrophage activation by a DNA/cationic liposome complex requires endosomal acidification and TLR9-dependent and -independent pathways. J. Leukoc. Biol. 2005 77, 71-79
    69. Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 2005 202, 1333-1339
    70. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 2006 7,40-48
    71. Shirota H, Ishii KJ, Takakuwa H, Klinman DM. Contribution of interferon-b to the immune activation induced by double-stranded DNA. Immunology 2006 118, 302-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700