用户名: 密码: 验证码:
β-catenin调控免疫细胞生存和分化及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Fibronectin通过β-catenin途径维持NK细胞的生存
     组织微环境和细胞外基质分子在维持细胞生存促进细胞分化过程中具有重要作用。NK细胞是一类短寿命的细胞类型,尤其小鼠NK细胞分离后在体外存活时间更是少于24小时,因此需要在体外培养体系中加入外源性的细胞因子如IL-12、IL-15以维持小鼠NK细胞的生存。但是很多研究认为NK细胞的体内存活时间远远大于体外,表明体内不同组织微环境为NK细胞的生存提供了支持环境。但是细胞外基质分子如Fibronectin是否以及如何支持NK细胞的生存仍不为人所知。在本课题中,我们发现适当浓度的Fibronectin(10μg/ml)能在体外维持NK细胞的生存。
     在探讨Fibronectin维持NK细胞生存的信号机制中,我们发现Fibronectin作用NK细胞后能够上调抗凋亡分子Bcl-2的表达。进一步研究发现,Fibronectin通过结合NK细胞表面的CD11b受体,募集并活化信号分子Src,Src作为β-catenin的上游信号分子,通过与β-catenin直接相互作用,导致β-catenin活化、入核。β-catenin的活化激活Erk分子,进而上调抗凋亡分子Bcl-2的表达,促进NK细胞的存活。同时,Fibronectin并不能维持CD11b阴性的NK细胞以及β-catenin缺陷的NK细胞的体外存活。因此,我们发现Fibronectin通过CD11b/Src/β-catenin途径活化ERK上调Bcl-2的表达从而维持NK细胞的生存。
     第二部分TLR4和TLR9配体诱导的调节性单核细胞通过膜结
     合型TGF-β和β-catenin通路诱导调节性T细胞的研究
     调节性T细胞(Regulatory T cells,Treg)在抑制机体免疫反应和阻止有害的自身免疫应答中具有重要的作用。在免疫应答后期,Treg可以削弱效应性T细胞的功能,将免疫应答控制在一定限度内。许多流行病学研究以及实验研究提示一些Toll样受体(TLR)激动剂在自身免疫性疾病和哮喘的发病中具有保护作用。宿主持续性暴露于低剂量TLR激动剂后有助于维持体内一定数量的CD4~+FoxP3~+调节性T细胞,从而维持了机体的免疫自稳。我们也发现在清洁环境(CL)中野生型小鼠体内Treg细胞的比例高于TLR4~(-/-),TLR9~(-/-)小鼠,而在SPF环境中三种小鼠体内Treg的比例相当,均为清洁环境中TLR4~(-/-),TLR9~(-/-)小鼠水平,但当TLR4和TLR9配体作用野生型小鼠后其体内Treg细胞比例升高。然而TLR信号调节CD4~+T细胞表达Foxp3的细胞和分子机制仍不为人所知。在本实验中,我们发现TLR4和TLR9信号激活后,体内出现一群具有调节功能的新型单核细胞亚群(Gr-1~(high)Ly-6C~(int)),该新型Gr-1~(high)Ly-6C~(int)单核细胞亚群参与诱导外周Treg的生成。TLR4和TLR9激动剂作用后,机体通过释放一氧化氮(NO)从骨髓动员一群Gr-1~(high)Ly-6C~(int)单核细胞入外周血同时上调其表达膜表面TGF-β(mTGF-β)。Gr-1~(high)Ly-6C~(int)单核细胞膜表面TGF-β可以促进β-catenin入核、活化STAT3、进而STAT3诱导CD4~+CD25-T细胞表达Foxp3。而与对照相比,β-catenin缺陷的CD4~+CD25-T细胞并不能在Gr-1~(high)Ly-6C~(int)单核细胞作用下分化为Treg细胞。另外,我们建立DSS诱导的小鼠炎症性肠病(IBD)模型,发现在清洁环境中TLR4~(-/-)、TLR9~(-/-)小鼠比野生型小鼠更易得IBD,而在SPF环境中TLR信号对DSS诱导的小鼠IBD的发生发展具有保护作用。因此,我们认为TLR信号的适度活化有助于保护宿主减少自身免疫性疾病的发生和发展;TLR信号活化通过诱导产生一群具有调节功能的新型单核细胞亚群,活化T细胞内β-catenin/STAT3信号,诱导CD4~+CD25-T前体细胞分化为Treg,从而控制自身免疫应答反应。
PartⅠFibronectin promotes NK cell survival viaβ-catenin pathway
     Tissue microenvironment and stroma-derived extracellular matrix(ECM)molecules play important roles in the survival and differentiation of cells.Mouse naturalkiller(NK)cells usually die within 24 hours once isolated ex vivo.Exogenouscytokines such as interleukin(IL)-12 and IL-15 are required to maintain the survivaland activity of mouse NK cells cultured in vitro.However,whether and how ECMmolecules such as fibronectin can support the survival of NK cells remain unknown.Here we demonstrate that fibronectin,just like IL-15,can maintain survival of mouseNK cells in vitro.Furthermore,we show that fibronectin binds to the CDllb on NKcells,and then CD11b recruits and activates Src.Src can directly interact withβ-cateninand trigger nuclear translocation ofβ-catenin.The activation ofβ-catenin promotesERK phosphorylation,resulting in the increased expression of anti-apoptotic proteinBcl-2 which may contribute to the maintenance of NK cell survival.Consistently,fibronectin can not maintain the survival of CDllb negative NK cells andβ-catenin-deficient NK cells sorted from in vivo,and the number of NK cell isdramatically decreased in theβ-catenin-deficient mice.Therefore,fibronectin canmaintain survival of mouse NK cells by activating ERK and upregulating Bcl-2expression via CD11b/Src/β-catenin pathway.
     PartⅡTLR 4,9 signals-recruited regulatory monocytes maintainhomeostasis of regulatory T cells through membrane bound TGF-βandβ-catenin pathway
     Several Toll-like receptor(TLR)agonists play protective roles in the pathogenesisof autoimmune diseases and asthma.It has been found that constant exposure to lowconcentration of some TLR agonists contributes to the maintenance of an essentialnumber of CD4+Foxp3+regulatory T cell(Treg)in vivo,giving a reasonableexplanation for the protective role of TLR signals.However,the cellular and molecularmechanisms of TLR signals involved in regulating the expression of Foxp3 in CD4~+Tcells remain unclear up to now.Here,we demonstrate that a new population ofGr-1~(high)Ly-6C~(int)monocytes with regulatory function,triggered by TLR4,9 ligands,canpromot generation of CD4~+Foxp3~+Treg.TLR4,9 ligands could recruite Gr-1~(high)Ly-6C~(int)monocytes from bonce marrow via stimulating the release of NO and upregulatedexpression of membrane-bound TGF-βon Gr-1~(high)Ly-6C~(int)monocytes.Membrane-bound TGF-βon Gr-1~(high)Ly-6C~(int)monocytes induces Foxp3 expression in CD4~+CD25~-Tcells by activatingβ-catenin-dependent STAT3 pathway.Compared to wild-typeCD4~+CD25~-T cells,β-catenin~(-/-)CD4~+CD25~-T cells could not be induced to differentiateinto CD4~+Foxp3~+Treg by Gr-1~(high)Ly-6C~(int)monocytes.Furthermore,in clean condition,TLR4~(-/-)and TLR9~(-/-)mice acquire severer inflammatory bowel disease(IBD)after DSStreatment,while in SPF condition,TLR signals play a protective role in DSS-induceddevelopment of IBD.Thus,we conclude that TLR signals are required for controllingautoimmune responses viaβ-catenin/STAT3-dependent induction of Treg by inducinggeneration of a new subset of Gr-1~(high)Ly-6C~(int)regulatory monocytes.
引文
[1] Cao, X. Immunology in China: the past, present and future. Nat. Immunol. 9,339-342 (2008).
    [2] Mosimann, C., Hausmann, G. & Basler, K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 10, 276-286 (2009).
    [3] Waldhauer, I. & Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932-5943 (2008).
    [4] Biassoni, R. Natural killer cell receptors. Adv. Exp. Med. Biol. 640, 35-52 (2008).
    [5] Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat.Immunol. 9, 495-502 (2008).
    [6] Chung, J. W., Yoon, S. R. & Choi, I. The regulation of NK cell function and development. Front Biosci. 13, 6432-6442 (2008).
    [7] Heino, J. & Kapyla, J. Cellular receptors of extracellular matrix molecules. Curr.Pharm. Des 15, 1309-1317 (2009).
    [8] Tsukada, Y., Nagaki, M., Suetsugu, A., Osawa, Y. & Moriwaki, H. Extracellular matrix is required for the survival and differentiation of transplanted hepatic progenitor cells. Biochem. Biophys. Res. Commun. 381, 733-737 (2009).
    [9] Abram, C. L. & Lowell, C. A. The ins and outs of leukocyte integrin signaling.Annu. Rev. Immunol. 27, 339-362 (2009).
    [10] White, E. S., Baralle, F. E. & Muro, A. F. New insights into form and function of fibronectin splice variants. J. Pathol. 216, 1-14 (2008).
    [11] Somersalo, K. Migratory functions of natural killer cells. Nat. Immun. 15,117-133(1996).
    [12] Li, Y. Q. et al. Enhancement of lymphokine-activated killer cell activity by fibronectin. J. Immunother. 20, 123-130(1997).
    [13] Xia, S. et al. Liver stroma enhances activation of TLR3-triggered NK cells through fibronectin. Mol. Immunol. 45, 2831-2838 (2008).
    [14] Zhang, M. et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5, 1124-1133 (2004).
    [15] Nelson, W. J. & Nusse, R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487 (2004).
    [16] Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664-667 (2002).
    [17] Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127,469-480 (2006).
    [18] Staal, F. J. & Sen, J. M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol. 38, 1788-1794 (2008).
    [19] Huntington, N. D. et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat. Immunol. 8,856-863 (2007).
    [20] Moon, D. O., Kim, M. O., Choi, Y. H. & Kim, G. Y. beta-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett. 264, 181-191 (2008).
    [21] Yune, T. Y., Park, H. G., Lee, J. Y & Oh, T. H. Estrogen-induced Bcl-2 expression after spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependent CREB activation. J. Neurotrauma 25, 1121-1131 (2008).
    [22] Chung, H., Seo, S., Moon, M. & Park, S. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivationinduced apoptosis in primary rat cortical neuronal cells. J. Endocrinol. 198,511-521 (2008).
    [23] Rong, Y. & Distelhorst, C. W. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu. Rev. Physiol 70, 73-91 (2008).
    [24]Chalah,A.& Khosravi-Far,R.The mitochondrial death pathway.Adv.Exp.Med.Biol.615,25-45 (2008).
    [25]Suen,D.F.,Norris,K.L.& Youle,R.J.Mitochondrial dynamics and apoptosis.Genes Dev.22,1577-1590 (2008).
    [26]Brault,V.et al.Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development.Development 128,1253-1264 (2001 ).
    [27]Leiss,M.,Beckmann,K.,Giros,A.,Costell,M.& Fassler,R.The role of integrin binding sites in fibronectin matrix assembly in vivo.Curr.Opin.Cell Biol.20,502-507 (2008).
    [28]Ding,Y.,Shen,S.,Lino,A.C.,Curotto de Lafaille,M.A.& Lafaille,J.J.Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells.Nat.Med.14,162-169 (2008).
    [29]Inge,L.J.et al.alpha-Catenin overrides Src-dependent activation of beta-catenin oncogenic signaling.Mol.Cancer Ther.7,1386-1397 (2008).
    [30]D'Souza,W.N.,Chang,C.F.,Fischer,A.M.,Li,M.& Hedrick,S.M.The Erk2 MAPK regulates CD8 T cell proliferation and survival.J.Immunol.181,7617-7629 (2008).
    [31]Tang,H.et al.Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10.Blood 108,1189-1197 (2006).
    [32]Mazzone,A.& Ricevuti,G.Leukocyte CDll/CD18 integrins:biological and clinical relevance.Haematologica 80,161 - 175 (1995).
    [33]Suzukawa,M.et al.Interleukin-33 enhances adhesion,CD11b expression and survival in human eosinophils.Lab Invest 88,1245-1253 (2008).
    [34]Pluskota,E.,Soloviev,D.A.,Szpak,D.,Weber,C.& Plow,E.F.Neutrophil apoptosis: selective regulation by different ligands of integrin alphaMbeta2. J.Immunol. 181, 3609-3619 (2008).
    [35] Chiossone, L. et al. Maturation of mouse NK cells is a four-stage developmental program. Blood (2009).
    [36] Nelson, W. J. & Nusse, R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487 (2004).
    [37] Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127,469-480 (2006).
    [38] Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J. M. Deletion of beta-catenin impairs T cell development. Nat. Immunol. 4, 1177-1182 (2003).
    [39] Xie, H., Huang, Z., Sadim, M. S. & Sun, Z. Stabilized beta-catenin extends thymocyte survival by up-regulating Bcl-xL. J. Immunol. 175, 7981-7988 (2005).
    [40] Parsons, S. J. & Parsons, J. T. Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909 (2004).
    [41] Evangelista, V. et al. Src family kinases mediate neutrophil adhesion to adherent platelets. Blood 109, 2461-2469 (2007).
    [42] Pluskota, E., Soloviev, D. A., Szpak, D., Weber, C. & Plow, E. F. Neutrophil apoptosis: selective regulation by different ligands of integrin alphaMbeta2. J.Immunol. 181, 3609-3619 (2008).
    [43] Wouda, R. R., Bansraj, M. R., de Jong, A. W., Noordermeer, J. N. & Fradkin, L. G.Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development 135,2277-2287 (2008).
    [44] Aoukaty, A. & Tan, R. Role for glycogen synthase kinase-3 in NK cell cytotoxicity and X-linked lymphoproliferative disease. J. Immunol. 174,4551-4558(2005).
    [45] Rambal, A. A., Panaguiton, Z. L., Kramer, L., Grant, S. & Harada, H. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia (2009).
    [46] Kim, S. W. et al. Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol. Cell Biol. 27, 6933-6947(2007).
    [47] Read, S. & Powrie, F. Induction of inflammatory bowel disease in immunodeficient mice by depletion of regulatory T cells. Curr. Protoc. Immunol.Chapter 15, Unit (2001).
    [48] Zheng, Y. & Rudensky, A. Y. Foxp3 in control of the regulatory T cell lineage.Nat. Immunol. 8, 457-462 (2007).
    [49] Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152-162 (2005).
    [50] Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219-1227 (2005).
    [51] Wei, L., Laurence, A. & O'Shea, J. J. New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Semin. Cell Dev. Biol. 19,394-400 (2008).
    [52] Sheikh, A. & Strachan, D. P. The hygiene theory: fact or fiction? Curr. Opin.Otolaryngol. Head Neck Surg. 12, 232-236 (2004).
    [53] Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987-995 (2004).
    [54] Turner, J. J., Smolinska, M. J., Sacre, S. M. & Foxwell, B. M. Induction of TLR tolerance in human macrophages by adiponectin: does LPS play a role? Scand. J.Immunol. 69, 329-336 (2009).
    [55] Wang, R. F., Miyahara, Y. & Wang, H. Y. Toll-like receptors and immune regulation: implications for cancer therapy. Oncogene 27,181-189 (2008).
    [56] Akira, S. Toll-like receptors: lessons from knockout mice. Biochem. Soc. Trans.28,551-556(2000).
    [57] Cario, E. Barrier-protective function of intestinal epithelial Toll-like receptor 2.Mucosal. Immunol. 1 Suppl 1, S62-S66 (2008).
    [58] Wong, F. S. et al. The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Ann. N. Y.Acad. Sci. 1150, 146-148 (2008).
    [59] Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421-452 (2008).
    [60] Wang, H., Zhang, J., Sun, Q. & Yang, X. Altered gene expression in articular chondrocytes of Smad3ex8/ex8 mice, revealed by gene profiling using microarrays. J. Genet. Genomics 34, 698-708 (2007).
    [61] Lewkowicz, P., Lewkowicz, N., Sasiak, A. & Tchorzewski, H. Lipopolysaccharideactivated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J. Immunol. 177, 7155-7163 (2006).
    [62] Mills, K. H. TLR9 turns the tide on Treg cells. Immunity. 29, 518-520 (2008).
    [63] Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest 116, 485-494 (2006).
    [64] Bae, S. Y. et al. Distinct locomotive patterns of granulocytes, monocytes and lymphocytes in a stable concentration gradient of chemokines. Int. J. Lab Hematol. 30, 139-148 (2008).
    [65] Nicholson, L. B., Raveney, B. J. & Munder, M. Monocyte dependent regulation of autoimmune inflammation. Curr. Mol. Med. 9, 23-29 (2009).
    [66] Dao, D. Y, Yang, X., Chen, D., Zuscik, M. & O'Keefe, R. J. Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways. Ann. N. Y.Acad. Sci. 1116, 82-99 (2007).
    [67] Pallandre, J. R. et al. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J. Immunol. 179, 7593-7604 (2007).
    [68] Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904-5912 (2008).
    [69] Nagaraj, S. & Gabrilovich, D. I. Tumor escape mechanism governed by myeloidderived suppressor cells. Cancer Res. 68, 2561-2563 (2008).
    [70] Rodriguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives.Immunol. Rev. 222, 180-191 (2008).
    [71] Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568-1573 (2007).
    [72] Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloidderived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791-5802(2008).
    [1] Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711-1717 (1989).
    [2] Kohler, E. M., Chandra, S. H., Behrens, J. & Schneikert, J. Beta-catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. Hum.Mol. Genet. 18, 213-226 (2009).
    [3] Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711-1717 (1989).
    [4] Staal, F. J. & Sen, J. M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol. 38, 1788-1794 (2008).
    [5] Varas, A. et al. The role of morphogens in T-cell development. Trends Immunol.24,197-206(2003).
    [6] Pongracz, J., Hare, K., Harman, B., Anderson, G. & Jenkinson, E. J. Thymic epithelial cells provide WNT signals to developing thymocytes. Eur. J. Immunol. 33,1949-1956(2003).
    [7] Staal, F. J. et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur. J. Immunol. 31, 285-293 (2001).
    [8] Mulroy, T., McMahon, J. A., Burakoff, S. J., McMahon, A. P. & Sen, J. Wnt-1 and Wnt-4 regulate thymic cellularity. Eur. J. Immunol. 32, 967-971 (2002).
    [9] Gounari, F. et al. Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863-869 (2001).
    [10] Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J. M. Deletion of beta-catenin impairs T cell development. Nat. Immunol. 4, 1177-1182 (2003).
    [11] Yu, Q. & Sen, J. M. Beta-catenin regulates positive selection of thymocytes but not lineage commitment. J. Immunol. 178, 5028-5034 (2007).
    [12] Timm, A. & Grosschedl, R. Wnt signaling in lymphopoiesis. Curr. Top. Microbiol.Immunol. 290, 225-252 (2005).
    [13] Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1.Immunity. 8, 11-20(1998).
    [14] Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The beta-catenin--TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat. Immunol. 2, 691-697(2001).
    [15] Xie, H., Huang, Z., Sadim, M. S. & Sun, Z. Stabilized beta-catenin extends thymocyte survival by up-regulating Bcl-xL. J. Immunol. 175, 7981-7988 (2005).
    [16] Guo, Z. et al. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation.Blood 109, 5463-5472 (2007).
    [17] Bluestone, J. A. & Hebrok, M. Safer, longer-lasting regulatory T cells with beta-catenin. Nat. Med. 14, 118-119 (2008).
    [18] Ding, Y., Shen, S., Lino, A. C., Curotto de Lafaille, M. A. & Lafaille, J. J. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat. Med. 14, 162-169 (2008).
    [19] Schilham, M. W. et al. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 161, 3984-3991 (1998).
    [20] Ranheim, E. A. et al. Frizzled 9 knock-out mice have abnormal B-cell development. Blood 105, 2487-2494 (2005).
    [21] Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity. 13, 15-24 (2000).
    [22] Dosen, G. et al. Wnt expression and canonical Wnt signaling in human bone marrow B lymphopoiesis. BMC. Immunol. 7, 13 (2006).
    [23] Ioannidis, V., Kunz, B., Tanamachi, D. M., Scarpellino, L. & Held, W. Initiation and limitation of Ly-49A NK cell receptor acquisition by T cell factor-1. J. Immunol. 171, 769-775 (2003).
    [24] Aoukaty, A. & Tan, R. Role for glycogen synthase kinase-3 in NK cell cytotoxicity and X-linked lymphoproliferative disease. J. Immunol. 174,4551-4558(2005).
    [25] Hongyo, T. et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan. Oncol. Rep. 13,265-271 (2005).
    [26] Lee, D. K., Nathan, G. R., Trachte, A. L., Mannion, J. D. & Wilson, C. L.Activation of the canonical Wnt/beta-catenin pathway enhances monocyte adhesion to endothelial cells. Biochem. Biophys. Res. Commun. 347, 109-116(2006).
    [27] Tickenbrock, L. et al. Wnt signaling regulates transendothelial migration of monocytes. J. Leukoc. Biol. 79, 1306-1313 (2006).
    [28] Muller, J. et al. Expression of beta-catenins and cadherins by follicular dendritic cells in human lymph nodes. Acta Histochem. 102, 369-380 (2000).
    [29] Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity. 27, 610-624 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700