用户名: 密码: 验证码:
重金属污染土壤中抗汞镉微生物基因的筛选鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究同时从不可培养和可培养细菌两方面入手,从重金属污染土壤中筛选抗重金属汞和镉的基因。通过功能和序列驱动筛选相结合的方法,从已构建的土壤宏基因文库中分离鉴定抗重金属汞和镉的基因。采用传统的微生物分离培养方法,从重金属污染土壤中筛选重金属汞、镉抗性细菌菌株,然后从中分离鉴定抗重金属汞和镉的基因。研究结果如下:
     (1)从北京凉水河床底泥中分离得到3株抗镉菌和3株抗汞菌。在含镉(CdCl_2)为450μg/mL的LB平板上筛选得到3株抗镉菌,编号为KCd1、KCd2、KCd3;在含汞(HgCl_2)70μg/mL的LB平板上筛选得到3株抗汞菌,编号为KHg1、KHg2、KHg3。对6株抗性菌进行了形态观察、生理生化测定、脂肪酸鉴定和16S rDNA序列分析,结果表明,6株菌中有5株为芽胞杆菌属,1株为假单胞菌属。经鉴定在分类上KHg2为Bacillus silvestris,KCd1为Bacillus cereus;KCd3为Bacillus mycoides,而其它菌株的分类地位待定。
     (2)扩增获得了5个抗汞的merA基因,将其克隆于PET-30(a)+,并在E.coli BL21(DE3)中得以成功表达。从分离得到的3株抗汞菌的基因组DNA中扩增分别得到1个merA基因,命名为pZY1、pZY2和pZY3,从文库中得到2个merA序列,命名为pZY4和pZY5,将5个merA基因克隆到pET-30(a)+,并转入E.coliBL21(DE3)中,分别命名为E.coli BL21(DE3)pZY1至E.coli BL21(DE3)pZY5。采用对克隆质粒扩增和对克隆质粒用BamHI和HindⅢ双酶切进行验证,结果表明merA基因成功克隆于pET-30(a)+。将克隆的merA基因在E.coli BL21(DE3)中用1 mmol/L的IPTG进行诱导表达成功;采用SDS-PAGE,探讨了温度对merA基因的诱导表达效果,结果表明37℃为最佳表达温度;在不同时段加入HgCl_2,培养28h后,重组菌株生长良好,而对照不生长,表明重组质粒中含有的merA基因具有汞抗性功能。实验发现,从文库中得到的两个基因的重组菌比从抗性菌中得到的merA基因的重组菌株的生长要弱。
     (3)功能平板筛选得到17个在含CdCl_2(150μg/mL)平板上生长良好的抗镉阳性克隆子;从抗性菌中用Nest-PCR获得3个镉抗性基因cadA的保守序列(分别为485bp、483bp和482bp)。筛选混合基因文库,在含镉150μg/mL的平板上,以空质粒PBS为阴性对照,得到17个阳性克隆子,将其中2个测序,利用GenBank中的Blastx搜索测定的序列,结果编号为Cd15的部分蛋白序列与水解酶家族中的金属依赖酰胺水解酶(metal dependent amidohydrolase)和金属依赖性甘氨酸酶(metal dependant alycoprotease)分别有56%和53%的相似性,推测可能是新的基因,其证实工作有待于进一步实验。从3个菌中得到3个长度分别为485bp、483bp和482bp的序列,测序结果经GenBank中搜索,均为cadA中的保守序列。
In this study, culture-dependent and culture-independent technology was adopted to study the heavy mental resistance genes of the soil collected from Liangshui River in Beijing. On one hand, conservative isolation methods were used to obtain desired pure strains. On the other hand, function and sequence-driven methods were used to screen the metagenomic library to get Mercury and Cadmium resistance genes. The research results are as the following:
     (1) By using pour plate method, three mercury-resistant strains, named KCd1, KCd2, KCd3, and three cadmium-resistant strains, named KHg1, KHg2, KHg3 were isolated. They can grow well on LB medium plate containing 450μg/mL CdCl_2 or 70μg/mL HgCl_2. Morphological observation showed the six strains were G~+. Analysis of physiological and biochemical properties, FAME and 16S rDNA sequencing showed that one strain belonged to genus of Pseudomonas, and the others were identified to genus of Bacillus; strains KHg2, KCd1 and KCd3 belonged to Bacillus silvestris, B. cereus, B. mycoides, respectively; however, the taxonomic position of the other strains needed to further study.
     (2) Five merA gene (mercury resistance gene) were amplified and cloned into pET-30a (+), and then transformed into E.coli BL21 (DE3), the cloned gene was expressed successfully. Three merA genes were cloned from each of anti-mercury strain genome DNA, and named pZY1、pZY2 and pZY3. Two merA gene fragments, from the metagenomic library were isolated and cloned; the plasmids were named pZY4 and pZY5. These 5 merA genes were cloned into pET-30a (+) and named E.coli BL21 (DE3).pZYl, E.coli BL21 (DE3).pZY2, E.coli BL21 (DE3).pZY3, E.coli BL21 (DE3).pZY4 and E.coli BL21 (DE3).pZY5 respectively. The recombinant clones were verified by using PCR and digestion of BamHI and HindIII successfully. The optimal temperatures was determined, the results showed that the optimal express temperature was 37℃. After cultured 28h with the addition of HgCl_2 in different growth phases, all the recombinant strains grew well, while the negative control did not grow, which showed that the recombinant plasmid contain merA gene, and possessed the mercury resistance ability; while, the negative plasmid was lack of merA gene, lead to recombinant couldn't grow any more. At the same time, the two recombinant strains containing genes from the library grew weaker than those containing resistant genes derived from bacteria.
     (3)Using function-driven method, PBS as the negative control plasmid, 17 anti-cadmium positive clones, which grew well in LB medium containing 150μg/mL of Cadmium(CdCl_2) were selected, and three of cadA gene sequences were obtained from resistant bacteria by nested PCR; then, two clones (named Cd7 and Cd15)were sequenced. Analysis of gene sequence showed that there were not high similar to the sequences in the GenBank; however, Blastx search results showed that a part of Cd15 protein sequences were 56% and 53% of similarity with the family of metal dependent amidohydrolase and metal dependant alycoprotease, respectively, which suggested that they may be new genes, but needed to confirm fatherly. three sequences (respectively, 485bp、483bp and 482bp) from the anti-cadmium strains were gained, and Blast showed that they shares 99% sequences identity with partial conservative cadA gene sequences of some bacteria published in GenBank.
引文
[1]姚斌,尚鹤,韩景军,等.重金属及有机污染土壤转基因植物修复研究进展[J].林业科学,2005,41(4):162-166
    [2]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [3]Jacquillet G,Barbier O,Rubera I,et al.Cadmium causes delayed effects on renal function in the offspring of cadmium~contaminated pregnant female rats[J].Applied and Environmental Microbiology,2007,8(293):1450-1460
    [4]Seung H K,Shailendra S,Kim J Y,et al.Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation[J].Applied and Environmental Microbiology,2007(73),19:6317-6320
    [5]曹仁林,贾晓葵,等.关于我国土壤重金属污染对农产品安全性影响的思考—第七次全国土壤与环境学术讨论会论文集[C].厦门,2001
    [6]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006,11:184-185.
    [7]池银花.土壤重金属污染及其生物修复技术的应用[J].福建农业科技,2006,3:62-64
    [8]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策[J].人类环境杂志,1999,28(2):130-134.
    [9]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,36(3):762-766
    [10]周国华,黄怀曾.北京市东南郊自然土壤和模拟污染影响下镉赋存形态及其变化[J].农业环境科学学报,2003,22(1):25-27
    [11]朱桂珍.北京市东南郊污灌区土壤环境重金属污染现状及防治对策[J].农业环境保护,2001,20(3):164-166,182
    [12]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004
    [13]王发园.土壤重金属污染对微生物多样性的影响[J].安徽农业科学,2008,36(18):7827-7828,7861
    [14]周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境2004,13(2):234-24
    [15]何池全,李蕾,顾超.重金属污染土壤的湿地生物修复技术[J].生态学杂志,2003,22(5): 78-81
    [16]阎晓明,何金柱.重金属污染土壤的微生物修复机理及研究进展[J].安徽农业科学,2002,30(6):877-879
    [17]李荣林,李优琴,沈寿国,等.重金属污染的微生物修复技术[J].江苏农业科学,2005,4:1-3,25
    [18]王红新.矿区土壤重金属污染的修复技术研究[J].池州师专学报,2006,20(5):93-95
    [19]张玉秀,于飞,张媛雅,等.植物对重金属镉的吸收转动和累积机制[J].中国生态农业学报,2008,(16)5:1317-1321
    [20]郭学军,黄巧云,赵振华,等.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110
    [21]Tsezos,Metal.A batch reactor mass kimetic model for immobilized biomass biosorption column[J].Biotechnol Bioeng,1998,32:545-550
    [22]Barkly N P.Extraction of mercury from groundwater using immobolized algae[J].Air waste Manage Assoc,1991,41(10):1387-1392
    [23]滕应,黄昌勇.污染土壤的微生物生态效应及其修复研究[J].土壤与环境,2002,11(1):85-89
    [24]施晓东,常学秀.重金属污染土壤的微生物响应[J].生态环境,2003,12(4):498-499
    [25]况金蓉.生物吸附技术处理重金属废水的应用[J].武汉理工大学学报(交通科学与工程版),2002,26(3):400-403
    [26]潘园园.一株抗铜镉细菌的分类鉴定和基因组BAC文库的构建[C],2005
    [27]杨若明,环境中有毒有害化学物质的污染与监测[M].北京:中央民族大学出版社,2001:13-14
    [28]宋安东,吴坤,陈红歌,等.酿酒酵母220菌株对铅的生物吸附研究[J].微生物学报,2004,31(3):6-10
    [29]Rugh C L,Senecoft J F,Meagher R B,et al.Development of transgenic yellow-poplar for mercury phytoremediation[J].Nature Biotech,1998,33:616-621
    [30]Bizily S P,Rugh C L,Meagher R B.Phytodetoxification of hazardous organo mercurials by genetically engineeed plants[J].Nature Biotech,2000,18:213-217
    [31]Huang C C,Chen M W,Hsieh J L,et al.Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp.DT:an approach for mercury phytoremediation[J].Applied Microbiology Biotechnology,2006,72(1):197-205
    [32]Hussein H S,Ruiz O N,Terry N,et al.Phytoremediation of mercury and organomercurials in chloroplast transgenic plants:enhanced root uptake,translocation to shoots and volatilization[J].Environmental Science Technology,2007,41(24):8439-8446
    [33]孙嘉龙,李梅,曾德华,微生物对重金属的吸附、转化作用[J].贵州农业科学,2007,35(5):147-150
    [34]Ledin M.Accumulation of metals by microorganisms processes and importance for soil systems[J].Earth-Science Reviews,2000,51(1):1-31
    [35]Srivastava S L,Thakur I S.Evaluation of bioremediation and detoxification po tentiality of aspergiuus niger for removal of hexavalent chromium in soil microcosm[J].Soil Biology and Biochemistry,2006,38(7):1094-1911
    [36]Kacar Y,Arpa C,Tan S,et al.Biosorption of Hg(Ⅱ) and CA(Ⅱ)from aqueous solutions:comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium[J].Process Biochemistry,2002,37(6):60-61
    [37]Arundhati P,Ghosh S,Paul A K.Biosorption of cobalt by fungi from serpentine soil of Andaman[J].Bioresource Technology,2006,97(10):1253-1258
    [38]Ridvan S,Denizli A,Arica M Y.Biosorption of cadmium(Ⅱ),lead(Ⅱ)and copper(Ⅱ) with the filamentous fungus Phanerochaete chrysosporium[J].Bioresource Technology,2001,76(1):67-70
    [39]Arica M,Bayramoglu G,Yilmaz M,et al.Biosorptionof Hg~(2+),Cd~(2+) and Zn~(2+) by Ca~alginate and immobilized wood~rotting fungus funalia trogii[J].Hazardous Materials,2004,109(13):191-199
    [40]Wang J L,Chen C.Biosorption of heavy metals by Saccharomyces cerevisiae[J].Biotechnology Advances,24(5):427-451
    [41]Lepsova A,Mejstrik V.Accumulation of trace elements in the fruiting bodies of macrofungi in the Krusne Hory Mountains,czechoslovaki[J].The Science of The Total Environment,1988,76(2~3):117-128
    [42]Aruguete D M,Joseph H.Aldstadt I G M,et al.Accumulation of several heavy metals and lanthanides in mushrooms(Agaricales) from the Chicago region[J].The Science of The Total Environment,1998,224(1~3):43~56
    [43]王保军.微生物与重金属的相互作用[J].重庆环境科学,1996,18(1):35-38
    
    [44] Osborn A M, Bruce K D, Strike P, et al, Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon[J]. FEMS Microbiology Review, 1997, 19: 239-262.
    [45]林稚兰,田哲贤.微生物对重金属的抗性及解毒机理[J].微生物学通报,1998,25(1):37-39
    
    [46] Brown N L, Shih Y C, Leang C, et al. [J]. Biometals, 2002, 33(4): 715-7181
    [47] Filali B K, Taoufik J, Zeroual Y et al. Waste water bacterial isolates resistant to heavy metals and antibiotics[J]. Currental Microbiology, 2000,41(3): 151-156
    [48] Mann M. Quantitative proteomics [J]. Natural Biotechnology, 1999, 17 (10): 954.
    [49] Manning B A, Burau R G. Selenium immobilization in evaporation pond sediments by in situ precipitation of ferric oxyhydroxide[J]. Environmental Science Technology, 1995,29:2639-46
    [50] Nies D H. Resistance to cadmium, cobalt, zinc, and nickel in microbes, Plasmid[J].Environmental Science Technology, 1992, 27: 17-28.
    [51] Borremans B, Hobman J L. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34[J]. Bacteriology, 2001, 183: 5631-5658
    [52] Misra T K. Bacterial resistance to inorganic mercury salts and organomercurials, Plasmid[J].Environmental Science Technology, 1992,27: 4-16
    [53] Silver S, Misra T K. Plasmid mediated heavy metal resistances[J]. Microbiology, 1988, 42:717-743
    [54] Anton A, Grobe C, Reibmann J, et al. czcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp.strain CH34[J]. Bacteriology, 1999, 181:6876-6881
    [55] Nies D H. CzcR and czcD gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligens eutrophus[J]. Bacteriology, 1992, 174: 8102-8110
    [56] Amann R I, Ludwing E, Schleifer K H. Phylogenetic identification and in suit detection of individual microbial cells without cultiviation[J]. Microbiology, 1995, 59: 143-169
    [57] Torsvik V, Goksoyr J, Sorheim R. Total bacterial diversity in soil and sediment communities[J].Industry Microbiology, 1996,17: 170-178
    [58] Torsvik V, Goksoyr J, Daae F L. High diversity in DNA of soil bacteria[J]. Applied and Environmental Microbiology, 1990, 56: 782-787
    [59]方光伟,洪雪梅,蔡丽希,等.土壤宏基因组的提取及基于免培养技术分析细菌16S rDNA[J].江西农业大学学报, 2005, 27(4): 505-507
    
    [60] Handelsman J, Rondon, M R, Brady S F et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chemistry & Biology, 1998, 5:245-249
    
    [61] Daniel R. The metagenomics of soil[J]. Nature Review Microbiology, 2005, 3: 470-478
    
    [62] Wang G Y S, Graziani E, Waters B, et al. Novel natural products from soil DNA libraries in a streptomycete host[J]. Organic Letters, 2000, 2: 2401-2404
    [63] Martinez A, Kolvek S J, Yip C L T, et al, Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts[J]. Applied and Environmental Microbiology, 2004, 70: 2452-246
    [64] Martinez A, Kolvek S J, Hopke J, et al. Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species[J]. Applied and Environmental Microbiology, 2005, 71: 1638-164
    [65] Rondon M R, August P R, Bettermann A D, et al. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms[J]. Applied and Environmental Microbiology, 2000,66:2541-254
    [66] Bang S W, Clark D S. Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate redrctase gene (pheABC) from Salmonella enterica serovar ryphimurium in Escherichia coli[J]. Applied and Environmental Microbiology, 2000, 66:3939-3944
    
    [67] Beja O, SuZuKi M T, Koonin E V, et al. Construction and anasis of bacterial artificial chromosome libraries from a marine microbial assemblage[J]. Environmental Microbiology,2000,2:516-529
    [68] Rondon M R, August P R, Bettermann A D, et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms[J]. Applied and Environmental Microbiology, 2000, 66: 2541-2547
    [69] Brady S F, Chao C J, Handelsman J, et al. Cloning and heterogous expression of a natural product biosynthetic gene Cluster from eDNA[J].Organic Letters,2001,3:1981-1984
    [70]Gabor E M,Vries E J,Janssen D B.Construction,characterization,and use of small~insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases[J].Environmental Microbiology,2004,6:948-95
    [71]张鹏,庞浩,封毅,等.堆肥未培养细菌的宏基因组文库构建及新的木聚糖酶的克隆和鉴定[J].广西科学,2005,12(4):343-346,352
    [72]樊奔,崔中利,曹慧,等.以质粒载体构建土壤宏基因组文库的研究[J].土壤学报,2006,43(3):513-516
    [73]陆伟,梁爱敏,孟秀萍,等.利用宏基因组文库筛选草苷膦不敏感的 5~烯醇式丙酮莽草酰~3~磷酸合酶(EPSPS)基因[M].高技术通讯,2006,16(12):1284-1287
    [74]Sambrook J,David W,Russell.Molecular Cloning:A Laboratory Manual,3~(rd)ed[M].Cold Spring Harbor Laboratory Press,2001
    [75]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000
    [76]王镜岩,朱圣庚,徐长法,等.生物化学(第三版)(下册)[M].北京:高等教育出版社,2002
    [77]卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社,2002
    [78]Frederick M,Ausubel,Robert E,et al.Short Protocols in Molecular Biology,4~(th)ed[M].John Wiley& Sons,Inc,1999
    [79]GB15618~1995,土壤环境质量标准[S].GB15618~1995
    [80]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [81]George M,Garrity,Julia A,et al.Taxonomic Outline of The Prokaryotes Bergey's Manual of Systematic Bacteriology Second Edition[M].2004
    [82]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002
    [83]R.E.布坎南,N.E.吉本斯,等.中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.《伯杰细菌鉴定手册》(第八版)[M].北京:科学出版社,1984
    [84]Naghma N,Hilary K,et al.Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria[J].Applied and Environmental Microbiology,2005,8:4610-4618
    [85]Jarvis B D W,Sivakumajau S,Tighe SW,et al.Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition[J].Plant soil,1996,184:143-158
    [86]吴愉萍,徐建明,汪海珍,等.Sherlock MIS系统应用于土壤细菌鉴定的研究[J].土壤学报, 2006,43(4):642-647
    [87]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2004,43(2):276-282.
    [88]Maryam I,Daneshvar,Michael P,et al.Cellular fatty acid composition of lautropia mirabilis[J].Clinical Microbiology,2001,39(11):4160-4162
    [89]Holger R,Fruhling A,Schumann P et al.Bacillus silvestris sp.nov.,a new member of the genus Bacillus that contains lysine in its cell wall[J].International Journal of Systematic Bacteriology,1999,49:795-802
    [90]五振军,刘玉霞,刘新涛,等.用16S rDNA序列分析方法鉴定4个拮抗细菌[J].河南农业科学,2006,5:59-61
    [91]潘园园,陈雯莉,黄巧云.一株抗重金属铜镉细菌的分离、鉴定及其16SrDNA的序列分析[J].微生物学通报,2005,32(5):68-72.
    [92]段学军,黄春晓.Ralstinia eutropha菌株镉抗性调节基因CzcR的克隆与序列测定[J].生态环境,2007,16(6):1665-1668.
    [93]陈宏伟,张志,张虹.抗汞菌株的筛选及质粒的研究[J].齐齐哈尔师范学院学报(自然科学版),1996,16(1):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700