用户名: 密码: 验证码:
抗原靶向不同树突细胞亚群诱导抗结核分枝杆菌免疫应答的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上三分之一的人感染结核分枝杆菌(Mycobacterium tuberculosis, MTB),使得结核病(tuberculosis, TB)成为世界范围内最严重的细菌性传染疾病之一,导致每年160万人死亡,严重威胁人类的健康和公共卫生安全。目前人类唯一使用的抗结核疫苗:卡介苗(Bacillus Calmette-Guerin, BCG),由牛结核分枝杆菌经多次传代减毒而来。然而BCG对于成人肺结核的保护效果很不稳定,造成BCG保护力有限的可能原因有:(1)BCG的过度减毒,在减毒传代过程中丢失了编码保护性抗原的基因序列,例如缺失基因差异区域;(2)尽管BCG能够激发抗MTB免疫应答,然而MTB隐藏于肉芽肿中,特异性效应T细胞很难与其直接发生作用;(3)BCG在激发保护性Th1应答的同时也活化了调节性T细胞(T regulatory cell, Treg),消减了效应性T细胞有效的保护作用。
     BCG保护率的不稳定,加上TB与人类免疫缺陷病毒(Human immunodeficiency virus, HIV)的共感染,以及结核杆菌多重耐药菌株甚至极端耐药菌株的出现使得TB呈现全球预警状态,因此更加理性的设计新型TB疫苗及寻求更为合理的抗TB免疫策略是亟待解决的研究课题。尽管对于开发新型TB疫苗已进行了大量的工作,但就目前而言,其中只有少数能够与BCG相当或稍优于BCG的保护效果。对于树突细胞(dendritic cell, DC)的分类、功能及其在调节免疫应答中重要作用的了解,以及体内靶向DC相关研究工作表现出的较为理想的应用前景,使得体内抗原靶向DC成为设计新型TB疫苗或抗TB免疫策略的新思路。事实上,至目前为止,尚未有关于体内靶向DC,诱导抗TB保护性免疫应答的相关研究报道。
     DC具有相似的细胞形态,大量分布于淋巴组织的T细胞区域,高表达MHC-Ⅱ类分子,具有突出的持续摄取环境中抗原分子并加工递呈给T细胞的潜能。根据分化过程、表型、成熟机制及专属职能等的不同,DC被分为不同的亚群。目前对于小鼠DC的分类已较为成熟,虽然人DC亚群不能完全等同于小鼠DC亚群,但是在小鼠和人中均发现了浆细胞样DC,血液来源的淋巴组织驻留型DC,外周迁移型DC以及单核细胞来源的炎性DC等亚群,使得以小鼠为模型的体内DC靶向研究具有向人类临床研究过渡的可能。大量研究数据显示不同DC亚群在支配调节如CD4+T细胞分化等获得性细胞免疫应答中的表现各异,因此利用其特异性表面分子的单克隆抗体进行体内抗原靶向的策略来直接操控各DC亚群,能够调节、控制免疫应答的方向,是制备预防性/治疗性疫苗的理想方式。
     目前抗体介导的体内DC抗原靶向研究中,多采用化学耦连或利用基因重组技术将目的抗原插入针对DC表面受体的抗体分子基因组的方法,实现目的抗原靶向DC。虽然多种DC表面受体分子均能传递外源信号,启动T细胞应答,然而很难预测在应对特定病原体感染时,目的抗原靶向哪一种DC亚群/DC表面受体分子能产生最为理想的抗病原体保护性免疫应答。因此对靶向不同DC亚群产生的免疫应答进行比较,对于发现最适宜的靶向亚群或靶向分子具有指导意义。本研究开发出一种简单方便、可选性高的靶向系统:将MTB免疫优势抗原分子与链酶亲合素(streptavidin, SA)进行融合表达并四聚体化,在SA与生物素(biotin, biot)间高亲和力的作用下,四聚体化的SA融合蛋白可与biot标记的DC表面分子单抗可形成复合物。利用这个灵活的模式,在获得SA融合蛋白后,利用biot标记的针对不同DC亚群表面受体分子的特异单抗,可快速简便的将目的抗原靶向小鼠和人相应的DC亚群。本研究中使用的靶向抗原来源于早期分泌抗原靶6(Earlier secreted antigen target 6, ESAT-6)蛋白家族(ESX),这些高度保守、低分子量的MTB保护性抗原由MTBⅦ型分泌系统表达,在小鼠、豚鼠以及不同遗传背景的人群中表现出较好的免疫原性,在动物模型中表现出保护作用,且这些抗原分子的特异效应性CD4+、CD8+T细胞与MTB感染者体内抗MTB保护性应答相关。本研究中,利用该方便灵活的抗原靶向系统,将MTB ESX免疫优势抗原靶向不同的DC表面分子,以期筛选出能产生最为理想的抗结核免疫应答的DC靶点/DC亚群。
     1.抗体介导的结核分枝杆菌ESX抗原体外靶向DC
     首先在体外实验中对这种抗原靶向方法的功能和特异性进行评价:证明经biot标记的DC表面分子单抗(针对:CD11b、CD11c、MHC-Ⅱ、DCIR-2或PDCA-1)的导向作用,ESX-SA融合蛋白可高效的结合在抗原递呈细胞表面。靶向浆细胞样DC表面分子PDCA-1或经典DC表面分子CD11b、CD11c、MHC-Ⅱ、DCIR-2的ESX抗原分子可有效的被细胞摄取内吞。为评价抗原递呈细胞对靶向的ESX抗原的加工递呈能力,利用BCG免疫小鼠制备了ESX抗原(TB10.4, ESX-H)特异性MHC-Ⅱ限制性T细胞杂交瘤。试验中发现经典DC、浆细胞样DC或巨噬细胞对靶向的ESX抗原通过MHC-Ⅱ类加工机制进行处理,ESX抗原表位与MHC-Ⅱ分子形成复合物,高效递呈至ESX特异性T细胞杂交瘤或MTB野生株H37Rv感染的小鼠脾脏T细胞。
     2.抗体介导的ESX抗原体内靶向不同DC亚群诱导抗结核免疫应答
     对ESX-SA融合抗原靶向DC表面受体分子产生的免疫原性进行比较。这些DC受体分子包括MHC-Ⅱ分子,整合素CD11b、CD11c,浆细胞样DC抗原-1(plasmocytoid dendritic cell antigen-1, PDCA-1/CD317)和C型凝集素受体(C-type lectin receptors, CLRs):甘露糖受体家族的CD205,唾液酸糖蛋白受体家族的CD207(langerin, Clec4K)、CD209(DC-specific ICAM3-Grabbing non-integrin, DC-SIGN)以及唾液酸糖蛋白受体家族DC免疫受体亚家族的DCIR2(Clec4A)。根据ESX抗原靶向后:(1)体内ESX抗原靶向DC并经MHC途径递呈的效率;(2)诱导ESX抗原特异性Th1、Th2、Th17和Treg获得性免疫应答的效果;(3)交叉激活ESX特异性CD8+T细胞的能力;(4)继BCG初免后DC靶向免疫策略的潜在加强功效,以期筛选出最适宜进行靶向、能够诱导理想的抗MTB免疫应答的DC亚群或DC表面受体分子。
     体内研究显示该靶向系统具有高度特异性,只有经DC表面分子抗体靶向的DC亚群表面才能检测到ESX的结合,分选出这些DC进行体外培养能够有效递呈靶向的ESX抗原至特异性MHC-Ⅱ限制性T细胞杂交瘤。
     ESX-SA与biot标记的DC表面分子单抗形成复合物,辅以多聚肌苷酸—胞苷酸(Poly inosinic:Poly cytidylic acid, Poly I:C,聚肌胞)作为DC激活因子免疫小鼠,对产生的抗原特异性T细胞应答进行比较。仅一次注射低至1μg(50pmole)剂量的ESX-SA (ESAT-6-SA),靶向DC表面CD11b、CD11c或CD205可高效诱导ESX特异性Th1、Th17应答,靶向CD207或PDCA-1也能显著激发Th1应答,只是程度稍低,而靶向CD209未能诱导抗原特异性的Th1免疫应答。利用biot-SA靶向系统,无论靶向何种DC表面受体分子均不能激发抗原特异性Th2免疫应答。就所有检测的CLRs而言,靶向CD205能产生最强的Th1应答。对不同剂量靶向抗原诱导免疫应答的水平进行分析比较,即使将0.1μg(5pmole) ESX抗原靶向DC表面CD11b分子仍可检测到抗原特异性Th1、Th17应答。靶向相同剂量的ESX抗原至DC表面分子,FcyR缺失小鼠与野生型小鼠产生的免疫应答水平相当,且在注射biot-Ctrl Ig-ESX-SA复合物的小鼠体内不能检测到特异性获得性免疫应答,由此说明,本研究中抗体介导的ESX抗原靶向DC,进而为细胞摄取,加工递呈及激发免疫应答的过程中未涉及FcR的作用,具有高度靶向特异性。以减毒活疫苗进行初次免疫,亚单位疫苗进行加强的免疫方法,可能是最为理想有效的抗TB治疗性疫苗免疫策略。我们选用ESX家族保护性抗原、亚单位疫苗的热门候选分子TB10.4来评价继BCG初免后,TB10.4靶向DC的免疫加强效果。对BCG初免的小鼠,以biot标记单抗将TB10.4-SA靶向DC表面CLRs: CD205、CD207、CD209、DCIR-2或PDCA-1作为加强免疫,可不同程度的增强TB10.4特异性IFN-γ免疫应答;在诱导Th17免疫应答方面,靶向CD205的免疫加强效果最好,其次是CD207和PDCA-1。比较各种免疫条件,发现只有在BCG初免,TB10.4靶向CD205作为加强免疫的小鼠中检测到TB10.4特异性的CD8+T细胞的交叉激活。
     综上,本研究开发出一种新型、可选性高的抗原靶向系统,利用DC表面分子特异性单抗的导向作用,将MTB保护性抗原靶向不同DC亚群,可有效开启或加强抗MTB CD4+和CD8+T细胞免疫反应,至此DC表面CLRs CD205可能是最为理想的靶向候选分子。
One-third of the Earth's population is infected with Mycobacterium tuberculosis, making the pulmonary tuberculosis the most widely spread infectious disease, leading to 1.6 million deaths annually. The only vaccine in use against infection with M. tuberculosis, the live attenuated M. bovis BCG (Bacillus Calmette-Guerin), is not able to protect efficiently against the adult pulmonary tuberculosis in endemic zones. The limited efficiency of BCG in the control of M. tuberculosis infection can be explained by the following hypothesis:(ⅰ) BCG could be attenuated, due to the deletion of genes coding for protective immunogens like the deletion of the "Regions of Differences" (RD). (ⅱ) Despite the strong anti-mycobacterial Thl responses induced by BCG, intracellular M. tuberculosis sequestered inside the granuloma, may be inaccessible to these effector T cells. (ⅲ) Following BCG immunization, induction of regulatory T cells (Treg), in parallel to the induction of anti-mycobacterial Thl responses, could reduce the efficiency of the protective effect against M. tuberculosis infection.
     With the resurgence of tuberculosis in immuno-compromised individuals and the rapid expansion of multi-drug resistant and extensively drug-resistant tuberculosis, the need of a better rational design of new strategies of anti-tuberculosis vaccines is reinforced. Despite intense research on live attenuated and/or sub-unit anti-tuberculosis vaccines, a very few vaccine candidates display improved protective effect and their efficiency remains limited. Here, we drived the extensive knowledge available on the properties of dendritic cells (DC) and antigen targeting to DC subsets, towards the practical in vivo antigen delivery to DC in anti-tuberculosis vaccination. Indeed, so far, addressing M. tuberculosis-derived protein antigens to DC subset(s) and/or DC surface receptor(s), for the induction of protective anti-mycobacterial immunity, has not been investigated.
     Despite their shared morphology, abundance in T-cell areas of lymphoid tissues, high MHC-Ⅱexpression and outstanding potential to continuously probe the environment, process and present antigens to T cells, DC are divided into different subsets, according to their ontogenic origin, phenotype, maturation programs and specialized functions. Although the well-established classification of the mouse DC subsets can't be transposed to the human DC populations, plasmacytoid DC, blood-derived lymphoid tissue resident DC, peripheral migratory DC and monocyte-derived inflammatory DC have been distinguished in both mice and humans. Numerous evidences argue that the magnitude of adaptive immune responses, as well as differentiation and specialization of CD4+ T cells into Th1, Th2 or Th17, are dictated by different DC subsets with specialized activities. The mobilization of different DC subsets by their direct in vivo targeting through specific surface markers represents a promising pathway to design well-controlled immunization strategies for the development of preventive and/or therapeutic vaccines.
     So far, the antigen targeting strategy is limited by the requirement of individual chemical coupling or genetic insertion of each immunogen of interest to mAbs specific to each of the numerous DC surface receptors, candidate for antigen addressing. It is largely admitted that DC translate information from different surface receptors into an activation program that orients the Th cell differentiation. However since all the rules governing functions of DC subsets are not yet understood, it remains difficult to predict which DC subsets/DC surface receptors are the most appropriate to be targeted in order to optimize the protective immunity against a given pathogen. Therefore, comparison of the properties and impacts of various DC subsets on the generation of pathogen-specific adaptive responses may help identify the most adapted DC subset(s), able to tailor the most adapted and protective adaptive immunity. To this end, we have designed a versatile antigen targeting approach, prominent mycobacterial immunogens are genetically fused to streptavidin (SA), the resulted fusion proteins are tetramerized to optimize their high affinity interaction with biotin (biot). Such SA fusion tetramers are then complexed to biot-conjugated mAbs, specific to diverse DC surface receptors. Therefore, in this flexible model, once such antigen-SA fusion proteins are produced, they can be readily carried and delivered to different mouse and human DC subsets by simple use of individual biot-mAbs of a large panel of specificities against DC surface receptors, with expression profiles restricted to given DC subsets. Potent mycobacterial antigens included in this study were selected among highly-conserved, low-molecular weight immunogens belonging to the Early Secreted Antigenic Target,6 kDa (ESAT-6) protein family (ESX) of M. tuberculosis. These proteins, actively secreted by the typeⅦsecretion system of mycobacteria, are known for their marked immunogenicity in mice, guinea pig and in ethnically different human populations, and for their protective potential in animal tuberculosis models. Moreover, the presence of CD4+ and CD8+ effector T cells specific to such proteins is directly correlated to the natural anti-mycobacterial protection in M. tuberculosis-infected humans. Based on this verstaile antigen targeting approach, we aim to identify the most appropriate DC receptor(s) to which the targeting of M. tuberculosis-derived ESX immunogens can induce optimized immune responses with anti-tuberculosis protective potential.
     PartⅠ. In vitro mAb-mediated M. tuberculosis-derived ESX antigen targeting to DC
     We first showed in vitro that this Ab-based antigen targeting system allows delivery of ESX immunogens to various antigen-presenting cell surface receptors, either integrins, C-type lectins DCIR-2, MHC-Ⅱmolecule or CD317 (plasmacytoid DC Ag-1, PDCA-1). Importantly, ESX antigens bound to CDllb, CDllc, DCIR-2, MHC-II on conventional DC or to PDCA-1 on plasmacytoid DC were efficiently endocytosed, most probably due to the cross-linking of the targeted surface receptors by the biot-mAbs, leading to their capping together with the bound ESX-SA cargo. To evaluate the presentation of ESX antigen by targeted APC, we developed MHC-II-restricted T cell hybridomas specific to ESX antigen (TB10.4, ESX-H) from BCG immunized mice. By use of such T-cell hybridomas in in vitro presentation assays that we set up, we demonstrated that ESX antigens delivered to conventional or plasmacytoid dendritic cells or to macropahges, were highly efficiently addressed to MHC-II presentation machinery and processed. The ESX-derived epitopes were then loaded on MHC-II molecules and presented, in a highly sensitive manner, to ESX-specific, MHC-Ⅱ-restricted T-cell hybridoma or the polyclonal splenocytes from M. tuberculosis infected mice.
     PartⅡ. mAb-based ESX antigen targeting to different DC subsets to induce anti-mycobacterial immunity
     We characterized the immunogenicity of several ESX proteins fused to SA (ESX-SA), targeted to different DC surface receptors by complexing them to biot-mAbs specific to:MHC-Ⅱmolecules, CD11b or CD11cβ2 integrins, CD317 (plasmacytoid DC Ag-1, PDCA-1) or C-type lectin receptors of:(ⅰ) mannose receptor family, i.e., CD205 (DEC205), (ⅱ) asialoglycoprotein receptor family, i.e., CD207 (Langerin, Clec4K), or CD209 (DC-specific ICAM3-grabbing non-integrin, DC-SIGN), or (ⅲ) DC immunoreceptor (DCIR) subfamily of asialoglycoprotein receptor, i.e., DCIR-2 (Clec4A). We explored this model to select the most appropriate DC subsets or DC surface receptors to target in anti-tuberculosis vaccination on the basis of:(ⅰ) in vivo capture/processing and presentation of ESX antigens by MHC molecules, (ⅱ) in vivo outcome of the ESX-specific Th1, Th2, Th17 or Treg adaptive responses, (ⅲ) in vivo cross presentation of ESX antigens and cross priming of specific CD8+ T cells, (ⅳ) boost effect of such immunization subsequent to BCG priming.
     This antigen delivery system was highly specific in vivo, as only the DC subsets, targeted with ESX-SA complexed to selected biot-mAbs displayed ESX antigens at their surface, and when positively sorted ex vivo, were able to present ESX antigens to the ESX-specific, MHC-II-restricted T-cell hybridomas.
     By use of different biot-mAbs specific toβ2 integrins, diverse C-type lectins or PDCA-1, in the presence of the DC maturation signal, Poly inosinic:Poly cytidylic acid (PolyⅠ:C), we directly compared the in vivo efficiency of ESX targeting to different DC subsets/DC surface receptors in the induction of T-cell responses. Remarkably, a single injection of only 1μg (=50 pmoles)/mouse of ESX-SA complexed to biot-mAbs specific to CDllb, CDllc or CD205, induced specific, intense and highly sensitive lympho-proliferative, Thl and Th17-but not Th2-responses. ESX-SA complexed to biot-mAbs specific to CD207 or PDCA-1 induced less intense and less sensitive, yet still marked Thl responses, while ESX targeting to CD209 failed to induce such responses. Among the C-type lectins evaluated in the present study, CD205 was the most efficient at inducing Thl cells in primary responses to ESX antigens.
     ESX targeting to DC surface receptors allowed substantial reduction of the effective dose of antigen for immunization without impairment of T-cell immunity, as exemplified by the low dose of 5 pmoles (=0.1μg)/mouse of ESX-SA, complexed to biot-anti-CDllb mAbs which induced highly significant ESX-specific Thl and Th17 responses. Importantly, the facts that:(ⅰ) FcγR -/- and WT mice mounted comparable adaptive immune responses to mAb-mediated ESX targeting to DC and (ⅱ) ESX-SA fusion proteins complexed to biot-control Ig did not induce detectable adaptive immune responses, show that the mechanism responsible of targeting, endocytosis and further antigen presentation does not involve FcR.
     As priming with live attenuated mycobacteria followed by boosting with subunit vaccines, is of the most promising prophylactic anti-tuberculosis vaccination strategies, we focused particular interest in the boosting potential of ESX antigen targeting to DC subsets. We selected for this study the TB10.4 (Rv0288, ESX-H) antigen, a promising protective ESX antigen with highest interest in development of innovative sub-unit vaccine candidate. In mice primed with BCG and then boosted with TB10.4-SA targeted to CD205, CD207, CD209 or DCIR-2, a comparable boost effect of IFN-γresponses was obtained. The best boost effect at the level of Th17 response was obtained with TB10.4 targeting to CD205, followed by CD207 and PDCA-1. Using the strategy of TB10.4 antigen targeting to DC subsets, among all the conditions evaluated and the DC surface receptors targeted, we only detected efficient TB10.4-specific CD8+ T-cell cross priming in mice which were primed with BCG and then boosted with TB10.4 targeted to CD205.
     Thus, we have developed a new and versatile approach to target promising mycobacterial immunogens to different DC subsets in order to efficiently initiate or boost anti-mycobacterial CD4+ and CD8+ T-cell immunity. So far, CD205 C-type lectin seems to be the best DC surface marker to induce such T-cell responses.
引文
[1]Korbel DS, Schneider BE, Schaible UE. Innate immunity in tuberculosis:myths and truth. Microbes and Infection,2008,10(9):995-1004.
    [2]Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M. Tuberculosis control in the era of HIV. Nature Reviews,2005,5(10):819-826.
    [3]Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria:the human model. Annual Review of Immunology,2002,20:581-620.
    [4]Tufariello JM, Chan J, Flynn JL. Latent tuberculosis:mechanisms of host and bacillus that contribute to persistent infection. The Lancet Infectious Diseases,2003,3(9):578-590.
    [5]Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwietennan WD, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. The New England Journal of Medicine,2001,345(15):1098-1104.
    [6]Saunders BM, Britton WJ. Life and death in the granuloma:immunopathology of tuberculosis. Immunology and Cell Biology,2007,85(2):103-111.
    [7]Lin MY, Ottenhoff TH. Not to wake a sleeping giant:new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection. Biological Chemistry,2008,389(5):497-511.
    [8]Appelberg R. Neutrophils and intracellular pathogens:beyond phagocytosis and killing. Trends in Microbiology,2007,15(2):87-92.
    [9]Segal AW. How neutrophils kill microbes. Annual Review of Immunology,2005,23:197-223.
    [10]Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the interface between innate and adaptive immunity. Cell Death and Differentiation,2008,15(2):226-233.
    [11]Lodoen MB, Lanier LL. Natural killer cells as an initial defense against pathogens. Current Opinion in Immunology,2006,18(4):391-398.
    [12]Newman KC, Riley EM. Whatever turns you on:accessory-cell-dependent activation of NK cells by pathogens. Nature Reviews,2007,7(4):279-291.
    [13]Stenger S, Rosat JP, Bloom BR, Krensky AM, Modlin RL. Granulysin:a lethal weapon of cytolytic T cells. Immunology Today,1999,20(9):390-394.
    [14]Flynn JL, Chan J. Immunology of tuberculosis. Annual Review of Immunology, 2001,19:93-129.
    [15]Oiso R, Fujiwara N, Yamagami H, Maeda S, Matsumoto S, Nakamura S, et al. Mycobacterial trehalose 6,6'-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microbial Pathogenesis,2005, 39(1-2):35-43.
    [16]Kaufmann SH, Baumann S, Nasser Eddine A. Exploiting immunology and molecular genetics for rational vaccine design against tuberculosis. Int J Tuberc Lung Dis,2006, 10(10):1068-1079.
    [17]Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. The Journal of Experimental Medicine,
    1993,178(6):2243-2247.
    [18]de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 1998,280(5368):1435-1438.
    [19]Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. The New England Journal of Medicine,1996,335(26):1956-1961.
    [20]Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry CE,3rd, et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infection and Immunity,2004,72(9):5511-5514.
    [21]Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature,2004, 431(7004):84-87.
    [22]Serrador JM, Urzainqui A, Alonso-Lebrero JL, Cabrero JR, Montoya MC, Vicente-Manzanares M, et al. A juxta-membrane amino acid sequence of P-selectin glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesin-directed targeting at the trailing edge of migrating lymphocytes. European Journal of Immunology,2002,32(6):1560-1566.
    [23]Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology,2005,6(11):1123-1132.
    [24]Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology,2005, 6(11):1133-1141.
    [25]Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,2006, 441(7090):235-238.
    [26]Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature,2006, 441(7090):231-234.
    [27]Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006,24(2):179-189.
    [28]Dong C. Differentiation and function of pro-inflammatory Th17 cells. Microbes and Infection, 2009, 11(5):584-588.
    [29]Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. The Journal of Experimental Medicine,2005,201(2):233-240.
    [30]Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, Dong X, et al. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. The Journal of Experimental Medicine,2008,205(5):1049-1062.
    [31]Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather
    than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol,2006, 177(7):4662-4669.
    [32]Khader SA, Cooper AM. IL-23 and IL-17 in tuberculosis. Cytokine,2008,41(2):79-83.
    [33]Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology,2007,8(4):369-377.
    [34]Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK, Jelley-Gibbs DM, et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol,2005,175(2):788-795.
    [35]Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol,2007,178(6):3786-3796.
    [36]Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdeltal+gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol,2007,178(7):4466-4472.
    [37]Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, et al. Cutting edge:Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol,2007,178(11):6730-6733.
    [38]Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia:IL-15 as a possible trigger. J Immunol,2003,170(4):2106-2112.
    [39]Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity,2005, 22(3):329-341.
    [40]Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature,2002,420(6915):502-507.
    [41]Belkaid Y. Regulatory T cells and infection:a dangerous necessity. Nature reviews 2007 Nov;7(11):875-88.
    [42]Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, et al. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clinical and Experimental Immunology,2006,144(1):25-34.
    [43]Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. American Journal of Respiratory and Critical Care Medicine,2006,173(7):803-810.
    [44]Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, et al. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clinical Immunology,2007,123(1):50-59.
    [45]Quinn KM, McHugh RS, Rich FJ, Goldsack LM, de Lisle GW, Buddle BM, et al. Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunology and Cell Biology,2006,
    84(5):467-474.
    [46]Kursar M, Koch M, Mittrucker HW, Nouailles G, Bonhagen K, Kamradt T, et al. Cutting Edge: Regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol,2007, 178(5):2661-2665.
    [47]Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. The Journal of Experimental Medicine,2007,204(9):2159-2169.
    [48]Abebe F, Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clinical and Experimental Immunology,2009,157(2):235-243.
    [49]Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, Orme IM. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infection and Immunity,2001,69(3):1722-1728.
    [50]Johnson CM, Cooper AM, Frank AA, Bonorino CB, Wysoki LJ, Orme IM. Mycobacterium tuberculosis aerogenic rechallenge infections in B cell-deficient mice. Tuber Lung Dis,1997, 78(5-6):257-261.
    [51]Bosio CM, Gardner D, Elkins KL. Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis:delay in dissemination and development of lung pathology. J Immunol,2000,164(12):6417-6425.
    [52]Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol,2007, 178(11):7222-7234.
    [53]Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infection and Immunity,2002,70(8):4501-4509.
    [54]Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. The Journal of Experimental Medicine,2008,205(1):105-115.
    [55]Reiley WW, Calayag MD, Wittmer ST, Huntington JL, Pearl JE, Fountain JJ, et al. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Proceedings of the National Academy of Sciences of the United States of America,2008,105(31):10961-1096.
    [56]von Gamier C, Filgueira L, Wikstrom M, Smith M, Thomas JA, Strickland DH, et al. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J Immunol,2005,175(3):1609-1618.
    [57]Iseman MD. Tuberculosis therapy:past, present and future. The European Respiratory Journal, 2002,6:87s-94s.
    [58]al-Kassimi FA, al-Hajjaj MS, al-Orainey IO, Bamgboye EA. Does the protective effect of neonatal BCG correlate with vaccine-induced tuberculin reaction? American Journal of Respiratory and Critical Care Medicine,1995,152(5 Pt 1):1575-1578.
    [59]Colditz GA, Berkey CS, Mosteller F, Brewer TF, Wilson ME, Burdick E, et al. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis:
    meta-analyses of the published literature. Pediatrics,1995,96(1 Pt 1):29-35.
    [60]Lanckriet C, Levy-Bruhl D, Bingono E, Siopathis RM, Guerin N. Efficacy of BCG vaccination of the newborn:evaluation by a follow-up study of contacts in Bangui. International Journal of Epidemiology,1995,24(5):1042-1049.
    [61]Sterne JA, Rodrigues LC, Guedes IN. Does the efficacy of BCG decline with time since vaccination? Int J Tuberc Lung Dis,1998,2(3):200-207.
    [62]Aagaard C, Dietrich J, Doherty M, Andersen P. TB vaccines:current status and future perspectives. Immunology and Cell Biology,2009,87(4):279-286.
    [63]Liu J, Tran V, Leung AS, Alexander DC, Zhu B. BCG vaccines:their mechanisms of attenuation and impact on safety and protective efficacy. Human Vaccines,2009,5(2):70-78.
    [64]BCG vaccine. WHO position paper. Releve epidemiologique hebdomadaire/Section d'hygiene du Secretariat de la Societe des Nations=Weekly epidemiological record/Health Section of the Secretariat of the League of Nations 2004,79(4):27-38.
    [65]Jaron B, Maranghi E, Leclerc C, Majlessi L. Effect of attenuation of Treg during BCG immunization on anti-mycobacterial Thl responses and protection against Mycobacterium tuberculosis. PloS One,2008,3(7):e2833.
    [66]Agger EM, Andersen P. A novel TB vaccine; towards a strategy based on our understanding of BCG failure. Vaccine,2002,21(1-2):7-14.
    [67]Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature Medicine,2003, 9(5):533-539.
    [68]Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. The Journal of Experimental Medicine,2001,193(3):271-280.
    [69]Kaufmann SH, McMichael AJ. Annulling a dangerous liaison:vaccination strategies against AIDS and tuberculosis. Nature Medicine,2005,11(4 Suppl):S33-44.
    [70]Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Medicine,2003,9(8):1039-1046.
    [71]van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell,2007, 129(7):1287-1298.
    [72]Joosten SA, van Meijgaarden KE, Savage ND, de Boer T, Triebel F, van der Wal A, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proceedings of the National Academy of Sciences of the United States of America,2007,104(19):8029-8034.
    [73]Hanekom WA. The immune response to BCG vaccination of newborns. Annals of the New York Academy of Sciences,2005,1062:69-78.
    [74]Behr MA. Correlation between BCG genomics and protective efficacy. Scandinavian Journal of Infectious Diseases,2001,33(4):249-252.
    [75]Cole ST, Brosch R, Parkhill J, Gamier T, Churcher C, Harris D, et al. Deciphering the biology
    of Mycobacterium tuberculosis from the complete genome sequence. Nature,1998, 393(6685):537-544.
    [76]Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology,1998,144 (Pt 11):3195-3203.
    [77]Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infection and Immunity,1995,63(5):1710-1717.
    [78]Majlessi L, Brodin P, Brosch R, Rojas MJ, Khun H, Huerre M, et al. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J Immunol,2005,174(6):3570-3579.
    [79]Kamath AT, Fruth U, Brennan MJ, Dobbelaer R, Hubrechts P, Ho MM, et al. New live mycobacterial vaccines:the Geneva consensus on essential steps towards clinical development. Vaccine,2005,23(29):3753-3761.
    [80]Qie YQ, Wang JL, Liu W, Shen H, Chen JZ, Zhu BD, et al. More vaccine efficacy studies on the recombinant Bacille Calmette-Guerin co-expressing Ag85B, Mpt64 and Mtb8.4. Scandinavian Journal of Immunology,2009,69(4):342-350.
    [81]Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infection and Immunity,2003,71(4):1672-1679.
    [82]Rao V, Dhar N, Tyagi AK. Modulation of host immune responses by overexpression of immunodominant antigens of Mycobacterium tuberculosis in bacille Calmette-Guerin. Scandinavian Journal of Immunology,2003,58(4):449-461.
    [83]Doherty TM, Andersen P. Vaccines for tuberculosis:novel concepts and recent progress. Clinical Microbiology Reviews,2005,18(4):687-702.
    [84]Mandal M, Lee KD. Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo:enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. Biochimica et Biophysica Acta,2002,1563(1-2):7-17.
    [85]Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. The Journal of Clinical Investigation,2005, 115(9):2472-2479.
    [86]Reyrat JM, Berthet FX, Gicquel B. The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proceedings of the National Academy of Sciences of the United States of America,1995,92(19):8768-8772.
    [87]Ly LH, McMurray DN. Tuberculosis:vaccines in the pipeline. Expert Review of Vaccines, 2008,7(5):635-650.
    [88]Sambandamurthy VK, Derrick SC, Jalapathy KV, Chen B, Russell RG, Morris SL, et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infection and
    Immunity,2005,73(2):1196-1203.
    [89]Sampson SL, Dascher CC, Sambandamurthy VK, Russell RG, Jacobs WR, Jr., Bloom BR, et al. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infection and Immunity,2004,72(5):3031-3037.
    [90]Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, et al. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Molecular Microbiology,2002, 45(1):203-217.
    [91]McShane H. Vaccine strategies against tuberculosis. Swiss Med Wkly 2009 Mar 21;139(11-12):156-60.
    [92]Gurunathan S, Klinman DM, Seder RA. DNA vaccines:immunology, application, and optimization*. Annual Review of Immunology,2000,18:927-974.
    [93]Denis O, Tanghe A, Palfliet K, Jurion F, van den Berg TP, Vanonckelen A, et al. Vaccination with plasmid DNA encoding mycobacterial antigen 85A stimulates a CD4+ and CD8+ T-cell epitopic repertoire broader than that stimulated by Mycobacterium tuberculosis H37Rv infection. Infection and Immunity,1998,66(4):1527-1533.
    [94]Buddle BM, Skinner MA, Wedlock DN, Collins DM, De Lisie GW.New generation vaccines and delivery systems for control of bovine tuberculosis in cattle and wildlife. Veterinary Immunology and Immunopathology,2006,171 (2):229-244.
    [95]张喜悦,付晓波,范伟兴,黄保续.发达国家牛结核的防控措施及对我国的启示.中国人兽共患病学报,2009,25(5):473-476.
    [96]Vordermeier HM, Chambers MA, Buddle BM, Pollock JM, Hewinson RG Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle. Vet J, 2006,171 (2):229-244.
    [97]Hope JC, Vordermeier HM. Vaccines for bovine tuberculosis:current views and future prospects. Expert Review of Vaccines,2005,4(6):891-903.
    [98]Skinner MA, Buddle BM, Wedlock DN, Keen D, de Lisle GW, Tascon RE, et al. A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis. Infection and Immunity,2003,71(9):4901-4907.
    [99]Wedlock DN, Denis M, Skinner MA, Koach J, de Lisle GW, Vordermeier HM, et al. Vaccination of cattle with a CpG oligodeoxynucleotide-formulated mycobacterial protein vaccine and Mycobacterium bovis BCG induces levels of protection against bovine tuberculosis superior to those induced by vaccination with BCG alone. Infection and Immunity,2005,73(6):3540-3546.
    [100]Buddle BM, Wedlock DN, Parlane NA, Corner LA, De Lisle GW, Skinner MA. Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination. Infection and Immunity,2003,71(11):6411-6419.
    [101]Hope JC, Thom ML, Villarreal-Ramos B, Vordermeier HM, Hewinson RG, Howard CJ. Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovis. Clinical and Experimental Immunology, 2005,139(1):48-56.
    [102]Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, et al. Newborns develop a Thl-type immune response to Mycobacterium bo vis bacillus Calmette-Guerin vaccination. J Immunol,1999,163(4):2249-2255.
    [103]Vekemans J, Amedei A, Ota MO, D'Elios MM, Goetghebuer T, Ismaili J, et al. Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. European Journal of Immunology,2001,31(5):1531-1535.
    [104]Hope JC, Sopp P, Howard CJ. NK-like CD8(+) cells in immunologically naive neonatal calves that respond to dendritic cells infected with Mycobacterium bovis BCG. Journal of Leukocyte Biology,2002,71 (2):184-194.
    [1]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature,1998, 392(6673):245-252.
    [2]Merad M, Manz MG Dendritic cell homeostasis. Blood,2009,113(15):3418-3427.
    [3]Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunology and Cell Biology,2008,86(5):439-452.
    [4]Foged C, Sundblad A, Hovgaard L. Targeting vaccines to dendritic cells. Pharmaceutical Research,2002,19(3):229-238.
    [5]Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class Ⅱ compartment:downregulation by cytokines and bacterial products. The Journal of Experimental Medicine,1995,182(2):389-400.
    [6]Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nature Reviews,2002,2(3): 151-161.
    [7]Omatsu Y, Iyoda T, Kimura Y, Maki A, Ishimori M, Toyama-Sorimachi N, et al. Development of murine plasmacytoid dendritic cells defined by increased expression of an inhibitory NK receptor, Ly49Q. J Immunol,2005,174(11):6657-6662.
    [8]Toyama-Sorimachi N, Omatsu Y, Onoda A, Tsujimura Y, Iyoda T, Kikuchi-Maki A, et al. Inhibitory NK receptor Ly49Q is expressed on subsets of dendritic cells in a cellular maturation-and cytokine stimulation-dependent manner. J Immunol,2005,174(8):4621-4629.
    [9]Kamogawa-Schifter Y, Ohkawa J, Namiki S, Arai N, Arai K, Liu Y. Ly49Q defines 2 pDC subsets in mice. Blood,2005,105(7):2787-2792.
    [10]Diao J, Winter E, Chen W, Cantin C, Cattral MS. Characterization of distinct conventional and plasmacytoid dendritic cell-committed precursors in murine bone marrow. J Immunol,2004, 173(3):1826-1833.
    [11]Liu YJ. IPC:professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annual Review of Immunology,2005,23:275-306.
    [12]Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B. The dermis contains langerin+dendritic cells that develop and function independently of epidermal Langerhans cells. The Journal of Experimental Medicine,2007,204(13):3119-3131.
    [13]Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski MJ, et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood,2006,107(9):3600-3608.
    [14]O'Keeffe M, Hochrein H, Vremec D, Scott B, Hertzog P, Tatarczuch L, et al. Dendritic cell precursor populations of mouse blood:identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood,2003,101(4):1453-1459.
    [15]Lian ZX, Okada T, He XS, Kita H, Liu YJ, Ansari AA, et al. Heterogeneity of dendritic cells in the mouse liver:identification and characterization of four distinct populations. J Immunol, 2003,170(5):2323-2330.
    [16]Okada T, Lian ZX, Naiki M, Ansari AA, Ikehara S, Gershwin ME. Murine thymic plasmacytoid dendritic cells. European Journal of Immunology,2003,33(4):1012-1019.
    [17]McCullough KC, Ruggli N, Summerfield A. Dendritic cells--at the front-line of pathogen attack. Veterinary Immunology and Immunopathology,2009,128(1-3):7-15.
    [18]Fitzgerald-Bocarsly P, Dai J, Singh S. Plasmacytoid dendritic cells and type Ⅰ IFN:50 years of convergent history. Cytokine & Growth Factor Reviews,2008,19(1):3-19.
    [19]Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity,2008,29(3):352-361.
    [20]Hoeffel G, Ripoche AC, Matheoud D, Nascimbeni M, Escriou N, Lebon P, et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity,2007,27(3):481-92.
    [21]Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology,2006, 7(6):652-662.
    [22]Sapoznikov A, Fischer JA, Zaft T, Krauthgamer R, Dzionek A, Jung S. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. The Journal of Experimental Medicine,2007,204(8):1923-1933.
    [23]Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nature Reviews,2001,1(2):126-134.
    [24]Mouries J, Moron G, Schlecht G, Escriou N, Dadaglio G, Leclerc C. Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood,2008,112(9): 3713-3722.
    [25]Proietto AI, O'Keeffe M, Gartlan K, Wright MD, Shortman K, Wu L, et al. Differential production of inflammatory chemokines by murine dendritic cell subsets. Immunobiology,2004, 209(1-2):163-172.
    [26]Yoneyama H, Matsuno K, Toda E, Nishiwaki T, Matsuo N, Nakano A, et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. The Journal of Experimental Medicine,2005, 202(3):425-435.
    [27]Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol,2005, 174(8):4465-4469.
    [28]Salio M, Palmowski MJ, Atzberger A, Hermans IF, Cerundolo V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. The Journal of Experimental Medicine,2004, 199(4):567-579.
    [29]Krug A, Veeraswamy R, Pekosz A, Kanagawa O, Unanue ER, Colonna M, et al. Interferon-producing cells fail to induce proliferation of naive T cells but can promote expansion and T helper 1 differentiation of antigen-experienced unpolarized T cells. The Journal of Experimental Medicine,2003,197(7):899-906.
    [30]Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Medicine,2007,13(5):543-551.
    [31]Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F, et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. The Journal of Experimental Medicine, 2001,194(12):1823-1834.
    [32]Jaehn PS, Zaenker KS, Schmitz J, Dzionek A. Functional dichotomy of plasmacytoid dendritic cells:antigen-specific activation of T cells versus production of type I interferon. European Journal of Immunology,2008,38(7):1822-1832.
    [33]Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJ, Figdor CG, de Vries IJ, et al. Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood,2008,111(8):4245-4253.
    [34]Huang FP, MacPherson GG. Continuing education of the immune system--dendritic cells, immune regulation and tolerance. Current Molecular Medicine,2001,1(4):457-68.
    [35]Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunology,2002,3(12): 1135-1141.
    [36]Flacher V, Sparber F, Tripp CH, Romani N, Stoitzner P. Targeting of epidermal Langerhans cells with antigenic proteins:attempts to harness their properties for immunotherapy. Cancer Immunol Immunother,2009,58(7):1137-1147.
    [37]Cunningham AL, Carbone F, Geijtenbeek TB. Langerhans cells and viral immunity. European Journal of Immunology 2008,38(9):2377-2385.
    [38]Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, et al. Blood-derived dermal langerin+dendritic cells survey the skin in the steady state. The Journal of Experimental Medicine,2007,204(13):3133-3146.
    [39]Chomiczewska D, Trznadel-Budzko E, Kaczorowska A, Rotsztejn H. [The role of Langerhans cells in the skin immune system]. Pol Merkur Lekarski,2009,26(153):173-177.
    [40]Cao T, Ueno H, Glaser C, Fay JW, Palucka AK, Banchereau J. Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. European Journal of Immunology,2007,37(9):2657-2667.
    [41]Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, et al. Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science,2003, 301(5641):1925-1928.
    [42]Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Thl responses to herpes simplex virus-2. The Journal of Experimental Medicine,2003,197(2):153-162.
    [43]Hemmi H, Yoshino M, Yamazaki H, Naito M, Iyoda T, Omatsu Y, et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-beta1-dependent cells. International Immunology,2001,13(5):695-704.
    [44]van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol,2007,178(4):1986-1990.
    [45]Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O, et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol,2006,177(11):7959-7967.
    [46]Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature Immunology,2009, 10(5):488-495.
    [47]Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, et al. Identification of a novel population of Langerin+ dendritic cells. The Journal of Experimental Medicine,2007, 204(13):3147-3156.
    [48]Wilson NS, El-Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood,2003,102(6): 2187-2194.
    [49]Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nature Reviews,2007,7(1):19-30.
    [50]Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood,2008, 112(8):3264-3273.
    [51]Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. The Journal of Clinical Investigation,2008,118(6):2098-2110.
    [52]Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. The Journal of Experimental Medicine, 2007,204(8):1757-1764.
    [53]Shortman K, Lahoud MH, Caminschi I. Improving vaccines by targeting antigens to dendritic cells. Experimental & Molecular Medicine,2009,41(2):61-66.
    [54]Schattenberg D, Schott M, Reindl G, Krueger T, Tschoepe D, Feldkamp J, et al. Response of human monocyte-derived dendritic cells to immunostimulatory DNA. European Journal of Immunology,2000,30(10):2824-2831.
    [55]Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS, et al. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother,2004,27(3):191-200.
    [56]Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity,2007,26(4):503-517.
    [57]Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. The Journal of Experimental Medicine,2002,195(10):1279-1288.
    [58]Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Research,2001,61(3):842-847.
    [59]Tacken PJ, Torensma R, Figdor CG Targeting antigens to dendritic cells in vivo. Immunobiology,2006,211(6-8):599-608.
    [60]Hattori Y, Kawakami S, Suzuki S, Yamashita F, Hashida M. Enhancement of immune responses by DNA vaccination through targeted gene delivery using mannosylated cationic liposome formulations following intravenous administration in mice. Biochemical and Biophysical Research Communications,2004,317(4):992-999.
    [61]Arigita C, Bevaart L, Everse LA, Koning GA, Hennink WE, Crommelin DJ, et al. Liposomal meningococcal B vaccination:role of dendritic cell targeting in the development of a protective immune response. Infection and Immunity,2003,71(9):5210-5218.
    [62]Lisziewicz J, Trocio J, Whitman L, Varga G, Xu J, Bakare N, et al. DermaVir:a novel topical vaccine for HIV/AIDS. The Journal of Investigative Dermatology,2005,124(1):160-169.
    [63]Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. The Journal of Clinical Investigation,2002,109(12):1519-1526.
    [64]O'Connor TP, Crystal RG. Genetic medicines:treatment strategies for hereditary disorders. Nat Rev Genet,2006,7(4):261-276.
    [65]Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL, et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. Journal of Virology, 2003,77(21):11367-11377.
    [66]Brandao JG, Scheper RJ, Lougheed SM, Curiel DT, Tillman BW, Gerritsen WR, et al. CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific
    single-chain Fv antibody enhances cytotoxic T cell activation. Vaccine,2003,21(19-20): 2268-2272.
    [67]Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity,2001,14(3):303-313.
    [68]Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nature Immunology,2005, 6(6):593-599.
    [69]Haicheur N, Bismuth E, Bosset S, Adotevi O, Warnier G, Lacabanne V, et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J Immunol,2000,165(6): 3301-3308.
    [70]Suzue K, Young RA. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol,1996,156(2):873-879.
    [71]Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nature Reviews, 2002,2(3):185-194.
    [72]Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. The Journal of Experimental Medicine,2001,194(6):769-779.
    [73]Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B, Soares H, et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. The Journal of Experimental Medicine,2006,203(3):607-617.
    [74]Boscardin SB, Hafalla JC, Masilamani RF, Kamphorst AO, Zebroski HA, Rai U, et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. The Journal of Experimental Medicine,2006,203(3):599-606.
    [75]Tanne A, Ma B, Boudou F, Tailleux L, Botella H, Badell E, et al. A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis. The Journal of Experimental Medicine,2009, Sep 21.
    [76]Pyz E, Marshall AS, Gordon S, Brown GD. C-type lectin-like receptors on myeloid cells. Annals of Medicine,2006,38(4):242-251.
    [77]Mansour MK, Latz E, Levitz SM. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J Immunol,2006,176(5):3053-3061.
    [78]Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. The Journal of Experimental Medicine,2003,197(9): 1119-1124.
    [79]Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL. The role of dendritic cell C-type lectin receptors in HIV pathogenesis. Journal of Leukocyte Biology,2003,74(5):710-718.
    [80]Van Kooyk Y, Engering A, Lekkerkerker AN, Ludwig IS, Geijtenbeek TB. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Current Opinion in Immunology, 2004,16(4):488-493.
    [81]Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nature Reviews,2002,2(2):77-84.
    [82]Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors:shaping immune responses. Nature Reviews,2009,9(7):465-479.
    [83]Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. The Journal of Biological Chemistry,2006,281(50):38854-38866.
    [84]Cao W, Zhang L, Rosen DB, Bover L, Watanabe G, Bao M, et al. BDCA2/Fc epsilon RI gamma complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells. PLoS Biology,2007,5(10):e248.
    [85]Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity,2007,26(5):605-616.
    [86]Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity,2005,22(4):507-517.
    [87]Richard M, Thibault N, Veilleux P, Gareau-Page G, Beaulieu AD. Granulocyte macrophage-colony stimulating factor reduces the affinity of SHP-2 for the ITIM of CLECSF6 in neutrophils:a new mechanism of action for SHP-2. Molecular Immunology,2006,43(10): 1716-1721.
    [88]van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nature Immunology,2008,9(6):593-601.
    [89]Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nature Reviews,2008,8(12):935-947.
    [90]Kato M, McDonald KJ, Khan S, Ross IL, Vuckovic S, Chen K, et al. Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. International Immunology,2006,18(6): 857-869.
    [91]Keler T, He L, Ramakrishna V, Champion B. Antibody-targeted vaccines. Oncogene,2007, 26(25):3758-3767.
    [92]den Haan JM, Lehar SM, Bevan MJ. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. The Journal of Experimental Medicine,2000,192(12):1685-1696.
    [93]Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature,1995,375(6527):151-155.
    [94]Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science,2007, 315(5808):107-111.
    [95]Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Research,2005,65(15): 7007-7012.
    [96]Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to
    antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. The Journal of Experimental Medicine,2002,196(12):1627-1638.
    [97]Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. The Journal of Biological Chemistry,2008,283(24):16693-16701.
    [98]Belz GT, Shortman K, Bevan MJ, Heath WR. CD8alpha+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J Immunol, 2005,175(1):196-200.
    [99]Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, Carbone FR, et al. Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol,2004,172(4):1996-2000.
    [100]Wilson NS, Behrens GM, Lundie RJ, Smith CM, Waithman J, Young L, et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunology 2006,7(2):165-172.
    [101]Idoyaga J, Suda N, Suda K, Park CG, Steinman RM. Antibody to Langerin/CD207 localizes large numbers of CD8alpha+ dendritic cells to the marginal zone of mouse spleen. Proceedings of the National Academy of Sciences of the United States of America,2009,106(5):1524-1529.
    [102]de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Medicine,2007, 13(3):367-371.
    [103]Takahara K, Yashima Y, Omatsu Y, Yoshida H, Kimura Y, Kang YS, et al. Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. International Immunology,2004,16(6):819-829.
    [104]Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C, Pin JJ, Kissenpfennig A, Mattei MG, et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol,2002,168(2):782-792.
    [105]Idoyaga J, Cheong C, Suda K, Suda N, Kim JY, Lee H, et al. Cutting edge:langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J Immunol,2008,180(6):3647-3650.
    [106]Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nature Immunology,2006,7(12):1258-1265.
    [107]Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol,2002,168(5):2118-2126.
    [108]Torrelles JB, Azad AK, Henning LN, Carlson TK, Schlesinger LS. Role of C-type lectins in mycobacterial infections. Current Drug Targets,2008,9(2):102-112.
    [109]Schaefer M, Reiling N, Fessler C, Stephani J, Taniuchi I, Hatam F, et al. Decreased pathology and prolonged survival of human DC-SIGN transgenic mice during mycobacterial infection. J Immunol,2008,180(10):6836-4685.
    [110]Gramberg T, Caminschi I, Wegele A, Hofmann H, Pohlmann S. Evidence that multiple defects in murine DC-SIGN inhibit a functional interaction with pathogens. Virology,2006,345(2): 482-491.
    [111]Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP, et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood,2005,106(4):1278-1285.
    [112]Caminschi I, Ahmet F, Heger K, Brady J, Nutt SL, Vremec D, et al. Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. The Journal of Experimental Medicine,2007,204(11):2579-2590.
    [113]Beyer M, Wang H, Peters N, Doths S, Koerner-Rettberg C, Openshaw PJ, et al. The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo. Respiratory Research,2005,6:70.
    [114]Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M, et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nature Medicine, 2006,12(2):207-213.
    [115]Wang H, Griffiths MN, Burton DR, Ghazal P. Rapid antibody responses by low-dose, single-step, dendritic cell-targeted immunization. Proceedings of the National Academy of Sciences of the United States of America,2000,97(2):847-852.
    [116]Berry JD, Licea A, Popkov M, Cortez X, Fuller R, Elia M, et al. Rapid monoclonal antibody generation via dendritic cell targeting in vivo. Hybridoma and Hybridomics,2003,22(1):23-31.
    [117]Castro FV, Tutt AL, White AL, Teeling JL, James S, French RR, et al. CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. European journal of immunology,2008,38(8):2263-2273.
    [118]Bolland S, Ravetch JV. Inhibitory pathways triggered by ITIM-containing receptors. Advances in Immunology,1999,72:149-177.
    [119]Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nature Reviews,2008,8(1):34-47.
    [120]Takai T. Roles of Fc receptors in autoimmunity. Nature Reviews,2002,2(8):580-592.
    [121]Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. The Journal of Experimental Medicine,1999,189(2):371-380.
    [122]Wallace PK, Tsang KY, Goldstein J, Correale P, Jarry TM, Schlom J, et al. Exogenous antigen targeted to FcgammaRI on myeloid cells is presented in association with MHC class I. Journal of Immunological Methods,2001,248(1-2):183-194.
    [123]Keler T, Guyre PM, Vitale LA, Sundarapandiyan K, van De Winkel JG, Deo YM, et al. Targeting weak antigens to CD64 elicits potent humoral responses in human CD64 transgenic mice. J Immunol,2000,165(12):6738-6742.
    [124]Kalergis AM, Ravetch JV. Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. The Journal of Experimental Medicine,2002, 195(12):1653-1659.
    [125]Sallusto F, Lanzavecchia A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. The Journal of experimental medicine,1999,189(4):611-614.
    [126]Corbett AJ, Caminschi I, McKenzie BS, Brady JL, Wright MD, Mottram PL, et al. Antigen delivery via two molecules on the CD8-dendritic cell subset induces humoral immunity in the absence of conventional "danger". European journal of Immunology,2005,35(10):2815-2825.
    [127]Carter RW, Thompson C, Reid DM, Wong SY, Tough DF. Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J Immunol,2006,177(4):2276-2284.
    [128]Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol,1996,157(4):1406-1414.
    [129]Tacken PJ, de Vries IJ, Torensma R, Figdor CG Dendritic-cell immunotherapy:from ex vivo loading to in vivo targeting. Nature Reviews,2007,7(10):790-802.
    [1]Ottenhoff TH. Overcoming the global crisis:"yes, we can", but also for TB...? European Journal of Immunology,2009,39(8):2014-2020.
    [2]Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy:from ex vivo loading to in vivo targeting. Nature Reviews,2007,7(10):790-802.
    [3]Shortman K, Lahoud MH, Caminschi I. Improving vaccines by targeting antigens to dendritic cells. Experimental & Molecular Medicine,2009,41(2):61-66.
    [4]Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. The Journal of Experimental Medicine,2001,194(6):769-779.
    [5]Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B, Soares H, et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. The Journal of Experimental Medicine,2006,203(3):607-617.
    [6]Boscardin SB, Hafalla JC, Masilamani RF, Kamphorst AO, Zebroski HA, Rai U, et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. The Journal of Experimental Medicine,2006,203(3):599-606.
    [7]Howarth M, Chinnapen DJ, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods,2006, 3(4):267-273.
    [8]Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. The Journal of Experimental Medicine,2004,199(6):815-824.
    [9]Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science,2007,315(5808): 107-111.
    [10]Soares H, Waechter H, Glaichenhaus N, Mougneau E, Yagita H, Mizenina O, et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but. CD70-dependent mechanism in vivo. The Journal of Experimental Medicine,2007,204(5): 1095-1106.
    [11]Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. The Journal of Clinical Investigation,2008,118(6):2098-2110.
    [12]Corbett AJ, Caminschi I, McKenzie BS, Brady JL, Wright MD, Mottram PL, et al. Antigen delivery via two molecules on the CD8-dendritic cell subset induces humoral immunity in the absence of conventional "danger". European Journal of Immunology,2005,35(10):2815-2825.
    [13]Caminschi I, Proietto Al, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood,2008, 112(8):3264-3273.
    [14]White J, Kappler J, Marrack P. Production and characterization of T cell hybridomas. Methods Mol Biol,2000,134:185-193.
    [15]Gogolak P, Rethi B, Hajas G, Rajnavolgyi E. Targeting dendritic cells for priming cellular immune responses. J Mol Recognit,2003,16(5):299-317.
    [1]Reis e Sousa C. Dendritic cells in a mature age. Nature Reviews,2006,6(6):476-483.
    [2]Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nature Reviews,2007,7(1):19-30.
    [3]Randolph GJ, Ochando J, Partida-Sanchez S. Migration of dendritic cell subsets and their precursors. Annual Review of Immunology,2008,26:293-316.
    [4]Steinman RM. Dendritic cells in vivo:a key target for a new vaccine science. Immunity,2008, 29(3):319-324.
    [5]Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature,2007, 449(7161):419-426.
    [6]Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nature Reviews,2007,7(7):543-555.
    [7]Tanne A, Ma B, Boudou F, Tailleux L, Botella H, Badell E, et al. A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis. The Journal of Experimental Medicine,2009,206(10):2205-2220.
    [8]Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. The Journal of Experimental Medicine,2002,196(12):1627-1638.
    [9]Boscardin SB, Hafalla JC, Masilamani RF, Kamphorst AO, Zebroski HA, Rai U, et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. The Journal of Experimental Medicine,2006,203(3):599-606.
    [10]Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science,315(5808):107-111.
    [11]Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B, Soares H, et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. The Journal of Experimental Medicine,2006,203(3):607-617.
    [12]Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. The Journal of Clinical Investigation,2008,118(6):2098-2110.
    [13]Belkaid Y. Regulatory T cells and infection:a dangerous necessity. Nature Reviews,2007, 7(11):875-888.
    [14]Kaufmann SH, Baumann S, Nasser Eddine A. Exploiting immunology and molecular genetics for rational vaccine design against tuberculosis. Int J Tuberc Lung Dis,2006, 10(10):1068-1079.
    [15]Korbel DS, Schneider BE, Schaible UE. Innate immunity in tuberculosis:myths and truth. Microbes and infection,2008,10(9):995-1004.
    [16]Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M. Tuberculosis control in the era of HIV. Nature Reviews,2005,5(10):819-826.
    [17]Foged C, Sundblad A, Hovgaard L. Targeting vaccines to dendritic cells. Pharmaceutical Research,2002,19(3):229-238.
    [18]Shrimpton RE, Butler M, Morel AS, Eren E, Hue SS, Ritter MA. CD205 (DEC-205):a recognition receptor for apoptotic and necrotic self. Molecular Immunology,2009, 46(6):1229-1239.
    [19]Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature,1995,375(6527):151-155.
    [20]Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C, Pin JJ, Kissenpfennig A, Mattei MG, et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol,2002,168(2):782-792.
    [21]Idoyaga J, Cheong C, Suda K, Suda N, Kim JY, Lee H, et al. Cutting edge:langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J Immunol,2008,180(6):3647-3650.
    [22]Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, et al. Identification of a novel population of Langerin+ dendritic cells. The Journal of Experimental Medicine,2007, 204(13):3147-56.
    [23]Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nature Immunology,2009, 10(10):1081-1088.
    [24]Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). The Journal of Experimental Medicine,2001,193(9):1035-1044.
    [25]Majlessi L, Simsova M, Jarvis Z, Brodin P, Rojas MJ, Bauche C, et al. An increase in antimycobacterial Thl-cell responses by prime-boost protocols of immunization does not enhance protection against tuberculosis. Infection and Immunity,2006,74(4):2128-2137.
    [26]Hervas-Stubbs S, Majlessi L, Simsova M, Morova J, Rojas MJ, Nouze C, et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infection and Immunity,2006,74(6):3396-3407.
    [27]Preville X, Ladant D, Timmerman B, Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Research,2005,65(2):641-9.
    [28]Kurts C. CD11c:not merely a murine DC marker, but also a useful vaccination target. European Journal of Immunology,2008,38(8):2072-2075.
    [29]Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol,2006, 177(5):3260-3265.
    [30]Ingalls RR, Golenbock DT. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. The Journal of Experimental Medicine,1995,181(4):1473-1479.
    [31]Rezzonico R, Chicheportiche R, Imbert V, Dayer JM. Engagement of CD11b and CD11c beta2 integrin by antibodies or soluble CD23 induces IL-lbeta production on primary human monocytes through mitogen-activated protein kinase-dependent pathways. Blood,2000, 95(12):3868-3877.
    [32]Rezzonico R, Imbert V, Chicheportiche R, Dayer JM. Ligation of CDllb and CDllc beta(2) integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1 alpha (MIP-1 alpha) and MIP-lbeta production in primary human monocytes through a pathway dependent on nuclear factor-kappaB. Blood,2001,97(10):2932-2940.
    [33]Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors:shaping immune responses. Nature Reviews,2009,9(7):465-479.
    [34]Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood,2008, 112(8):3264-3273.
    [35]Joffre O, Nolte MA, Sporri R, Reis e Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunological Reviews,2009,227(1):234-247.
    [36]Kawai T, Akira S. Toll-like receptor and RIG-Ⅰ-like receptor signaling. Annals of the New York Academy of Sciences,2008,1143:1-20.
    [37]Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006,24(2):179-189.
    [38]Gogolak P, Rethi B, Hajas G, Rajnavolgyi E. Targeting dendritic cells for priming cellular immune responses. J Mol Recognit,2003,16(5):299-317.
    [39]Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. The Journal of Experimental Medicine,1999,189(2):371-380.
    [40]Flynn JL, Chan J. Immunology of tuberculosis. Annual Review of Immunology,2001, 19:93-129.
    [41]Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol,2006, 177(7):4662-4669.
    [42]Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol,2007,178(6):3786-3796.
    [43]Scriba TJ, Kalsdorf B, Abrahams DA, Isaacs F, Hofmeister J, Black G, et al. Distinct, specific IL-17-and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol,2008,180(3):1962-1970.
    [44]Chackerian AA, Chen SJ, Brodie SJ, Mattson JD, McClanahan TK, Kastelein RA, et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infection and Immunity,2006,74(11):6092-6099.
    [45]Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology,2007,8(4):369-377.
    [46]Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity,2005, 22(3):329-341.
    [47]Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature,2002,420(6915):502-507.
    [48]Jaron B, Maranghi E, Leclerc C, Majlessi L. Effect of attenuation of Treg during BCG immunization on anti-mycobacterial Th1 responses and protection against Mycobacterium tuberculosis. PloS One,2008,3(7):e2833.
    [49]Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathogens,2009,5(4):e1000392.
    [50]Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Doherty TM, et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine:efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol,2005, 174(10):6332-6339.
    [1]Ly H, McMurray DN. Tuberculosis vaccines in the pipeline[J]. Expert Rev Vaccines.2008,7(5): 635-650.
    [2]Dye C, Espinal MA, Watt CJ, et al. Worldwide incidence of multidrug-resistant tuberculosis[J]. J Infect Dis,2002,185(8):1197-1202.
    [3]World Health Organization. Tuberculosis-Fact Sheet No.104,2002. http://www.who.int/mediacentre/factsheets.
    [4]Zumal A, Malon P, Henderson J, et al. Impact of HIV on tuberculosis[J]. Postgrad Med J, 2000,76(859):259-268.
    [5]Hervas-Stubbs S, Majlessi L, Simsova M, et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection[J]. Infect Immun,2006,74(6):3396-3407.
    [6]Doherty TM, Olsen AW, Weischenfeldt J, et al. Comparative analysis of different vaccine constructs expressing defined antigens from Mycobacterium tuberculosis[J]. J Infect Dis, 2004,190(12):2146-2153.
    [7]Brockstedt DQ Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies[J]. Expert Rev Vaccines,2008,7(7):1069-1084.
    [8]Lieberman J, Frankel FR. Engineered Listeria monocytogenes as an AIDS vaccine[J]. Vaccine, 2002,20(15):2007-2010.
    [9]Pan ZK, Ikonomidis G, Lazenby A, et al. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours[J]. Nat Med,1995,1:471-477.
    [10]Paterson Y, Ikonomidis G Recombinant Listeria monocytogenes cancer vaccines[J]. Curr Opin Immunol,1996,8:664-669.
    [11]Shen H, Slifka MK, Matloubian M, et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity [J]. Proc Natl Acad Sci USA,1995,92:3987-3991.
    [12]Slifka MK, Shen H, Matloubian M, et al. Antiviral cytotoxic T-cell memory by vaccination with recombinant Listeria monocytogenes[J]. J Virol,1996,70:2902-2910.
    [13]Ikonomidis G, Portnoy DA, Gerhard W, et al. Influenza-specific immunity induced by recombinant Listeria monocytogenes vaccines[J]. Vaccine,1997,15:433-440.
    [14]Sewell DA, Douven D, Pan ZK, et al. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine[J]. Arch Otolaryngol Head Neck Surg,2004,130(1):92-97.
    [15]Souder NC, Sewell DA, Pan ZK, et al. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer[J]. Cancer Immun,2007,6:72.
    [16]Low JC, Donachie WA. A review of Listeria monocytogenes and listeriosis[J]. Vet J,1997, 153(1):9-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700