用户名: 密码: 验证码:
基于ZigBee的位置指纹法室内定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球定位系统(GPS)在室外定位中的成功应用,对定位服务在人们日常活动的室内场所得以广泛开展的渴求日渐突出。在现有室内定位技术中,位置指纹法由于定位成本低、方法实现灵活而逐渐成为研究的热点。然而,室内无线信号的时变性也给位置指纹法实现精确定位带来很大的难度。因此,提高位置指纹法在室内复杂环境下的定位性能和实用性不仅具有重要的理论价值,而且也成为加快对其由理论研究向实际应用转变的关键。本文以ZigBee无线网络为应用平台,对位置指纹法完成定位所需的两个阶段中涉及的相关技术进行研究。在分析国内外研究现状及进展的基础上,指出了位置指纹法目前存在的三大问题,即构建位置指纹数据库的工作量问题、位置指纹的匹配效率问题和室内定位与跟踪的实现方法问题。然后,从分析信号强度作为场景特征所表现出的数据特性入手,针对以上问题分别提出相应的解决方法。
     为分析信号强度作为场景特征所表现出的数据特性,利用ZigBee网络环境中测得的信号强度样本,采用理论分析与实验验证相结合的手段对数据特性的表现形式和成因进行了研究。在此基础上构建了一个用于估计位置指纹法平均定位误差的概率模型,并分析了采样位置间距、网络接入设备数量和位置等因素对位置指纹法定位性能的影响,从而为定位系统实际部署过程中相关参数的合理选取提供一定的理论指导。
     为降低离线阶段信号强度采样的工作量,提出了一种基于空间变异理论的位置指纹数据库构建方法。给出了一个典型的信号强度样本变异函数计算流程。提出了一种基于加权最小二乘法的信号强度理论变异函数拟合算法。根据拟合得到的模型趋势项和随机项反映出的信号强度在空间上的连续性和变异性关系,采用普通克里金技术对待估位置信号强度进行最优线性无偏估计。实验结果表明,该方法对信号强度的估计精度好于距离反比加权算法,基于该方法建立的位置指纹数据库可在降低采样工作量的同时保证定位精度。
     为提高位置指纹的匹配效率,提出了两种基于改进k-means算法的位置指纹聚类方法。分析了传统k-means算法对位置指纹分类效果不佳的原因,并从寻找新的位置指纹二次特征提取方法及采用“软划分”技术两方面加以改进。其中,FC-ID-FKM法将位置指纹归为区间值数据,在由区间中值和大小张成的特征空间中,利用模糊k-means算法对其进行聚类。FC-KFKM法将位置指纹归为一种服从正态分布的区间值数据,通过区间中值和大小确定的正态分布函数将位置指纹映射为特征空间中的一点,并在该空间中采用基于核方法的模糊k-means算法对其进行聚类。实验结果表明,基于两种方法得到的位置指纹集合聚类趋势更为明显,对位置指纹的分类效果好于k-means算法。
     为解决室内复杂环境下的定位实现问题,提出了一种基于D-S证据理论的位置指纹室内定位方法。构造了信度分配的mass函数,建立了一个基于pignistic概率的信度分配冲突程度评价指标。根据指标大小,采用信度打折的证据预处理方法消除定位过程中出现的合成悖论现象。为降低信任区间重叠时的决策风险,根据合成后焦元获得的信任区间确定分布函数,将两焦元信度在并集区间上降序排列的概率作为最终的决策依据。实验结果表明,该方法具有收敛速度快,决策风险低的优点。在证据间高冲突时的定位精度好于贝叶斯推理法。此外,针对基于位置指纹法的室内跟踪问题,提出了一种改进的粒子滤波跟踪算法。建立了二维平面内跟踪问题的状态空间模型,并根据本文提出的信号强度估计方法完成粒子权值的求解。实验结果表明,该方法对实际移动路线的跟踪精度好于KNN法和Kalman滤波器。
With the successful applications of global positioning system (GPS) onoutdoor positioning, the demands of indoor positioning services are getting shaper.Because of the low positioning cost and flexible realization, the locationfingerprint method (LFM) is becoming the research focus in the existing indoorpositioning techniques. However, the time variation of indoor wireless signalmakes it difficult for LFM to realize pinpoint. So, improving the positioningperformance and practicability of LFM in the complex indoor environment notonly has important theoretical value, but also becomes the key of accelerating thetransition from theoretical study to application. In this paper, related techniques ofLFM in the two positioning stages are studied in the ZigBee network. Based onanalyzing research status and development of LFM at home and abroad, it ispointed out that the problem of construction workload of location fingerprintdatabase, the problem of matching efficiency of location fingerprints and theproblem of indoor positioning and tracking realizations are the three mainproblems of LFM. And then, starting with analyzing signal strength characteristics,methods for resolving these problems are proposed respectively.
     In order to analyze the data characteristics of signal strength as the scenefeature, the manifestations and causes of characteristics are studied by theoreticalanalysis and experimental verification with actual ZigBee signal strength samples.And then, a probability model is given to estimate the average positioning error ofLFM. Based on the model, the relationships between positioning performance ofLFM and space of sampling locations and numbers and locations of network accessdevices are studied, which can provide theoretical guide for configuring the relatedparameters reasonably during the positioning system deployment.
     In order to decrease the sampling workload of signal strength in the off-linestage, a method for constructing location fingerprint database is proposed based onthe spatial variability theory. A typical construction procedure of signal strengthsample variogram is given according to the actual signal strength samples. A fittingmethod of signal strength theory variogram is proposed based on the weightedleast square method. According to the continuity and variability of signal strengthat different locations reflected by trend and stochastic component of the mode, thebest linear unbiased estimation of signal strength is achieved by ordinary kriging.The experimental results show that the proposed method can get better estimationprecision of signal strength than weighted distance inverse method. The location fingerprint database constructed by it can decrease the sampling workloadefficiently and ensure the positioning precision at the same time.
     In order to improve the matching efficiency of location fingerprint, twoclustering methods for it are proposed based on the improved k-means algorithm.The methods raise the clustering accuracy by using the new further featureextraction methods of location fingerprint and elastic classification technologiesafter analyzing the problems of k-means algorithm application on locationfingerprint classification. FC-ID-FKM regards location fingerprint as a kind ofinterval-valued data and adopts fuzzy k-means algorithm to cluster it in the featurespace established by interval median and size. FC-KFKM summarizes locationfingerprint as a kind of interval-valued data obeyed normal distribution and adoptsfuzzy kernel k-means algorithm to cluster it in the feature space established bynormal distribution function determined by interval median and size. Theexperimental results show that the location fingerprint sets obtained by theproposed methods have remarkable clustering trends. They can all get betterresults on location fingerprint clustering than k-means.
     In order to realize the accurate positioning in the complex indoor environment,a Dempster-Shafer based indoor positioning method is proposed. The massfunction is constructed to allocate the belief and a pignistic probability basedevaluation index is given which can reflect the conflict degree on belief allocation.According to the index value, the evidence pretreatment method by belief discountis adopted to eliminate the fusion absurdity during positioning. To decrease thedecision risk on overlaped belief intervals, the distribution functions of focalelements are constructed according to the belief intervals and the probabilitiesranking in a descending order on union of belief intervals are calculatedrespectively which are taken as the basis of decision-making finally. Theexperimental results show that the proposed method has fast convergence and lowdecision risk. The positioning accuracy of the method is better than it of Bayesianinference on the high conflict degree. In order to realize the LFM based indoortracking, an improved particle filter tracking algorithm is put forward. The statespace model for tracking is established in the two-dimensional plane and theparticle weight is calculated according to signal strength estimation methodproposed in the paper. The experimental results show that the proposed method hasbetter tracking effect than KNN and Kalman filter.
引文
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, et al. Wireless SensorNetworks: A Survey[J]. Computer Networks,2002,38(4):393-422.
    [2] M. Laibowitz, J. A. Paradiso. Parasitic Mobility for Pervasive SensorNetworks[C]. In: Proceedings of the Third International Conference onPervasive Computing, Munich, Germany,2005:255-278.
    [3] M. Weiser. The Computer for the21st Century[J]. Scientific American,1991,265(3):66-75.
    [4]瞿雷,刘盛德,胡咸斌. ZigBee技术及应用[M].北京:北京航空航天大学出版社,2007.
    [5] UbiComp[OL].2007, http://www.ubicomp.org.
    [6] Gartner. Emerging Technologies Hype Cycle Highlights Key TechnologyThemes[OL].2006, http://www.gartner.com/it/page.jsp?id=495475.
    [7] P. Enge, P. Misra. Special Issue on Global Positioning System[C]. In:Proceedings of the IEEE,1999,87(1):3-15.
    [8] R. Want, A. Hopper, V. Falcao, et al. Active Badge Location System[J].ACM Transactions on Information Systems,1992,10(1):91-102.
    [9] A. Ward, A. Jones, A. Hopper. New Location Technique for the ActiveOffice[J]. IEEE Personal Communications,1997,4(5):42-47.
    [10] J. Hightower, R. Want, G. Borriello. SpotON: An Indoor3D LocationSensing Technology Based on RF Signal Strength[J]. University ofWashington CSE Technical Report2000-02-02,2000.
    [11] J. Krumm, S. Harris, B. Meyers, et al. Multi-camera Multi-person Trackingfor EasyLiving[C]. In: Proceedings of the Third IEEE InternationalWorkshop on Visual Surveillance, Dublin, Ireland,2000:3-10.
    [12] R. J. Orr, G. D. Abowd. The Smart Floor: A Mechanism for Natural UserIdentification and Tracking[C]. In Proceedings of the Conference on HumanFactors in Computing Systems, Hague, Netherlands,2000:275-276.
    [13] P. Bahl, V. N. Padmanabhan. RADAR: an In-building RF-based Location AnTracking System[C]. In: Proceedings of the IEEE INFOCOM, Tel-Aviv,Israel,2000:775-784.
    [14] K. W. KolodZiej, J. Hjelm. Local Positioning Systems: LBS Applicationsand Services[M]. Taylor&Francis Group,2006:226-269.
    [15] H. Liu, H. Darabi, P. Banerjee, et al. Survey of Wireless Indoor PositioningTechniques and Systems[J]. IEEE Transactions on Systems, man andCybernetics,2007,37(6):1067-1080
    [16] G. Mao, B. Fidan, B. D. O. Anderson. Wireless Sensor Network LocalizationTechniques[J]. Computer Networks,2007,51(10):2529-2553.
    [17] F. Zhao, W. Yao, C. C. Logothetis, et al. Comparison of Super-resolutionAlgorithms for TOA Estimation in Indoor IEEE802.11Wireless LANs[C].In: Proceedings of the International Conference on WirelessCommunications, Networking and Mobile Computing, Wuhan, China,2006:1-5.
    [18] X. Li, K. Pahlavan. Super-resolution TOA Estimation with Diversity forIndoor Geolocation[J]. IEEE Transactions on Wireless Communications,2004,3(1):224-234.
    [19] D. C. Cox, R. Murray, A. Norris.800MHz Attenuation Measured in andaround Suburban Houses[J]. AT&T Bell Laboratory Technical Journal,1984,673(6):921-954.
    [20] R. Bernhardt. Macroscopic diversity in Frequency Reuse Radio Systems[J].IEEE Journal on Selected Areas in Communications,1987,5(5):862-870.
    [21] Y. Wang, X. Jia, H. K. Lee, et al. An Indoors Wireless Positioning SystemBased on Wireless Local Area Network Infrastructure[C]. In: Proceedings ofthe6th International Symposium on Satellite Navigation TechnologyIncluding Mobile Positioning and Location Services, Melbourne, Australia,2003:1-13.
    [22] A. Smailagic, D. Kogan. Location Sensing and Privacy in a Context-awareComputing Environment[J]. IEEE Wireless Communications Magazine,2002,9(5):10-17.
    [23] S. Y. Seidel, T. S. Rapport.914MHz Path Loss Prediction Model for IndoorWireless Communications in Multi-floored Buildings[J]. IEEE Transactionson Antennas and Propagation,1992,40(2):207-217.
    [24] W. Ni, Z. X. Wang. Indoor Location Algorithm Based on the Measurementof the Received Signal Strength[J]. Frontiers of Electrical and ElectronicEngineering in China,2006,1(1):48-52.
    [25]倪巍,王宗欣.基于接收信号强度测量的室内定位算法[J].复旦学报(自然科学版),2004,43(1):72-76.
    [26] M. Robinson, I. Psaromiligkos. Received Signal Strength Based LocationEstimation of a Wireless LAN Client[C]. In: Proceedings of the IEEEWireless Communications and Networking Conference, LA, United States,2005:2350-2354.
    [27] T. Roos, P. Myllymaki, H. Tirri. A Statistical Modeling Approach toLocation Estimation[J]. IEEE Transactions on Mobile Computing,2002,1(1):59-69.
    [28] X. Li. RSS-Based Location Estimation with Unknown Pathloss Model[J].IEEE Transactions on Wireless Communications,2006,5(12):3626-3633.
    [29]杜巧玲.无线传感器网络三维节点定位问题的研究[D].吉林大学工学博士学位论文,2009:42-47.
    [30]孙庭波.无线传感器网络定位算法研究[D].中国科学技术大学工学博士学位论文,2008:12-13.
    [31] K. Sayrafian-Pour, D. Kaspar. Indoor Positioning Using Spatial PowerSpectrum[C]. In: Proceedings of the IEEE16th International Symposium onPersonal Indoor and Mobile Radio Communications, Berlin, Germany,2005:2722-2726.
    [32] D. Niculescu, B. Nath. VOR Base Stations for Indoor802.11Positioning[C].In: Proceedings of the10th Annual International Conference on MobileComputing and Networking, Philadelphia, PA, USA,2004:58-69.
    [33] P. Castro, P. Chiu, T. Kremenek, et al. A Probabilistic Room LocationService for Wireless Networked Environments[C]. In: Proceedings of theInternational Conference on Ubiquitous Computing, Atlanta Georgia,2001,18-24.
    [34] A. Kushki, K. N. Plataniotis, A. N. Venetsanopoulos. Kernel-basedPositioning in Wireless Local Area Networks[J]. IEEE Transactions onMobile Computing,2007,6(6):689-705.
    [35] J. Yin, Q. Yang, L. Ni. Learning Adaptive Temporal Radio Maps for SignalStrength-based Location Estimation[J]. IEEE Transactions on MobileComputing,2008,7(7):869-883.
    [36] C. Feng, W. S. A. Au, S. Valaee, et al. Compressive Sensing BasedPositioning Using RSS of WLAN Access Points[C]. In: Proceedings ofIEEE INFOCOM, CA, United States,2010:1-9.
    [37] K. Kaemarungsi, P. Krishnamurthy. Modeling of Indoor Positioning SystemsBased on Location Fingerprinting[C]. In: Proceedings of INFOCOM, HongKong, China,2004,2:1012-1022.
    [38] Ekahau[OL].2006, http://www.ekahau.com.
    [39] MIT CSAIL. The Cricket Indoor Location System[OL].2007,http://nms.lcs.mit.edu/projects/cricket/#overview.
    [40] CC2431location engine. Chipcon products from Texas Instruments[DB].Application node AN042,2006,7(Rev1.0).
    [41] X. Chai, Q. Yang. Reducing the Calibration Effort for Location EstimationUsing Unlabeled Samples[C]. In: Proceedings of the3rd IEEE InternationalConference on Pervasive Computing and Communications, Kauai Island,United States,2005:95-104.
    [42] X. Chai, Q. Yang. Reducing the Calibration Effort for Probabilistic IndoorLocation Estimation[J]. IEEE Transactions on Mobile Computing,2007,6(6):649-662.
    [43] Y. Ji, S. Biaz, S. Pandey, et al. ARIADNE: a Dynamic Indoor Signal MapConstruction and Localization System[C]. In: Proceedings of the4thInternational Conference on Mobile systems, Applications and Services,Uppsala, Sweden,2006:151-164.
    [44] T. P. Deasy, W. G. Scanlon. Simulation or Measurement: The Effect of RadioMap Creation on Indoor WLAN-Based Localisation Accuracy[J]. WirelessPersonal Communications,2007,42(4):563-573.
    [45] L. F. Moraes, B. A. Nunes. Calibration-free WLAN Location System Basedon Dynamic Mapping of Signal Strength[C]. In: Proceedings of theInternational Workshop on Mobility Management and Wireless Access,Terromolinos, Spain,2006:92-99.
    [46] Widyawan, M. Klepal, D. Pesch. Influence of Predicted and MeasuredFingerprint on the Accuracy of RSSI-based Indoor Location Systems[C]. In:Proceedings of the4th Workshop on Positioning, Navigation andCommunication, Hannover, Germany,2007:145-151.
    [47] J. Kwon, B. Dundar, P. Varaiya. Hybrid Algorithm for Indoor PositioningUsing Wireless LAN[C]. In: Proceedings of the IEEE60th VehicularTechnology Conference, LA, United States,2004:4625-4629.
    [48] T. C. Tsai, C. L. Li, T. M. Lin. Reducing Calibration Effort for WLANLocation and Tracking System using Segment Technique[C]. In:Proceedings of the IEEE International Conference on Sensor Networks,Ubiquitous, and Trustworthy Computing, Taichung, Taiwan,2006:46-51.
    [49]唐文胜,李姗,匡旺秋. RF室内定位指纹库空间相关生成算法[J].计算机工程与应用,2008,44(23):226-229.
    [50] A. Kushki, K. N. Plataniotis, A. N. Venetsanopoulos. Kernel-basedPositioning in Wireless Local Area Networks[J]. IEEE Transactions onMobile Computing,2007,6(6):689-705.
    [51] H. K. Parikh, W. R. Michalson. Error Mechanisms in an RF-based IndoorPositioning System[C]. In: Proceedings of International Conference onAcoustics, Speech and Signal Processing, Las Vegas, United states,2008:5320-5323.
    [52] Y. Kim, R. G. Evans, W. M. Iversen. Remote Sensing and Control of anIrrigation System Using a Distributed Wireless Sensor Network[J]. IEEETransactions on Instrumentation and Measurement,2008,57(7):1379-1387.
    [53] Q. M. Yao, F. Y. Wang, H. Gao, et al. Location Estimation in ZigBeeNetwork Based on Fingerprinting[C]. In: proceedings of2007IEEEInternational Conference on Vehicular Electronics and Safety, Beijing,China,2007:1-6.
    [54]林以明,罗海勇,李锦涛等.基于动态Radio Map的粒子滤波室内无线定位算法[J].计算机研究与发展,2011,48(1):139-146.
    [55] Q. H. Gao, J. Wang, M. L. Jin, et al. An Indoor Localization Method Basedon Dynamic Radio Map[J]. Journal of Microwaves,2010,26(1):91-96.
    [56] J. Yin, Q. Yang, L. Ni. Adaptive Temporal Radio Maps for Indoor LocationEstimation[C]. In: Proceedings of the3rd IEEE International Conference onPervasive Computing and Communications, Kauai Island, United States,2005:85-94.
    [57] Y. S. Hwang, S. K. Ku, K. S. Chung. A Predictive Dynamic PowerManagement Technique for Embedded Mobile Devices[J]. IEEETransactions on Consumer Electronics,2010,56(2):713-719.
    [58] K. Hatakeyama, Y. Osana, S.I. Kuribayashi. Reducing Total EnergyConsumption with Collaboration between Network and End Systems[C]. In:Proceedings of the12th International Conference on Network-BasedInformation Systems, Indianapolis, United States,2009:603-607.
    [59] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, et al. DRPM: DynamicSpeed Control for Power Management in Server Class Disks[J]. ACMSIGARCH Computer Architecture News,2003,31(2):169-181.
    [60] A. K. Anwar, L. Lavagno. Energy Optimization Framework for WSNDesign[C]. In: Proceedings of the9th IEEE International Conference onInformation Processing in Sensor Networks, Sweden,2010:368-369.
    [61] J. R. Lorch, A. J. Smith. Scheduling Techniques for Reducing ProcessorEnergy Use in Macos[J]. Wireless Networks,1997,3(5):311-324.
    [62] L. Huai, X. C. Zou, Z. L. Liu, et al. An Energy-efficient AES-CCMImplementation for IEEE802.15.4Wireless Sensor Networks[C]. In:Proceedings of International Conference on Networks Security, WirelessCommunications and Trusted Computing, Wuhan, China,2009,394-397.
    [63] M. Youssef, A. Agrawala. Location-clustering Techniques forEnergy-efficient WLAN Location Determination Systems[J]. InternationalJournal of Computers and Applications,2006,28(3):278-283.
    [64] M. Youssef, A. Agrawala. The Horus WLAN Location DeterminationSystem[C]. In: Proceedings of the3rd International Conference on MobileSystems, Applications, and Services, Seattle, United States,2005:205-218.
    [65] M. Youssef, A. Agrawala. The Horus Location Determination System[J].Wireless Networks,2008,14(3):357-374.
    [66] Y. Q. Chen, Q. Yang, J. Yin, et al. Power-efficient Access-point Selection forIndoor Location Estimation[J]. IEEE Transactions on Knowledge and DataEngineering,2006,18(7):877-888.
    [67] M. H. Zhang, S. S. Zhang, J. CAO. Probability-based Clustering and ItsApplication to WLAN Location Estimation[J]. Journal of Shanghai JiaotongUniversity (Science),2008,13(5):547-552.
    [68] P.Bahl, V. N. Padmanabhan. Enhancements of the RADAR User Locationand Tracking System[R]. Technical Report MSR-TR-2000-12,2000.
    [69] J. Small, A. Smailagic, D. Siewiorek. Determining User Location forContext Aware Computing Through the Use of a Wireless LANInfrastructure[R]. Carnegie Mellon University, Project Aura Report,2000.
    [70] P. Prasithsangaree, P. Krishnamurthy, P. Chrysanthis. On Indoor PositionLocation with Wireless LANs[C]. In: Proceedings of the13th IEEEInternational Symposium on Personal, Indoor and Mobile RadioCommunications, Lisboa, Portugal,2002:720-724.
    [71] L. A. Castro, J. Favela. Continuous Tracking of User Location in WLANsUsing Recurrent Neural Networks[C]. In: Proceedings of the Sixth MexicanInternational Conference on Computer Science, Puebla, Mexico,2005:174-181.
    [72] E. A. Martinez, R. Cruz, J. Favela. Estimating User Location in a WLANUsing Backpropagation Neural Networks[C]. In: Proceedings of the9thIbero-American Conference on AI: Advances in Artificial Intelligence,Puebla, Mexico,2004:737-746.
    [73] C. Nerguizian, C. Despins, S. Affès. Indoor Geolocation with ReceivedSignal Strength Fingerprinting Technique and Neural Networks[C]. In:Proceedings of the11th International Conference on Telecommunications,Fortaleza, Brazil,2004:866-875.
    [74] J. Krumm, J. Platt. Minimizing Calibration Effort for an Indoor802.11Device Location Measurement System[R]. MSR-TR-2003-82,2003.
    [75] U. Ahmad, A. Gavrilov, U. Nasir, et al. In-building Localization UsingNeural Networks[C]. In: Proceedings of the IEEE International Conferenceon Engineering of Intelligent Systems, Islamabad, Pakistan,2006:1-6.
    [76] S. Saha, K. Chaudhuri, D. Sanghi, et al. Location Determination of a MobileDevice Using IEEE802.11b Access Point Signals[C]. In: Proceedings of theIEEE Wireless Communications and Networking Conference, NewOrleans, LA,2003:1987-1992.
    [77] R. Battiti. Location-aware Computing: A Neural Network Model forDetermining Location in Wireless LANs[R]. University of Trento,#DIT-02-0083,2002.
    [78] R. Battiti, A. Villani, T. L. Nhat. Neural Network Models for IntelligentNetworks: Deriving the Location from Signal Patterns[C]. In: Proceedingsof the First Annual Symposium on Autonomous Intelligent Networks andSystems, UCLA,2002,1-13.
    [79] M. Brunato, R. Battiti. Statistical Learning Theory for LocationFingerprinting in Wireless LANs[J]. Computer Networks,2005,47(6):825–845.
    [80] J. J. Pan, J. T. Kwok, Q. Yang, et al. Multidimensional Vector Regression forAccurate and Low-Cost Location Estimation in Pervasive Computing[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(9):1181-1193.
    [81] A. Dhital, P. Closas, C. Fernández-Prades. Bayesian filters for indoorlocalization using wireless sensor networks[C]. In: Proceedings of the5thESA Workshop on Satellite Navigation Technologies and EuropeanWorkshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands,2010.
    [82] T. Roos, P. Myllym ki, H. Tirri, et al. A Probabilistic Approach to WLANUser Location Estimation[J]. International Journal of Wireless InformationNetworks,2002,9(3):155-164.
    [83] V. Seshadri, G. V. Záruba, M. Huber. A Bayesian Sampling Approach toIn-door Localization of Wireless Devices Using Received Signal StrengthIndication[C]. In: Proceedings of the3rd IEEE International Conference onPervasive Computing and Communications, Kauai Island, United States,2005:75-84.
    [84] S. Ito, N. Kawaguchi. Bayesian Based Location Estimation System UsingWireless LAN[C]. In: Proceedings of the3rd International Conference onPervasive Computing and Communications Workshops, Kauai Island,United States,2005:273-278.
    [85]赵永翔,周怀北,陈淼等.卡尔曼滤波在室内定位系统实时跟踪中的应用[J].武汉大学学报(理学版),2009,55(6):696-700.
    [86]王晓娟,王宣银.基于模糊卡尔曼滤波的移动机器人定位研究[J].计算机工程与应用,2011,47(2):204-206.
    [87]谷红亮,史元春,申瑞民等.一种用于智能空间的多目标跟踪室内定位系统[J].计算机学报,2007,30(9):1603-1611.
    [88]万江文,吴佳灵,冯仁剑.卡尔曼滤波在无线传感器网络节点定位中的应用[J].高技术通讯,2009,19(2):151-156.
    [89] Y. Song, H. Yu. A RSS Based Indoor Tracking Algorithm via Particle Filterand Probability Distribution[C]. In: Proceedings of2008InternationalConference on Wireless Communications, Networking and MobileComputing, Dalian, China,2008:1-4.
    [90] M. S. Arulampalam, S. Maskell, N. Gordon, et al. A Tutorial on ParticleFilters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEETransactions on Signal Proeessing,2002,50(2):174-188.
    [91] Widyawan, M. Klepal, S. Beauregard. A Novel Backtracking Particle Filterfor Pattern Matching Indoor Localization[C]. In: Proceedings of2008International Conference on Mobile Computing and Networking, SanFrancisco, United States,2008:79-83.
    [92] C. H. Chao, N. Y. Chu, A. Y. Wu. Location-constrained Particle FilterHuman Positioning and tracking system[C]. IEEE Workshop on SignalProcessing Systems, SiPS: Design and Implementation, Washington, UnitedStates,2008:73-76.
    [93] M. Youssef, A. Agrawala. Handling Samples Correlation in the HorusSystem[C]. In: Proceedings of Conference on Computer Communications-Twenty-Third Annual Joint Conference of the IEEE Computer andCommunications Societies, Hong Kong, China,2004:1023-1031.
    [94] K. Kaemarungsi, P. Krishnamurthy. Properties of Indoor Received SignalStrength for WLAN Location Fingerprinting[C]. In: Proceedings of the FirstAnnual International Conference on Mobile and Ubiquitous Systems:Networking and Services, Boston, United States,2004:14-23.
    [95] A. M. Ladd, K. E. Bekris, A. Rudys, et al. Robotics-based Location SensingUsing Wireless Ethernet[C]. In: Proceedings of the Eighth AnnualInternational Conference on Mobile Computing and Networking, Atlanta,United States,2002:227-238.
    [96]陈希孺.概率论与数理统计[M].合肥:中国科学技术大学出版社,2009.
    [97] T. Roos, P. Myllymaki, H. Tirri, et al. A Probabilistic Approach to WLANUser Location Estimation[J]. International Journal of Wireless InformationNetworks,2002,9(3):155-164.
    [98] M. Youssef, A. Agrawala. The Horus WLAN Location DeterminationSystem[C]. In: Proceedings of the Third International Conference on MobileSystems, Applications and Services, Seattle, United States,2005:205-218.
    [99]张仁铎.空间变异理论及应用[M].北京:科学出版社,2006.
    [100] A. G. Journel, C. J. Huijbregts. Mining Geostatistics[M]. Academic Press,New York,1978:192-193.
    [101] N. Cressie, D. Hawkins. Robust Estimation of the Variogram[J]. Math. Greo,1980,12(2):115-125.
    [102] P. A. Dowd. The Variogram and Kriging: Robust and ResistantEstimators[R]. Geostatistics for Natural Resources Characterization.California,1984:91-106.
    [103] M. G. Genton. Highly Robust Variogram Estimation[J]. Math. Geo,1998,30(2):213-221.
    [104] C. F. Chung. Use of Jackknife method to estimate autocorrelation functions(or variograms)[C]. In: Proceedings for Natural Resources Characterization,California, United States,1983:55-69.
    [105] J. M. Shafer, M. D. Varljen. Approximation of Confidence Limits on SampleSemivariograms from Single Realization of Spatially Correlated RandomFields[J]. Water Resources Research,1990,8(24):1787-1802.
    [106] R. A. Olea. Geostatistics for Engineers and Earth Scientists[M].KluwerAcademic Publishers,1999:84-85.
    [107] Y. G. Peng, Y. L. Li, Z. C. Lu, et al. Method for saving energy in Zigbeenetwork[C]. In: Proceedings of the5th International Conference on WirelessCommunications, Networking and Mobile Computing, Beijing, China,2009:1-3.
    [108] L. Zhang, W. D. Zhou, L. C. Jiao. Kernel Clustering Algorithm[J]. ChineseJournal of Computers,2002,25(6):587-590.
    [109] Z. D. Wu, X. B. Gao, W. X. Xie. A Study of a New Fuzzy ClusteringAlgorithm Based on the Kernel Method[J]. Journal of Xidian University,2004,31(4):533-537.
    [110] Y. Z. Chu. Gaussian Kernel-based Dynamic Clustering Algorithm[J].Journal of Huazhong University of Science and Technology,2009,37(8):43-45.
    [111] F.H. Qu, Y. T. Hu, S. L. Ma. Unsupervised Kernel Fuzzy ClusteringAlgorithm Based on Simulated Annealing[J]. Journal of Jilin University,2009,47(2):317-322.
    [112]曾广周.聚类趋势检验中的窗口设置[J].山东工业大学学报,1985,4:29-36.
    [113]曾广周.随机分布模式的统计检验[J].山东工业大学学报,1986,4:12-18.
    [114] A. P. Dempster. Upper and Lower Probabilities Induced by a MultivaluedMapping[J]. The Annals of Mathematical Statistics,1967,38(2):325-339.
    [115] M. H. Zhang, S. S. Zhang, J. Cao. A New Positioning Method forLocation-based Services in Wireless LANs[J]. Chinese Journal ofElectronics,2008,17(1):75-79.
    [116] P. Smets. Decision Making in the TBM: the Necessity of PignisticTransformation[J]. International Journal of Approximation Reasoning,2004,38:133-147.
    [117] R. R. Yager. On the Dempster-Shafer Framework and New CombinationRules[J]. Information Science,1989,41(2):93-137.
    [118]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):117-119.
    [119]叶清,吴晓平,宋业新.基于权重系数与冲突概率重新分配的证据合成方法[J].系统工程与电子技术,2006,28(7):1014-1016.
    [120] K. Murphy. Combing Belief Functions When Evidence Conflicts[J].Decision Support System,2000,29(1):1-9.
    [121]郭华伟,施文康,刘清坤等.一种新的证据组合规则[J].上海交通大学学报,2006,40(11):1895-1900.
    [122]杨善林,罗贺,胡小建.基于焦元相似度的证据理论合成规则[J].模式识别与人工智能,2009,22(2):169-175.
    [123]万江文,陈斌,冯仁剑等.基于可靠度和一致强度的冲突证据组合算法[J].高技术通讯,2009,19(7):730-734.
    [124]胡昌华,司小胜,周志杰等.新的证据冲突衡量标准下的D-S改进算法[J].电子学报,2009,37(7):1578-1583.
    [125]周皓,李少洪. GDOP引出的冲突证据组合新算法[J].控制与决策,2010,25(2):278-286.
    [126]佘二永,王润生,徐学文.基于预处理模式的D-S证据理论改进方法[J].模式识别与人工智能,2007,20(5):711-715.
    [127]李艳娜,乔秀全,李晓峰.基于证据理论的上下文本体建模以及不确定性推理方法[J].电子与信息学报,2010,32(8):1806-1811.
    [128] W. R. Liu. Analyzing the Degree of Conflict among Belief Functions[J].Artificial Intelligent,2006,170:909-924.
    [129]朱志宇.粒子滤波算法及其应用[M].北京:科学出版社,2010:19-32.
    [130]胡士强.粒子滤波原理及其应用[M].北京:科学出版社,2010:21-29.
    [131]冯仁剑,陈斌,吴银锋等.基于集合属性和优先度的D-S证据决策方法[J].高技术通讯,2009,19(11):1136-1141.
    [132] J. J. Sudano. Pignistic Probability Transforms for Mixes of Low and HighProbability Events[C]. In: Proceedings of the4th International Conferenceon Information Fusion, Montreal, Canada,2001.23-27
    [133]何兵,郝爱民,赵沁平.一种基于不确定信息的决策方法[J].计算机学报,2004,27(2):281-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700