用户名: 密码: 验证码:
免培养法对新疆热气泉土壤原核微生物多样性及生物地理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用免培养方法研究了新疆热气泉土壤原核微生物多样性及生物地理。通过构建细菌和古菌16S rDNA克隆文库,分析新疆玛纳斯热气泉土壤细菌和古菌多样性。采用T-RFLP方法,分析新疆玛纳斯3眼和石河子1眼热气泉土壤硫氧化和硫循环菌多样性及其与环境因子、样点位置间关系。主要研究内容与实验结果如下:
     1.从新疆玛纳斯热气泉土壤细菌16S rDNA克隆文库中,随机挑选170个阳性克隆,用Hae III限制性内切酶进行RFLP分析,经分型测序,构建系统发育树,得到29个不同的分类单元(operational taxonomic unit,OTU)。系统发育分析归为6个门:酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)和浮霉菌门(Planctomycetes),其中厚壁菌门(Firmicutes)为绝对优势类群,占整个细菌文库的71%。29个OTUs中有14条序列与GenBank中相关序列的相似性低于97%(序列长度约1.5 kb),占序列总数的48%。结果表明热气泉土壤细菌多样性较低,但存在大量潜在细菌新种。
     2.从新疆玛纳斯热气泉土壤古菌16S rDNA克隆文库中,随机挑选98个阳性隆子,用HhaⅠ限制性内切酶进行RFLP分析,经分型测序,构建系统发育树,共得到16个不同的分类单元(operational taxonomic unit,OTU)。系统发育分析均归为泉古菌门(Crenarchaeota),隶属于该门的两个分类单元(GroupⅠ和GroupⅡ)。结果表明栖息于热气泉土壤古菌中泉古菌占绝对优势。
     3.从新疆玛纳斯3眼热气泉和石河子市1眼热气泉土壤总DNA中扩增硫氧化和硫还原菌arp A基因后,进行T-RFLP分析,结合测定土壤环境因子参数,经聚类分析、主成分分析(PCA)和典型相关分析(CCA),结果表明土壤温度和pH值影响热气泉土壤硫氧化和硫还原菌多样性,即在一定范围内,土壤温度和pH值能预测土壤硫氧化和硫还原菌多样性,而与其它环境因子无关。
     4.从新疆玛纳斯3眼热气泉和石河子市1眼热气泉土壤总DNA中扩增细菌16S rDNA后,进行T-RFLP分析,并结合测定土壤环境因子参数,经聚类分析、主成分分析(PCA)和典型相关分析(CCA),结果表明除温度和pH值外的土壤有机质含量、铵态氮和硝态氮含量等理化因子影响土壤细菌多样性,此外样点间地理位置差异也影响土壤细菌多样性。
In order to investigate the prokaryotic diversity and biogeography in the hot gas spring soils, Xinjiang by Culture-independent Approach, we constructed bacterial and archaeal 16S rDNA clone libraries and then analysed the bacterial and archaeal diversity of the hot gas spring in MaNasi country. The aprA gene products of sulfate-reducing and sulfur-oxidizing prokaryote and bacterial 16S rDNA genes were analyzed with Terminal-Restriction Fragment Length Polymorphisms method and then studied the relationship between the Shannon-index and environmental factors. The main results were as follows:
     (1)170 positive clones were randomly sleceted from the Bacterial 16S rDNA clone library,then processed by restriction fragment length polymorphism(RFLP) method using HaeⅢ. Unique rDNA types clones were sequenced, analysed and then constructed phylogenetic tree. Twenty-nine operational taxonomic units (OTU) from 170 positive clones were found belonging to 6 phyla: Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Actinobacteria. Firmicutes (71%) was the absolutely dominant components of the soil bacterial community. 14 sequences (about 1.5 kb) from 29 OTUs showed less affiliation with known taxa(<97% sequence similarity).Soil bacterial diversity is low in the hot gas spring soil, but exit a large number of new unknown taxon in this environment.
     (2) 98 positive clones were randomly sleceted from the Archaeal 16S rDNA clone library,then processed by restriction fragment length polymorphism(RFLP) method using HhaⅠ. Unique rDNA types clones were sequenced, analysed and then constructed phylogenetic tree.Sixteen operational taxonomic units (OTU) from 98 positive clones were found belonging to Crenarchaeota and divided two groups. Crenarchaeota was the absolutely dominant components of the soil bacterial community inhabited in the hot gas spring soils.
     (3)The PCR products of aprA gene from four hot gas spring soils were analysed by Terminal-Restriction Fragment Length Polymorphisms (RFLP) method with two different kind of restricted enzyme(HaeⅢand HhaⅠ). Combined with the environmental parameters by statistical analysis, investigated the relationship between the biodiversity of sulfate-reducing and sulfur-oxidizing prokaryotes inhabitating in the hot gas spring soil and environmental factors, the location of the sampling sites. The results revealed that the biodiversity just only was related to the temperature and pH of soils. So we can forecast the the biodiversity sulfate-reducing and sulfur-oxidizing prokaryotes in soils according to the temperature and pH of the four hot gas springs soils in a certain range.
     (4)The products of bacterial 16S rDNA from four hot gas spring soils were analysed by Terminal-Restriction Fragment Length Polymorphisms (RFLP) method with two different kind of restricted enzyme(RsaⅠand HhaⅠ).Combined with the environmental parameters by statistical analysis, investigated the relationship between the biodiversity inhabitating in the hot gas spring soil and environmental factors, the location of the sampling sites. The results revealed that the biodiversity of bacteria was related to the environmental factors except temperature and pH.
引文
[1]张建民,管海燕,曹代勇,等.中国地下煤火研究与治理[M].北京:煤炭工业出版社,2008.
    [2]吴继尧,姚华,郑玉建.新疆热气泉调查分析[J].新疆医学院学报(Acta Academiae Medicinae Xin Jiang). 1994,17(2):93-96.
    [3]新疆地方志编纂委员会.新疆通志·地质矿产志[M].新疆乌鲁木齐:新疆人民出版社,1997.
    [4] Dion P,Nautiyal CS. Microbiology of Extreme Soils. Germany,2008.
    [5] Norris TB, Wraith JM, Castenholz RW, et al. Soil microbial community structure across a thermal gradient following a geothermal heating event[J]. Applied And Environmental Microbiology,2002,68:6300–6309.
    [6] Yeager CM, Northup DE, Grow CC, et al. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil[J]. Applied And Environmental Microbiology,2005,71:2713–2722.
    [7] Tobin-Janzen T,Shade A,Marshall L,et al. Nitrogen changes and domain bacteria ribotype diversity in soils overlying the Chentralia,Pennsylvania underground coal mine fire[J]. Soil science,2005,170(3):191-201.
    [8] Ramette A,Tiedje JM. Biogeography:An Emerging Cornerstone for Understanding Prokaryotic Diversity, Ecology, and Evolution[J]. Microbial Ecology,2007,53:197-207.
    [9]宋福强,微生物生态学[M].北京:化学工业出版社,2008.
    [10] Hughes-Martiny JB,Bohannan BJM,Brown JH,et al. Microbial biogeography:putting microorganisms on the map[J]. Nature,2006,4:102-112.
    [11] Fulthorpe RR, Rhodes AN , Tiedje JM. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria[J]. Appl Environ Microbiol. 1998,64: 1620–1627.
    [12] Cho JC,Tiedje JM.Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil[J]. Appl Environ Microbiol. 2000,66:5448–5456.
    [13] Sliwinski MK,Goodman RM. Comparison of Crenarchaeal consortia inhabiting therhizosphere of diverse terrestrial plants with those in bulk soil in native environments[J]. Appl Environ Microbiol. 2004,70:1821–1826.
    [14] Sliwinski MK,Goodman RM. Spatial heterogeneity of Crenarchaeal assemblages within mesophilic soil ecosystems as revealed by PCR-singlestranded conformation polymorphism profiling[J]. Appl Environ Microbiol. 2004,70:1811–1820.
    [15] McArthur JV,Kovacic DA,Smith MH. Genetic diversity in natural populations of a soil bacterium across a landscape gradient[J]. Proc. Natl Acad. Sci.USA 1988:85,9621–9624.
    [16] Buckley DH,Schmidt TM. Diversity and dynamics of microbial communities in soils from agro-ecosystems[J]. Environ Microbiol. 2003,5:441–452.
    [17] Staddon W J, Trevors JT, Duchesne LC,et al. Soil microbial diversity and community structure across a climatic gradient in western Canada[J]. Biodivers. Conserv. 1998,7:1081-1092.
    [18] M.T.马迪根,J.M.马丁克,J.帕克.微生物生物学[M].杨文博等.北京:科学出版社,2004.
    [19] Kirka JL , Beaudettea LA , Hart LM , et al.Methods of studying soil microbial diversity[J].Journal of Microbiological Methods.2004,58:169– 188.
    [20] Rochelle M S. Microbial Biodiversity of Thermophilic Communities in Hot Mineral Soils of Tramway Ridge, Mt. Erebus, Antarctica. The University of Waikato[D]. The paper of Master’s Degree. 2007.
    [21] Yeager,CM. et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan desert[J]. Appl Environ Microbiol. 2004,70:973–983.
    [22] Xu J.Microbial ecology in the age of genomics and metagenomics:concepts,tools,and recent advances[J].Molecular Ecology,2006,l5(7):1713-1731.
    [23] Graham JH,Hodge NC,Morton JB.Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae[J]. Appl Environ Microbiol.1995,61:58-64.
    [24] Siciliano SD,Germida JJ.. Biolog analysis and fatty acid methyl ester profiles indicate that Pseudomonad inoculants that promote phytoremediation alter the root-associated microbialcommunity of Bromus biebersteinii[J].Soil Biol Biochem. 1998,30:1717-1723.
    [25] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review[J]. Biol Fertil Soils,1999,29:111–129.
    [26] Torsvik V,Goksoy J,Daae FL.High diversity in DNA of soil bacteria[J]. Appl Environ Microbiol. 1990,56:782-787.
    [27] Torsvik V,Salte K,Soerheim R,Goksoeyr J. Comparison of phenotypic diversity and DNA heterogeneity in apopulation of soil bacteria[J]. Appl Environ Microbiol. 1990,56:776-781.
    [28] Torsvik V,Sorheim R.,Goksoyr J. Total bacterial diversity in soil and sediment communities—a review[J]. J Ind Microbiol,1996,17:170-178.
    [29] Cho J C,Tiedje JM. Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays[J]. Appl Environ Microbiol,2001,67:3677-3682.
    [30] Hubert C,Shen Y,Voordouw G.Composition of toluene-degrading microbial communities from soil at different concentrations of toluene[J]. Appl Environ Microbiol,1999,65:3064-3070.
    [31] Greene EA,Kay JG,Jaber K,et al.Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons[J]. Appl Environ Microbiol. 2000,66:5282- 5289.
    [32]喻曼,曾光明,陈耀宁,等.非培养生物方法在堆肥微生物生态中的应用展望[J],微生物学杂志,2006,26(3):81-85.
    [33] Fisher MM,Triplett EW..Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities[J]. Appl Environ Microbiol,1999,65:4630–4636.
    [34]邹扬.白令海北部浮游细菌及表层沉积物细菌的系统发育多样性分析[D].厦门大学,硕士学位论文,2009.
    [35] Conrad S,Soul T,Bent SJ.et al.MiCA:A Web-Based Tool for the Analysis of Microbial Communities Based on Terminal-Restriction Fragment Length Polymorphisms of 16S and 18S rRNA Genes[J].Microbial Ecology,2007,53:562-570.
    [36]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA提取[J].农业环境科community of Bromus biebersteinii[J].Soil Biol Biochem. 1998,30:1717-1723.
    [25] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review[J]. Biol Fertil Soils,1999,29:111–129.
    [26] Torsvik V,Goksoy J,Daae FL.High diversity in DNA of soil bacteria[J]. Appl Environ Microbiol. 1990,56:782-787.
    [27] Torsvik V,Salte K,Soerheim R,Goksoeyr J. Comparison of phenotypic diversity and DNA heterogeneity in apopulation of soil bacteria[J]. Appl Environ Microbiol. 1990,56:776-781.
    [28] Torsvik V,Sorheim R.,Goksoyr J. Total bacterial diversity in soil and sediment communities—a review[J]. J Ind Microbiol,1996,17:170-178.
    [29] Cho J C,Tiedje JM. Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays[J]. Appl Environ Microbiol,2001,67:3677-3682.
    [30] Hubert C,Shen Y,Voordouw G.Composition of toluene-degrading microbial communities from soil at different concentrations of toluene[J]. Appl Environ Microbiol,1999,65:3064-3070.
    [31] Greene EA,Kay JG,Jaber K,et al.Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons[J]. Appl Environ Microbiol. 2000,66:5282- 5289.
    [32]喻曼,曾光明,陈耀宁,等.非培养生物方法在堆肥微生物生态中的应用展望[J],微生物学杂志,2006,26(3):81-85.
    [33] Fisher MM,Triplett EW..Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities[J]. Appl Environ Microbiol,1999,65:4630–4636.
    [34]邹扬.白令海北部浮游细菌及表层沉积物细菌的系统发育多样性分析[D].厦门大学,硕士学位论文,2009.
    [35] Conrad S,Soul T,Bent SJ.et al.MiCA:A Web-Based Tool for the Analysis of Microbial Communities Based on Terminal-Restriction Fragment Length Polymorphisms of 16S and 18S rRNA Genes[J].Microbial Ecology,2007,53:562-570.
    [36]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA提取[J].农业环境科kingdoms.Proc Natl Acad Sci USA,1977,74:5088-5090.
    [49] Barns S M,Fundyga R E,Jeffries M W ,et a1.Remarkable archaeal diversity detected in a Yellostone National Park hot spring environment[J].Proc Natl Acad Sci USA ,1994,91:1609-l613.
    [50] Huber H,Hohn M J,Rachel R,et a1.A new phylum ofArchaea represented by a nanosized hyperthermophilic symbiont[J].Nature,2002,417,63-67.
    [51] Mori KH,Kakegawa KT,Hanada S. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp nov., a new thermophilic isolate from a hot spring[J]. Extremophiles,2003,7:283-290.
    [52] Meyer B , Kuever J.Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment,Using aprA as Functional Marker Gene[J].APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2007,73(23):7664-7679.
    [53]谭贵良.极端酸性矿山废水中微生物群落组成及多样性[D].中山大学.博士论文.2006.
    [54] Conn VM,Franco CMM.Analysis of the Endophytic Actinobacterial Population in the Roots of Wheat (Triticum aestivum L.) by Terminal Restriction Fragment Length Polymorphism and Sequencing of 16S rRNA Clones[J].APPLIED AND ENVIRONMENTAL MICROBIOLOGY.2004,70(3):1787-1794.
    [55]沈会涛,刘存歧.白洋淀浮游植物群落及其与环境因子的典范对应分析[J].湖泊科学.2008,20(1):773-779.
    [56]郑敬刚,董东平,赵登海,等.贺兰山西坡植被群落特征及其与环境因子的关系[J].生态学报.2008,28(9):4559-4567.
    [57] Fierer N , Jackson RB.The diversity and biogeography of soil bacterial communities[J].PNAS.2006,103(3):626-631.
    [58] Marguet E,Forterre P. Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles[J]. Extremophiles 2, 1998,115–122.
    [59] Franklin RB, Blum LK, McComb AC,et al.A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek banksediments[J]. FEMS Microbiol. Ecol. 2002,42:71-80.
    [60] Kuske,CR. et al. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol. 2002,68:1854-1863.
    [61] Horner-Devine MC, Lage M,Hughes JB,et al. A taxa-area relationship for bacteria. Nature 2004,432:750–753.
    [62] Hewson I,Fuhrman JA. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microbiol.2004,70:3425–3433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700