用户名: 密码: 验证码:
区域性场地地震动放大研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场地类别的划分国际上大多采用场地地表30米的剪切波速Vs30指标,通常场地Vs30的测量是依靠打钻孔来实现的,然而区域性场地Vs30仅依靠打钻孔显然不切实际,为此需要研究较为精确的方法对区域性场地Vs30进行估算。Vs30是量化地震动的场地放大系数的重要指标,其中场地的放大系数研究通常采用地表基岩参考场地谱比法,在此过程中基岩参考场地的选取到底采用哪些标准比较合理还值得深入研究,另外对于地表_井下强震观测台阵,采用井下基岩参考场地谱比法估算土层场地放大存在的问题也有待解决。场地放大在建筑抗震设计中也给予了充分的考虑,然而我国当前抗震设计规范没有完全考虑不同场地条件下地震动的显著差异,对于不同场地类别仅改变设计反应谱形状,平台值没有改变,因此如何得到基于中国场地分类的场地放大系数对我国设计反应谱的平台值进行调整十分关键。另外,近年来随着长周期建筑物的增多,对长周期地震动场地放大特征和我国抗震设计反应谱长周期段的可靠性进行研究具有重要的意义。目前,我国地震动生成系统技术手段比较落后,开发考虑场地放大效应的新型地震动生成系统有待进一步探索。本文主要围绕以上几个问题进行论文选题,研究内容摘要如下:
     1、区域性场地Vs30估算与PGA放大系数研究
     提出了综合考虑地质和地形坡度的场地Vs30估算方法,以广东省区域为研究对象绘制了该区域场地Vs30分布图。并结合工程钻孔资料提出了基于钻孔的场地Vs30的修正方法,借助该方法实现了广东省和汶川区域场地Vs30的修正。经过统计分析得到Vs30与峰值加速度放大系数经验关系式,绘制了汶川区域的场地放大系数和PGA分布图,通过对比发现场地Vs30估算和修正方法,提高了区域性场地Vs30估算精度,该成果具有广泛的应用价值。
     2、标准参考场地选取与深度校正模型
     通过对基岩场地场地放大效应的研究,分析了欧美基岩参考场地选取指标Vs30的局限性,给出基岩参考场地的选取应同时采用Vs30和卓越频率f0双重标准,并验证了采用双重指标的合理性。对于地表和井下台阵,为了克服井下基岩参考场地谱比法缺陷,分析了井下基岩参考场地谱比法计算场地放大系数时钻井深度造成的影响,提出了井下基岩参考场地谱比法深度校正模型,并分析了该模型的合理性,得出深度校正模型对井下基岩参考场地谱比法计算场地放大效应十分可靠。
     3、中国场地分类标准的场地放大系数研究
     为了得到我国抗震规范设计反应谱的场地放大系数短周期Fa和中等周期Fv,在获取133个日本KiK-net台网地表与井下台站强震观测数据和钻孔资料的情况下,按照中国的场地分类标准对KiK-net台网台站场地进行了分类。利用井下基岩参考谱比法、深度校正和几何平均,得到每个台站场地的平均谱比。计算平均谱比在0.1~0.5s和0.5~2.0s周期范围内的平均值,按照I类基岩场地放大系数进行标准化得到短周期Fa和中等周期Fv,通过对比分析发现本文的Fa和Fv较为合理,该成果对实现我国设计反应谱平台值的调整非常有效。
     4、厚覆盖土层场地放大特征分析
     在获取汶川5.12地震主震和余震强震记录的基础上,计算了渭河盆地27个台站强震记录东西与南北向的PGA和周期分别为0.1s、5.0s和10.0s反应谱值,采用空间插值法分析了PGA和不同周期反应谱值空间变化的宏观特征,结果表明渭河盆地第四纪覆盖层厚度对长周期地震动具有一定的控制作用。为了对长周期地震动特征进行深入研究,分别对比分析了加速度反应谱随场地、震级和距离因素影响的变化规律,并将汶川地震主震C+D类场地反应谱与我国现行抗震规范II类场地反应谱进行比较,认为现行规范谱应用于长周期结构的抗震设计显然有不足之处,本文的研究成果对抗震设计地震波选取和考虑长周期部分的可靠性具有一定的意义。
     5、考虑场地特征的地震动快速生成系统
     概述了我国强震观测技术的发展现状,提出了准实时地震动速报系统中断层、极震区和宏观震中快速评估方法,结合本文区域性场地Vs30估算和场地放大系数成果,开发了考虑场地特征地震动快速生成系统。
The shear wave velocity from surface to30meters depth (Vs30) was used assite classification index in internation. However, measurement of Vs30wasdependent on drilling, which was obviously unpractical for large area. Thereforethe method of calculating Vs30was put forward. The spectral ratio method ofsurface rock reference site is dopted in estimation of site amplification effect forsoil layer generally, so how to select the surface rock reference site and whichstandard should be used had became significant problems. For the surface anddown hole strong motion observation array, there are some problems still existedin the down hole rock reference site spectral ratio. At present, the Chinese seismiccode did not consider the obvious difference among the ground motions ofdifferent site condition. Although the shape of design response spectra wasmodified, the platform value was not changed. So it is a key problem on how toobtain site amplification coefficient based on the Chinese site classification. Inrecent years, with the increasing of digital strong motion records of greatearthquakes in China, it became significant to study the site effect on long periodstrong ground motion and the effect of long period strong ground motion on thereliability of Chinese design response spectra in the long period phase. Thedevelopment of technical mean of earthquake disaster loss evaluation system wasrelatively backward at present and the ability of integrating seismic data inearthquake field was limited, so the development of new earthquake disaster lossevaluation system should be further studied. This paper centered on such issues asthe topic of the thesis, major contents are abstracted as following:
     1. Study on estimation of regional site Vs30and PGA amplificationcoefficient
     Estimation of Vs30method was put forward based on geology andtopographic slope, and the Vs30distribution map of Guangdong Province wasdrawn by this method. The site Vs30correction method was also proposed basedon engineering borehole data and site Vs30correction of Guangdong and Sichuanprovince was realized. In the case of statistic analysis relationship of Vs30andpeak acceleration amplification coefficient, PGA distribution map of Wenchuanwas drawn. It showed that the estimation of Vs30method and the correlationmethod improved estimation accuracy of regional Vs30, which had wideapplication in the intensity quick report system, seismic design,ground motionattenuation relationships and seismic zoning.
     2. Standard reference site selection and depth correction model
     Based on the study of rock site amplification effect, the limitations of Vs30standard for rock reference site selection in Europe and the United States wasanalysed, The double standard Vs30and predominant frequency f0was promotedto select rock reference site, whose rationality was also verified. In order toovercome the defect of the down hole rock reference site spectral ratio for surfaceand down hole strong motion observation array, based on the analysis of thedrilling depth impact, a depth correction model of down hole rock reference sitespectral ratio was put forward. By analyzing the rationality of the model, it could come to a conclusion that depth correction model was very reliable.
     3. Study on site amplification of Chinese site classificationIn order to get the site amplification coefficient of short-period Fa andmedium-period Fv, strong motion records and borehole data were collected fromJapanese KiK-net strong ground motion arrays, and then according to thestandard Chinese site classification, the stations site classification were completed.With the down hole rock reference site spectral ratio, depth correlation andgeometric mean, the average spectra of every station site was calculated. Takingaverage value within the range period0.1~0.5s and0.5~2.0s, standardizing on thebasis of I site classification, in the end site amplification coefficient ofshort-period Fa and medium-period Fv were gotten. Through comparativeanalysis, the rationality of short-period Fa and medium-period Fv were verified.The achievement is very effective to adjust the value of Chinese design responsespectra platform.
     4. Characteristic analysis of site amplification for thick overburden
     Based on the Wenchuan main shock and after shock records, the PGA andresponse spectra value at period0.1s,5.0s,10.0s of27stations in Weihe basinwere calculated.With the spatial interpolation method, the spatial variationcharacteristics of PGA and response spectra value were analized. The resultsshowed that the quaternary overburden thickness controlled action on long-periodstrong ground motion. For further study of long-period ground motioncharacteristics, comparative analysis of variation regulation of accelerationresponse spectra with site, magnitude and distance factors was done, and then theresponse spectra of class C+D site in Wenchuan earthquake and the Chineseseismic code response spectra of class II site were compared, it could beconcluded that Chinese seismic code response spectra applying to seismic designof long-period structure was not reliable. Our research on seismic wave selectionand reliability of long-period seismic design has a certain significance.
     5. Study on ground motion rapid generation system
     The development status of strong motion observation technology issumarized, in the quasi-real-time intensity quick report system rapid assessmentmethods of faults, meizoseismal area and Macro epicenter were put forward.
引文
[1]薄景山,李秀领等.土层结构对地表加速度反应谱的影响[A].第九届土力学及岩土工程学术会议文集.北京:清华大学出版社,2003,373-379.
    [2]薄景山,李秀领.场地条件对地震动影响研究的若干进展[J].世界地震工程,2003,19(2):11-15.
    [3]薄景山.场地分类和设计反应谱调整方法研究[D].哈尔滨:中国地震局工程力学研究所博士论文,1998,50-80.
    [4]薄景山等.场地分类及其在我国的演变[J],自然灾害学报,2004,13(3),44-49.
    [5]陈鲲,俞言祥,高孟潭.考虑场地效应的ShakeMap系统研究[J].中国地震,2010,26(1):92-102.
    [6]陈鲲,俞言祥.2010年4月14日青海玉树地震震动图[J].中国地震,2011,27(1):99-102.
    [7]陈立德,赵维城等.一九七六年龙陵地震[M].北京:地震出版社,1979,81-85.
    [8]陈述彭.地理信息系统导论[M].科学出版社,1999,150-200.
    [9]陈运泰,许力生等,2008年5月12日汶川特大地震震源特性分析报告.http://www.csi.ac.cn/Sichuan/chenyuntai.pdf.
    [10]大崎顺彦.地震动的谱分析入门[M].地震出版社,1980,187-236.
    [11]党安荣.ArcGIS8Desktop地理信息系统应用指南[M].清华大学出版社,2002,150-200.
    [12]邓起东,陈社发,赵小麟.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,1994,16(4):389-403.
    [13]地质部地质辞典办公室.地质辞典[M].地质出版社,1981,76-81.
    [14]段洪杰,崔建文,周挚,刘琼仙.ShakeMap二次开发与软件集成研究[J].地震研究,2009,32(4):420-425.
    [15]丰彪.基于PC机的视景仿真技术与房屋震害演示系统[D].中国地震局工程力学研究所硕士论文,2003,56-65.
    [16]GBJ11-89,建筑抗震设计规范[S].中国建筑工业出版社,1989,16-40.
    [17] GBJ50011-2001,建筑抗震设计规范[S].中国建筑工业出版社,2001,17-35.
    [18] GBJ50011-2010,建筑抗震设计规范[S].中国建筑工业出版社,2010,16-18.
    [19]顾功叙,中国地震目录[M].北京:科学出版社,1983,87-95.
    [20]郭恩栋等.生命线工程震害损失快速评估系统[J].世界地震工程,2000,16(3):17-21.
    [21]郭锋.抗震设计中有关场地的若干问题研究[D],华中科技大学硕士论文,2010,39-44.
    [22]郭明珠.地脉动波场分析及其在场地动力特性测试中的应用[D],北京:中地震局工程力学研究所博士论文,2000,20-30.
    [23]郭晓云.汶川地震反应谱研究[D].中国地震局工程力学研究所博士论文,2011,60-70.
    [24]国家强震动台网中心.http://222.222.119.9/zxjj.asp.
    [25]国家汶川地震专家委员会.汶川地震灾区地震地质灾害图集[M].北京:中国地图出版社,2008,50-60.
    [26]胡长理.砌体结构三维模型及三维灾害场景实现技术的初步研究[D].中国地震局工程力学研究所硕士论文,2009,35-50.
    [27]胡聿贤.地震工程学[M].1988,109-110.
    [28]黄耀丽,储茂东.广东地质构造特征及其与地貌发育的关系[J].云南地理环境研究,1995,7(2):85-89.
    [29]黄媛,吴建平等.汶川8.0级大地震及其余震震序列重新定位研究[J].中国科学D辑:地球科学,2008,38(10):1242-1249.
    [30]金波.分布式防震减灾信息系统及辅助决策系统[D].中国地震局工程力学研究所博士学位论文,2009,10-24.
    [31]李春锋.长周期地震动衰减关系研究的迫切性[J].地震地磁观测与研究,2006,27(3),1-8.
    [32]李见贤.广东省的地貌类型[J].中山大学学报,1961,4,70-81.
    [33]李俊,苏枫,米宏亮等. ShakeMap及其在地震动快速预估中的应用.中国地震.2010,26(1):103-111.
    [34]李俊.以Google Earth为平台,基于GDP、人口与场地效应的全球大地震损失评估模型[J].中国科技大学博士论文,2009,34-50.
    [35]李萍.基于GIS的防震减灾信息系统的功能扩展与升级[J].哈尔滨工业大学博士学位论文,2009,17-24.
    [36]李乔,赵世春.汶川大地震工程震害分析[M].西南交通大学出版社第1版,2008,120-150.
    [37]李善邦.中国地震.北京:地震出版社,1981,138-139.
    [38]李树桢等.地震损失评估与数据库系统[J].中国地震,1993,9(3):264-275.
    [39]李小军,彭青.不同类别场地地震动参数的计算分析[J].地震工程与工程振动,2001,21(1):29-36.
    [40]李志强,袁一凡等,对汶川地震宏观震中和极震区的认识.地震地质,2008,30(3):768-777.
    [41]廖士毅.台湾ShakeMap震度之研究_以九二一集集地震序列为例[D].台湾中央大学硕士论文,2003,8-18.
    [42]林世镔.建筑物抗震能力研究[D].中国地震局工程力学研究所硕士论文,2010,20-30.
    [43]刘本玉,苏经宇.震害经济损失的全概率预测[J].世界地震工程,2003,19(1):15-20.
    [44]刘恢先.关于编制我国地震区建筑物设计规范的一些意见[J].土木工程,1958,3(7):333-336.
    [45]卢滔.响瞠台阵场地特征及其反应的分析[D].哈尔滨,中国地震局工程力学研究所硕士论文,2003,40-50.
    [46]卢滔等.关于Nakamura方法有效性的讨论[J].地震工程与工程振动,2006,26(1):43-48.
    [47]吕红山.适用于中国场地分类的地震动反应谱放大系数[J].地震学报,2007,29(1),67-76.
    [48]彭建兵.渭河断裂带的构造演化与地震活动[J].地震地质,1992,14(2):113-120.
    [49]彭艳菊,吕悦军,黄雅虹.工程地震中的场地分类方法及适用性评述[J],地震地质,2009,31(2):349-362.
    [50]史大成,温瑞智,任叶飞.基于GIS的场地分类方法研究[J].地理信息世界,2011,23-27.
    [51]史大成.基于GIS的场地分类新方法研究[J].中国地震局工程力学研究所,2009,40-70.
    [52]史大成.区域性场地Vs30估算及动态修正方法研究[J].地震工程与工程振动,2012,40-46.
    [53]史大成.新型震害损失评估系统模块研究,土木建筑与环境工程增刊,2010,32(2):35-37.
    [54]宋胜武.汶川大地震工程震害调查分析与研究[M].科学出版社,2009,181-189.
    [55]宋思然等.辽宁省地震灾害快速评估系统设计与开发[J].东北地震研究,2009,25(1):29-36.
    [56]TJ11-74,工业与民用建筑抗震设计规范[S].中国建筑工业出版社,1974,5-9.
    [57]TJ11-78,工业与民用建筑抗震设计规范[S].中国建筑工业出版社,1984,7-12.
    [58]台湾地震损失评估系统_TELES.http://teles.ncree.org.tw/AboutTELES.aspx
    [59]王飞.城市地震危害性模糊评价及地震损失预测评估[D].浙江大学硕士论文,2005,19-40.
    [60]王海云.2010年4月14日玉树Ms7.1地震加速度场预测[J].地球物理学报,2010,53(10):2345-2354.
    [61]王士成.ShakeMap系统的研究及应用[D].中国地震局工程力学研究所硕士论文,2011,27-30.
    [62]王小令.基于GIS的黑龙江省设计地震动参数查询系统[D].中国地震局工程力学研究所硕士论文,2009,1-7.
    [63]王伟.地震动的山体地形效应研究[D].中国地震局工程力学研究所博士论文,2011,50-90.
    [64]王卫民,赵连锋,李娟等.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403-1410.
    [65]王悦,刘晶波.建筑物地震损失估计方法对比分析[J].自然灾害学报,2005,14(4):121-126.
    [66]温瑞智等.城市建筑物震害损失快速评估系统[J].世界地震工程,1998,14(2):23-28.
    [67]温瑞智等.日本Mw9.0强震动观测与记录初步分析[J].国际地震动态,2011,388(4):16-21.
    [68]文里梁.基于三维GIS技术的地震灾情场景模拟系统[D],中国地震局工程力学研究所硕士论文,2009,26-50.
    [69]谢浩球.广东地质灾害概述[J].广东地质,1991,6(3):1-8.
    [70]谢礼立.强震观测与分析原理[M].地震出版社,1983,214-230.
    [71]胥广银,高孟潭,俞言祥.破坏性地震破坏范围的快速估计[J].国际地震态,2008,7:20-23.
    [72]徐扬,赵晋泉,李小军等.基于汶川地震远场强震动记录的厚覆盖土层对长周期地震动影响分析[J].震灾防御技术,2008,4(7):345-351.
    [73]徐宗和.中国强震观测台网的建设[J].国际地震动态,1981,9-10.
    [74]鄢家全,李金臣.论宏观震中及其快速估定方法[J].震灾防御技术,2010,5(4):409-417.
    [75]鄢家全,谢明富等.工程场地影响烈度调查[J].震灾防御技术,2009,4(1):l03-109.
    [76]杨伟林.震害经济损失动态预测模型研究[J].地震学刊,1996,4:13-16.
    [77]杨泽等.基于ArcGIS和3DSMax的砖平房震害三维可视化方法研究[J].地震地质,2007,29(3):680-685.
    [78]冶金工业部建筑研究总院工程抗震研究室.九国抗震设计规范汇编[M].北京:地震出版社,1982,83-86.
    [79]叶锦勋.台湾地震损失评估系统-TELES[A].国家地震工程研究中心研究报告,2003,35-40.
    [80]尹之潜等.震害与地震损失的估计方法[J].地震工程与工程振动,1990,10(1):99-108.
    [81]于福江,吴玮等.基于数值预报技术的日本新一代海啸预警系统[J].国际地震动态,2005,313(1):19-22.
    [82]于海英,解全才.基于WebGIS的强震动台网数据发布系统研究[J].世界地震工程,2007,23(3):13-17.
    [83]泽仁志玛等.震动图快速生成系统[J].地球物理学进展,2006,21(3):809-813.
    [84]张勇,冯万鹏等.2008年汶川大地震的时空破裂过程[J].中国科学D辑,2008,38(10):1186-1194.
    [85]张渊智等.地震灾害损失评估数据库的设计与建立_唐山地震为例[J].遥感环境,1996,11(1):46-53.
    [86]中国地震信息网.http://www.csi.ac.cn/sichuan/index080512001.htm
    [87]中国地质调查局,中华人民共和国1:50万数字地质图数据库[M].北京:1999,170-181.
    [88]中国科学院工程力学研究所.地震区建筑设计规范(草案稿)[R].哈尔滨:中国科学院工程力学研究所,1964,25-30.
    [89]中国科学院土木建筑研究所.建筑抗震设计规范(草案稿)[R].哈尔滨:中国科学院土木建筑研究所,1959,30-35.
    [90]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001)[M].北京:中国建筑工业出版社,2001,276-281.
    [91]周宝峰.强震观测中关键技术研究[D].中国地震局工程力学研究所博士论文,2012,153-162.
    [92]周成虎,裴韬.地理信息系统空间分析原理[M].北京,科技出版社,2011,87-96.
    [93]周锡元等.场地地基设计地震[M].北京:地震出版社,1990,75-85.
    [94]周雍年.中国数字强震动台网技术规程[M].中国地震局,2005,15-30.
    [95]朱艾娴,徐锡伟等.汶川MS8.0地震部分余震重新定位及地震构造初步分析.地震地质,2008,30(3):759-767.
    [96] Alessandro,D,C,F.Bonilla. Influence of site classification on computing empiricalground motion prediction equations in Italy [J].San Francisco AGU meeting,2008,15-19.
    [97] Andrews,D.J.Objective determination of source parameters and similarity ofearthquakes of different size[J].Geophysical Monograph,1986,37:259-267.
    [98] Andrews,D J,Bucknam R C.,Fitting degradation of shoreline scarps by a nonlineardiffusion model[J].J Geophys Res,1987,92(B12):12857-12867.
    [99] Borcherdt, R.D.Estimates of site dependent response spectra for design(methodology and justification)[J].Earthq Spectra,1994,617-653.
    [100] Borcherdt, R D.On the characteristics of local geology and their influence on groundmotions generated by the Loma Prieta earthquake in the San Francisco Bay region,California [J].1992,82(2):603-641.
    [101] Borcherdt R D.Effects of local geology on ground motion near san FranciscoBay[J].Bull Seism Soc Am,1970,60:29-61.
    [102] Building Seismic Safety Council(BSSC).The2003NEHRP RecommendedProvisions for New Buildings and Other Structures,PartI (Provisions) andPartII(Commentary), Washington, D.C,FEMA2003,368-369.
    [103] Chyi Tyi Lee, Bi Ru Tsai.Mapping Vs30in Taiwan [J].Terr Atmos Ocean Sci,2008,19(6):671-682.
    [104] Chyi Tyi Lee, Chin Tung Cheng. Site classification of Taiwan free field strongmotion stations [J].Bull Seism Soc Am,2001,91(5):1283-1297.
    [105] Eurocode8.Design of structures for earthquake resistance, part1:General rules,seismic actions and rules for buildings,EN1998-1,European Committee forStandardization (CEN).http://www.cen.eu/cenorm/homepage.htm.
    [106] Eurocode8.Design provision for earthquake resistance of structures[S].part1.1General requirements for stucture.DDENV1998,1(1):190-200.
    [107] Federal Emergency Management Agency (FEMA), National Institute of BuildingSciences (NIBS). http://www.nibs.org/.
    [108] FEMA.NEHRP Recommanded Provisions for the Seismic Regulations for NewBuildings[R]. Berkeley:NCEER,1995.
    [109] Field E,Jacob K.The theoretical research response of sedimentary layers to ambientseismic noise[J].Geophysical Research Leters.1993.20(24):2925-2928.
    [110] Ghasemi H,Zare M,Fukushima Y,Sinaeian F.Applying empirical methods in siteclassification, using response spectral ratio(H/V): A case study on Iranian strongmotion network (ISMN).Soil Dynamics and Earthquake Engineering,2009,29(1):121-132.
    [111] Goovaerts, P. Geostatistics in soil science: state of the art and perspectives,Geoderma,1999,89:1–45.
    [112] Graves, R. Preliminary analysis of long period basin response in the Los Angelesregion from the1994Northridge earthquake, Geophys Res Lett.1995,22:101-104.
    [113]HAZUS MH MR3TechnicalManual [M]. Washington,D C,2003,30-50.
    [114] Hatayama,K.Long period strong ground motion and damage to oil storage tanks dueto the2003Tokachi-oki earthquake[J].Seism Soc Japan,2004,57:83-103.
    [115] Hélo se Cadet, Pierre YvesBard, AdrianRodriguez Marek.Defining a Standard RockSite: Propositions Based on the KiK-net Database [J].Bull Seism Soc Am,2010,100(1):172-195.
    [116] Hiroshi Kawase,Keiiti Aki.A study on the response of a soft basin for incident S, P,and Rayleigh waves with special reference to the long duration observed in MexicoCity[J].Bull Seism Soc Am,1989,79(5):1361-1382.
    [117]http://gis.geo.ncu.edu.tw/query/site/.
    [118] Hunter,J A.Seismic site classification and site period mapping in the Ottawa areausing geophysical methods[J], Geological Survey of Canada Open File6273,2010,80.
    [119] Junko Iwahashi, Izumi Kamiya etc.Regression analysis of Vs30using topographicattributes from a50m DEM [J].Geomorphology.2010,117:202-205.
    [120] Kawase, H, K.Aki. A study on the response of a soft basin for incident S,P, andRayleigh waves with special reference to the long duration observed in MexicoCity[J].Bull Seism Soc Am.1989,79:1361-1382.
    [121] Kazuo Fujimoto and Saburoh Midorikawa.Prediction of average shear wave velocityfor ground shaking mapping using the digital national land information of Japan,3thWorld Conference on Earthquake Engineering Vancouver,B.C,Canada,2004.
    [122] Kenneth W.Campbell,Yousef Bozorgnia.NGA Ground Motion Model for theGeometric Mean Horizontal Componentof PGA,PGV,PGD and5%Damped LinearElastic Response Spectra for Periods Ranging from0.01to10s[J]. EarthquakeSpectra,2008,24(1):139-171.
    [123] Koketsu, K.Damaging long period ground motions from the2003Mw8.3Tokachioki Japan earthquake [J].Seism.Res.Lett.2005,76:67-73.
    [124] Lang, D.H., Gutiérrez Corea, F V,Lindholm,C.D.RISe Risk Illustrator for SELENA,Technical User Manual V2.0, NORSAR, Kjeller,Norway,2009,24-30.
    [125] Lang,D H,Molina,S,Lindholm,C D.Towards near real time damage estimation usinga CSM based tool for seismic risk assessment [J]. Earthquake Eng.2008,12:199-210.
    [126] Lermo,J,F.J,Chávez García.Site effect evaluation using spectral ratios with only onestation[J].Bull Seism Soc Am.1993,5:1574-1594.
    [127] Lermo, J, Chavez.Garcia, J.Are microtremors useful in site response evaluation[J].Bull Seism Soc Am,1994,84(5):1350-1364.
    [128] Masashi Matsuoka etc. Average shear wave velocity mapping using Japanengineering geomorphologic classification map[J],Structural Eng EarthquakeEng,2005,79(4):239-251.
    [129] Masumi Yamada.Statistical features of short period and long period near sourceground motions[J].Bull Seism Soc Am,2009,99(6):3264-3274.
    [130] Molina, S, Lindholm, C.D.,2005. A logic tree extension of the capacity spectrummethod developed to estimate seismic risk in Oslo, Norway. Journal of EarthquakeEngineering,2005,9(6):877-897.
    [131] Molina,Sergfo.A logic tree extension of the capacity spectrum method developed toestimate seismic risk in OSLO, Norway [J].Earthquake Engineering,2005,9(6):877-897.
    [132] Nakamura Y. A Method for Dynamic Characteristics Estimation of SubsurfaceUsing Microtremor on the Ground Surface. Quarterly Report of the RailwayTechnical Research Institute,1989,30(1):25-33.
    [133] Noboru Kamiakito,Takashi Sato etc. Estimation of Site Amplification Factors UsingStrong Motion Records of Hokkaido. The14th World Conference on EarthquakeEngineering, Beijing,2008:12-17.
    [134] Okada,H,T.Matsuhima,T.Moriya. An exploration technique using long periodmicrotremors for determination of deep geological structures under urbanized areas[J].Butsuri Tansa Geophys Explor,1990,43:402-417.
    [135] Pancha, A etc. Characterization of near surface geology at strong-motion stations inthe vicinity of Reno, Nevada [J]. Bull Seismol Soc Am,2007,97:2096-2117.
    [136]Richter C F. Elementary Seismology [M].San Francisco,1950,431-450.
    [137] Seed,H. B.,C.Ugas, and J. Lysmer.Site-dependent spectra for earthquake resistantdesign[J], Bull Seis Soc Am.1976,66(1):221-243.
    [138] Steidl, J. H., A. G. Tumarkin, and R. J. Archuleta.What is a reference site, BullSeismol Soc Am.1996,6:1733-1748.
    [139] Stéphane Drouet etal. Comparison of Site Effects Estimation Methods Using theLefkas,Greece,2003Earthquake Aftershocks[J].Bull Seism Soc Am.2008,98(5):2349-2363.
    [140] Takaji Kokusho,Katsuharu Sato.Surface to base amplification evaluated fromKiK-net vertical array strong motion records[J].Soil Dynamics and EarthquakeEngineering,2008,28:707-716.
    [141] Thompson, Eric.M.A geostatistical approach to mapping site response spectralamplifications [J].Engineering Geology,2010,114,330-342.
    [142] Allen, Trevor I.David J. Wald. On the Use of High-Resolution Topographic Data asa Proxy for Seismic Site Conditions (Vs30)[J].Bull Seism SocAm,2009,99(2),935-943.
    [143] U.S. Building Seismic Safety Council.NEHRP recommended provisions for seismicregulations for new buildings and other structures [M].Washington D.C.USA,2000,176-180.
    [144] Wald, D J, Quitoriano, V, Heaton, T H. TriNet ‘ShakeMaps’: Rapid generation ofpeak ground motion and intensity maps for earthquakes in southern California,Earthquake Spectra1999,15:537-555.
    [145]Wald, D.J, T.I.Allen.Topographic slope as a proxy for seismic site conditions andamplification, Bull Seismol Soc Am.2007,97:1379-1395.
    [146] Wald, D J. Bruce C.Worden, Vincent Quitoriano.Pankow.ShakeMap ManualTechnical manual, users guide, and software guide [M], USGS,2006,52-54.
    [147] Wald,D,R.Graves.The seismic response of the Los Angeles basin,California[J],BullSeism Soc Am,1998,93:283-300.
    [148] Wells,Donald,L.Kevin,J.Coppersmith.New Empirical Relationshipsamong Magnitude,Rupture Length, Rupture Width,upture Area, and SurfaceDisplacement [J].Bull Seism Soc Am,199484(4),974-1002.
    [149] Wen Ruizhi,Ren Yefei,Zhou Zhenghua,Shi Dacheng.Preliminary site classificationof free field strong motion stations based on Wenchuan earthquake recordsEarthquake Science,2010,23(1):101-110.
    [150] Wills,C. J.A Site Conditions Map for California Based on Geology and Shear WaveVelocity[J].Bull Seism Soc Am.2000,90(6B):187-208.
    [151] Wills, C J.Shear wave velocity characteristics of geologic units in California [J].Earthquake spectra,1998,14(3),533-556.
    [152] Wills.C.J. and K.B.Clahan, Developing a Map of Geologically Defined SiteCondition Categories for California [J].Bull Seism Soc Am,2006,96(4):1483-1501.
    [153] Worden,C.B. A Revised Ground Motion and Intensity Interpolation Scheme forShakeMap[J].Bull Seism Soc Am,2010,100(6):3083-3096.
    [154] Yamazaki F and Ansary MA (1997). Horizontal to Vertical Spectrum Ratio ofEarthquake Ground Motion for Site Characterization. Earthquake Engineering&Structural Dynamics,26(7):671-689.
    [155] Yamazaki F.,Wakamatsu K,Onishi J.Relationship between geomorphologic landclassification and site amplification ratio based on JMA strong motionrecords[J].Soil Dynamics in Earthquake Engineering,2000,(19):41-53.
    [156] Yih Min Wu etc.Near real time mapping of peak ground acceleration and peakground velocity following a strong earthquake [J], Bull Seism Soc Am,2001,91(5):1218-1228.
    [157] Youngs, R.R.etc. Strong ground motion attenuation relationships for subductionzone earthquakes [J], Seism Res Lett,1997,68(1):58-73.
    [158] Yu Fujiang,Wu Wei,Zhao Lian da.New Generation Tsunami Warning System Basedon Numerical Forecast Technology in Japan[J].Recent Developments in WorldSeismology,2005,1:19-22.
    [159] Yu, J. and J. Haines. The choice of reference sites for seismic ground amplificationanalyses: Case study at Parkway, New Zealand[J].Bull Seismol Soc Am,2003,2:713-723.
    [160] Zaré, M, P.Y. Bard, M. Ghafory Ashtiany. Site categorization for the Iranian strongmotion network [J].Soil Dyn Earthq Eng.1999,101-123.
    [161] Zhao J X, Irikura K, Zhang J. An Empirical Site Classification Method for StrongMotion Stations in Japan Using H/V Response Ratio. Bull Seismol Soc Am,2006,96(3):914-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700