用户名: 密码: 验证码:
植物蛋白源与鱼粉组合对凡纳滨对虾(Litopenaeus vannamei,Boone)幼虾营养生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过生长试验和消化率试验,测定凡纳滨对虾幼虾对11种蛋白原料的干物质、蛋白质、氨基酸、脂肪和能量的表观消化率,在此基础上研究了膨化豆粕、花生粕、玉米蛋白粉和大豆浓缩蛋白分别与鱼粉组合使用对凡纳滨对虾生长、饲料利用、全虾体成分、消化酶活性、血液生化指标、血清非特异性免疫酶活性及养分表观消化率的影响;通过膨化豆粕、花生粕和玉米蛋白粉按比例组成植物蛋白复合物与鱼粉组合,同时比较不同组合比例并平衡氨基酸的影响,分别确定不同蛋白原料与鱼粉组合的适宜比例。主要研究内容和结果如下:
     1.凡纳滨对虾对11种蛋白原料养分表观消化率的研究
     为研究凡纳滨对虾幼虾对鱼粉、发酵豆粕、膨化豆粕、大豆粉、花生粕、小麦蛋白粉、玉米蛋白粉、虾加工副产物、肉骨粉、鸡肉粉和血浆蛋白粉等11种蛋白原料的干物质、蛋白质、能量、脂肪和氨基酸的表观消化率。选择初始体重为1.05±0.02g凡纳滨对虾1440尾,平均分成12个处理,每个处理3个重复,每个重复40尾虾,分别投喂基础饲料和11种含测试原料的饲料。11种试验饲料以69.5%基础饲料+30%测试原料+0.5%的Cr203组成,在36个0.5m3的玻璃纤维钢桶中,进行为期6周的消化率试验。
     结果表明:不同蛋白原料干物质、蛋白质、脂肪、磷和能量的表观消化率存在显著差异(P<0.05)。鱼粉、小麦蛋白粉和玉米蛋白粉干物质的表观消化率显著高于其余8种原料的干物质消化率(P<0.05);肉骨粉和虾加工副产物的干物质表观消化率显著低于其余9种原料(P<0.05)。花生粕、血浆蛋白粉和鱼粉的蛋白质表观消化率显著高于鸡肉粉、肉骨粉和虾加工副产物(P<0.05),与其它原料差异不显著(P>0.05);肉骨粉和鸡肉粉显著低于其余9种原料的蛋白质表观消化率(P<0.05)。花生粕的脂肪表观消化率显著高于肉骨粉、鸡肉粉和血浆蛋白粉(P<0.05);肉骨粉的则显著低于其余10种原料(P<0.05)。动物性蛋白原料磷的表观消化率显著高于植物性蛋白原料(P<0.05),鱼粉显著高于肉骨粉、鸡肉粉和血浆蛋白粉原料(P<0.05);花生粕磷的表观消化率显著低于发酵豆粕、膨化豆粕、小麦蛋白粉和玉米蛋白粉的(P<0.05)。血浆蛋白粉、鱼粉、玉米蛋白粉、小麦蛋白粉和花生粕的能量表观消化率显著高于发酵豆粕、鸡肉粉、虾加工副产物(P<0.05);除了鸡肉粉和发酵豆粕外,虾加工副产物的显著低于其它8种原料(P<0.05)。膨化豆粕、花生粕和鱼粉等9种必需氨基酸及8种非必需氨基酸的表观消化率较高(P<0.05),而肉骨粉、鸡肉粉和虾加工副产物的氨基酸消化率显著低于其它原料(P<0.05)。
     2.膨化豆粕与鱼粉组合对凡纳滨对虾生长、消化酶活性、血液生化指标和养分表观消化率的影响
     选择初始体重为0.67±0.02g的健康幼虾720尾,分成6个处理,每个处理3个重复,每重复40尾虾,分别投喂以0、4.28%、8.40%、12.62%、16.82%和25.26%的膨化豆粕分别与30%、27%、24%、21%、18%和12%的鱼粉组合配制成的6种等氮等能饲料,在18个0.5m3的玻璃纤维钢桶中,进行为期56d试验。
     结果表明:当膨化豆粕与鱼粉等氮组合比例高于12.62%:21%,凡纳滨对虾增重率、SGR、成活率显著低于对照组、膨化豆粕为4.8%%和8.40%组(P<0.05),而饲料系数则显著提高(P<0.05)。当膨化豆粕为4.28%,随着膨化豆粕含量增加鱼粉含量降低,全虾体蛋白和磷的含量降低(P<0.05),而全虾脂肪含量显著升高(P<0.05)。膨化豆粕含量高于12.62%,肝胰脏蛋白酶和脂肪酶活性显著低于膨化豆粕含量为16.82%和25.26%组(P<0.05),而淀粉酶活性则显著升高(P<0.05)。当膨化豆粕含量为4.28%,随着膨化豆粕含量增加,血清葡萄糖和甘油三酯含量及AKP和ACP活性显著降低(P<0.05);当膨化豆粕含量高于8.40%,血清中总蛋白含量和LZM活性显著降低(P<0.05)。对照组和膨化豆粕含量为4.28%组,饲料干物质、蛋白质和能量的表观消化率显著高于为16.82%和25.26%组(P<0.05);对照组必需氨基酸及总氨基酸的表观消化率显著高于膨化豆粕为16.82%和25.26%组(P<0.05);膨化豆粕为25.26%,必需氨基酸及总氨基酸的表观消化率显著低于其它各组(P<0.05)。然而,全虾的水分和灰分含量、血清总胆固醇含量和SOD活性、饲料脂肪表观消化率及天冬氨酸、丝氨酸的表观消化率均不受饲料中膨化豆粕含量的影响,各组间差异不显著(P>0.05)。本试验结果表明:(1)当饲料中膨化豆粕与鱼粉等氮组合比例高于8.40%:24%,随着膨化豆粕含量增加且鱼粉含量降低,则引起凡纳滨对虾的生长性能和饲料利用率下降,饲料中蛋白质、氨基酸和能量的表观消化率及肝胰脏中蛋白酶和脂肪酶活性以及血清总蛋白、葡萄糖和甘油三酯含量及ACP、ACP和LZM活性降低;(2)在饲料蛋白质为40%、鱼粉含量为30%的凡纳滨对虾基础饲料中,膨化豆粕与鱼粉适宜的组合比例为8.40%:24%。
     3.花生粕与鱼粉组合对凡纳滨对虾生长、消化酶活性、血液生化指标和养分表观消化率的影响
     选择初始体重为0.75±0.01g的健康对虾苗720尾,分成6个处理,每个处理3个重复,每重复40尾虾,分别投喂以0、3.83%、7.65%、11.48%、15.30%和22.96%的花生粕分别与30%、27%、24%、21%、18%和12%的鱼粉组合配制成的6种等氮等能饲料,在18个0.5m3的玻璃纤维钢桶中,进行为期56d试验。
     结果表明:当花生粕高于3.83%,随着花生粕含量增加且鱼粉含量降低,凡纳滨对虾的增重率、SGR和蛋白质效率显著降低(P<0.05);花生粕含量高于11.48%,显著提高饲料系数(P<0.05),而全虾蛋白含量则显著降低(P<0.05);花生粕高于22.96%显著提高全虾脂肪含量(P<0.05);花生粕含量高于7.56%,显著降低肝胰脏蛋白酶和脂肪酶活性(P<0.05),而淀粉酶活性则显著提高(P<0.05);花生粕为7.56%组,血清总蛋白、葡萄糖和总胆固醇含量显著高于花生粕为22.96%组(P<0.05)。饲料的干物质、蛋白质和能量表观消化率,对照组显著高于其余各组(P<0.05);当花生粕含量为3.83和7.65%,蛋白表观消化率显著高于15.30%和22.9%组(P<0.05)。随着花生粕含量增加且鱼粉含量降低,总氨基酸的表观消化率、9种必需氨基酸和非必需氨基酸表观消化率显著降低(P<0.05),以对照组显著高于其它各组(P<0.05);花生粕为22.96%组显著低于其余各组(P<0.05)。但是,花生粕与鱼粉组合比例的变化对成活率、全虾的磷和灰分含量及饲料脂肪表观消化率影响不显著(P>0.05)。本试验结果表明:(1)饲料中花生粕与鱼粉等氮组合比例高于3.83%:27%,随着花生粕含量增加且鱼粉含量降低则引起凡纳滨对虾的生长性能和饲料利用率下降,饲料中蛋白质、氨基酸和能量的表观消化率及肝胰脏中蛋白酶和脂肪酶活性以及血清中的总蛋白、葡萄糖和甘油三酯含量降低;(2)在饲料蛋白质为40%、鱼粉含量为30%的凡纳滨对虾基础饲料中,花生粕与鱼粉适宜组合比例为3.83%:27%。
     4.玉米蛋白粉与鱼粉组合对凡纳滨对虾生长、消化酶活性、血液生化指标和养分表观消化率的影响
     选择初始体重为0.712±0.012g的健康对虾苗720尾,分成6个处理,每个处理3个重复,每重复40尾虾,分别投喂以0、3.14%、6.29%、9.44%、12.59%和18.88%的玉米蛋白粉分别与30%、27%、24%、21%、18%和12%的鱼粉组合配制成的6种等氮能饲料,在18个0.5m3的玻璃纤维钢桶中,进行为期56d试验。
     结果表明:当玉米蛋白粉含量高于9.44%,随着玉米蛋白粉含量增加且鱼粉含量下降,显著降低凡纳滨对虾增重率和SGR(P<0.05),饲料系数则显著提高(P<0.05);当玉米蛋白粉含量高于6.29%,全虾蛋白质和磷的含量显著降低(P<0.05),而脂肪含量则显著提高(P<0.05)。但玉米蛋白粉含量为9.44%,随着玉米蛋白粉含量增加且鱼粉含量下降,肝胰脏蛋白酶和脂肪酶活性显著降低(P<0.05),而淀粉酶活性显著升高(P<0.05);当玉米蛋白粉含量高于3.14%,血清总蛋白和甘油三酯含量显著降低(P<0.05):当玉米蛋白粉含量高于6.29%,则显著提高血清胆固醇含量(P<0.05);当玉米蛋白粉含量高于9.44%,血清葡萄糖含量显著降低(P<0.05)。同时,当玉米蛋白粉为9.44%,随着玉米蛋白粉含量增加且鱼粉含量下降,饲料干物质、蛋白质、脂肪和能量表观消化率显著降低(P<0.05),且饲料中赖氨酸、苏氨酸、蛋氨酸、亮氨酸、异亮氨酸、苯丙氨酸、缬氨酸和组氨酸等8种必需氨基酸的表观消化率显著低于对照组、玉米蛋白粉为3.14%和6.29%组(P<0.05);除丝氨酸外,甘氨酸、丙氨酸、脯氨酸、胱氨酸、谷氨酸、天冬氨酸和酪氨酸等7种非必需氨基酸表观消化率显著降低(P<0.05)。当玉米蛋白粉含量为12.59%和18.88%,精氨酸表观消化率显著低于其它各组(P<0.05)。但是,对虾的成活率和全虾灰分含量不随着玉米蛋白粉与鱼粉组合比例变化而变化(P>0.05)。本试验结果表明:(1)当玉米蛋白粉与鱼粉等氮组合比例高于9.44%:21%,随着玉米蛋白粉含量增加且鱼粉含量降低则引起凡纳滨对虾生长性能和饲料利用率下降,饲料中干物质、蛋白质、氨基酸、脂肪和能量的表观消化率、肝胰脏中蛋白酶和脂肪酶活性降低,以及血清总蛋白、葡萄糖、胆固醇和甘油三酯含量降低,提高淀粉酶活性:(2)在饲料蛋白质为40%、鱼粉含量为30%的凡纳滨对虾基础饲料中,玉米蛋白粉与鱼粉适宜的组合比例为9.44%:21%。
     5.大豆浓缩蛋白与鱼粉组合对凡纳滨对虾生长、血液生化指标、非特异性免疫酶活性和养分表观消化率的影响
     选择初始体重为0.44±0.002g的健康对虾苗840尾,分成7个处理,每个处理3个重复,每重复40尾虾,分别投喂以0、3.07%、6.14%、9.20%、12.27%、18.41%和25.54%的大豆浓缩蛋白(SPC)分别与30%、27%、24%、21%、18%、12%和6%的鱼粉组合配制成的7种等氮等能饲料,在21个0.5m3的玻璃纤维钢桶中,进行为期56d试验。
     结果表明:当SPC与鱼粉组合比例高于9.20%:21%,随着SPC含量增加且鱼粉含量降低,显著降低凡纳滨对虾增重率和SGR(P<0.05),显著提高饲料系数(P<0.05);当SPC与鱼粉组合比例高于12.27%:18%,显著降低蛋白质效率、蛋白质沉积率和成活率(P<0.05);当SPC含量为24.54%,全虾脂肪含量显著低于其它各组(P<0.05);当SPC含量高于9.20%,显著降低血清总蛋白和胆固醇含量、ACP、AKP、T-SOD和NOS活性(P<0.05);SPC含量高于12.27%,显著降低血清葡萄糖含量(P<0.05),但是甘油三酯含量则显著升高(P<0.05);SPC含量高于12.27%,显著降低干物质和能量表观消化率(P<0.05);对照组和SPC含量为3.07%组的蛋白质和脂肪表观消化率显著高于其它各组(P<0.05),而当SPC含量为18.41%和25.54%,则蛋白质和脂肪表观消化率显著低于其它各组(P<0.05)。当SPC含量高于9.20%,随着SPC增加且鱼粉含量降低,氨基酸的表观消化率显著降低影响(P<0.05);且SPC含量为24.54%,所有必需氨基酸的表观消化率均显著低于其余各组(P<0.05)。当SPC含量为24.54%,除了丝氨酸、酪氨酸和丙氨酸外,其余非必需氨基酸表观消化率显著低于对照组和SPC含量为3.07%-12.27%组(P<0.05)。但是,饲料中SPC与鱼粉组合比例的变化对全虾水分、蛋白质和磷含量影响不显著(P>0.05)。本试验结果表明:(1)当SPC与鱼粉等氮组合比例高于9.20%:21%,随着SPC含量增加且鱼粉含量降低则引起凡纳滨对虾生长性能和饲料利用率下降,饲料中干物质、蛋白质、氨基酸、脂肪和能量的表观消化率以及血清总蛋白、葡萄糖、胆固醇含量及ACP和AKP的活性降低,血清甘油三酯含量增加;(2)在饲料蛋白质为40%、鱼粉含量为30%的凡纳滨对虾基础饲料中,SPC与鱼粉适宜的组合比例为9.20%:21%。
     6.植物蛋白复合物与鱼粉组合对凡纳滨对虾生长、血液生化指标、非特异性免疫酶活性和养分表观消化率的影响
     选择初始体重为0.518±0.005g的健康对虾苗1440尾,分成12个处理,每个处理3个重复,每重复40尾虾,分别投喂12组试验饲料。试验饲料组成包括以0%、3.91%、7.82%、11.73%、15.64%和23.46%的植物复合蛋白源(膨化豆粕:花生粕:玉米蛋白粉=38%:17%:45%)分别与饲料中30%、27%、24%、21%、18%和12%的鱼粉组合配制成的6种等氮等能饲料(编号分别为:NO、N10、N20、N30、N40和N60);同时,在此基础上,分别通过添加L-赖氨酸、DL-蛋氨酸、L-苏氨酸和L-精氨酸以平衡各组中氨基酸含量配制成相应的另6种等氮等能饲料(编号分别为:C0、C10、C20、C30、C40和C60)。在36个0.5m3的玻璃纤维钢桶中,进行为期56d试验。
     结果表明:当植物蛋白复合物含量为15.64%,随着植物蛋白复合物含量增加且鱼粉含量下降,凡纳滨对虾增重率、SGR、蛋白质效率、蛋白沉积率和全虾蛋白质含量显著低于其余各组(P<0.05),饲料系数显著高于其余各组(P<0.05);当蛋白复合物含量高于11.73%,显著降低血清总蛋白和葡萄糖含量及ACP和AKP活性(P<0.05),而血清甘油三酯含量则显著提高(P<0.05);当蛋白复合物含量高于7.82%,则显著降低饲料干物质、蛋白质、脂肪和能量表观消化率(P<0.05);当蛋白复合物含量高于11.73%,随着蛋白复合物含量增加且鱼粉含量降低,显著降低饲料中赖氨酸、蛋氨酸、苏氨酸、精氨酸、亮氨酸、异亮氨酸、苯丙氨酸和缬氨酸等8种必需氨基酸的表观消化率及天冬氨酸、脯氨酸、谷氨酸、丝氨酸、甘氨酸和丙氨酸等6种非必需氨基酸的表观消化率(P<0.05)。但是,植物蛋白复合物与鱼粉组合比例的变化对成活率、肝体比、全虾水分、脂肪和磷含量、血清总胆固醇含量、T-SOD和NOS活性及丝氨酸的表观消化率影响不显著(P>0.05)。通过植物蛋白复合物与鱼粉组合并平衡氨基酸后,当植物蛋白复合物与鱼粉组合比例为3.91%:27%,显著提高对虾增重率和SGR(P<0.05);提高血清总蛋白的含量及AKP和ACP的活性(P<0.05);提高饲料干物质、能量的表观消化率及蛋氨酸和丝氨酸的表观消化率(P<0.05);当植物蛋白复合物与鱼粉组合比例为15.64%:18%,提高全虾蛋白质含量(P<0.05)。
     本试验结果表明:(1)植物蛋白复合物(膨化豆粕:花生粕:玉米蛋白粉=38%:17%:45%)与鱼粉组合比例高于11.73%:21%,随着蛋白复合物含量增加且鱼粉含量下降则引起凡纳滨对虾生长性能和饲料利用率下降,饲料蛋白质、氨基酸、脂肪和能量的表观消化率及血清总蛋白、葡萄糖和甘油三酯含量和AKP、ACP的活性降低;(2)当蛋白复合物与鱼粉组合比例为3.91%:27%并平衡氨基酸,则显著提高增重率、SGR、蛋白沉积率、饲料干物质表观消化率及蛋氨酸、丝氨酸的表观消化率以及血清总蛋白含量、ACP和AKP活性:(3)在饲料蛋白质为40%、鱼粉含量为30%的凡纳滨对虾基础饲料中,蛋白复合物(膨化豆粕:花生粕:玉米蛋白粉=38%:17%:45%)与鱼粉适宜的组合比例为11.73%:21%。
     综上所述:鱼粉是凡纳滨对虾饲料优质的蛋白原料,通过干物质、蛋白质、氨基酸、脂肪、磷和能量表观消化率的测定结果可知,膨化豆粕、花生粕和玉米蛋白粉与鱼粉的养分表观消化率相当。但膨化豆粕、花生粕、玉米蛋白粉和大豆浓缩蛋白分别与鱼粉组合,超过一定比例,随着鱼粉含量下降则引起凡纳滨对虾生长性能、饲料利用率、蛋白酶和脂肪酶活性、饲料干物质、蛋白质、氨基酸、脂肪和能量的表观消化率以及血清中的总蛋白和血糖含量、血清ACP、AKP酶活性降低;通过膨化豆粕、花生粕和玉米蛋白粉按比例形成植物蛋白复合物与鱼粉组合,高于一定组合比例也引起凡纳滨对虾生长、饲料利用、消化酶活性、养分表观消化率、血液生化指标及非特异性免疫酶活性的降低;在不同组合比例基础上平衡氨基酸可进一改善植物蛋白复合物与鱼粉高比例组合所产生的负面效应。在饲料蛋白质为40%、鱼粉含量为30%的凡纳滨对虾基础饲料中,膨化豆粕、花生粕、玉米蛋白粉和大豆浓缩蛋白与鱼粉的适宜组合比例分别是:8.40%:24%、3.83%:27%、9.44%:21%和9.20%:21%,而植物蛋白复合物与鱼粉的适宜组合比例为11.73%:21%。
The apparent digestibility coefficients of protein, amino acid, lipid, phosphorus and energy of 11 kinds of different protein sources were determined in the first study by growth experiment and digestive experiment for white shrimp Litopenaeus vannamei Boone. Furthermore, others studies explored the effects of feeding with different proportions of extruded soybean meal, peanut meal, corn gluten meal and soybean concentration protein combination with fish meal on growth performance, feed utilization, whole body compositions, blood biochemical index, non-specific immunity and apparent nutrient digestibility of white shrimp, respectively. Compounded of fish meal and plant protein sources (composited by extruded soybean meal, peanut meal and corn gluten meal); at the same time, compare to the effects of different proportions of plant protein mixture compounding with fish meal based on the amino acids balance. Subsequently, the optimal proportion of fish meal compounded with extruded soybean meal, peanut meal, corn gluten meal, soy protein concentrate and plant protein mixture for white shrimp were determined, respectively. The results can be briefly summarized as follows:
     1. Apparent digestibility of selected feed ingredients in the diets for white shrimp Litopenaeus vannamei, Boone
     Apparent digestibility coefficients (ADCs) of dry matter (DM), crude protein (CP), crude lipid (CL), gross energy (GE), phosphorus, and amino acids in fish meal (FM), fermented soybean meal (FSBM), extruded soybean meal (ESBM), soybean meal (SBM), peanut meal (PNM), wheat gluten meal (WGM), corn gluten meal (CGM), shrimp by-product meal (SPM), meat and bone meal (MBM), poultry meat meal (PMM) and plasma protein meal (PPM) were determined for white shrimp (Litopenaeus vannamei). A reference diet (RF) and test diets (consisting of 69.5% RF diet and 30% of the feedstuff) were used with 0.5% Cr2O3 as an external indicator.
     A total of 1440 shrimp (initial mean body weight 1.05±0.01g) were randomly stocked into thirty-six 0.5m3 fiberglass tanks with 40 shrimp per tank and 3 tanks per diet. Feces were collected from triplicate groups of shrimp by a fecal collection vessel attached to the shrimp rearing tank. The shrimp were fed to apparent satiation 4 times a day and the feeding experiment lasted for 6 weeks.Results showed that apparent digestibility coefficients of dry matter, protein, lipid, phosphorus and energy of among all feedstuffs were significantly difference (P<0.05). Apparent dry matter digestibility of FM, WGM and CGM were significantly higher than that of PNM, SBM, FSBM and PMM (P<0.05); apparent dry matter digestibility of MBM and SPM were significantly lower than that of other feedstuffs (P<0.05). Apparent protein digestibility of PNM, PPM and FM were significantly higher than those of PMM, MBM and SPM (P<0.05); MBM and PMM were significantly lower than that of others feedstuffs (P<0.05).The apparent lipid digestibility of PNM was significantly higher than those of MBM, PMM and PPM (P<0.05); MBM was significantly lower than those of other feedstuffs (P<0.05). The apparent phosphorous digestibility of animal protein feedstuffs was significantly higher than those of plant protein feedstuffs (P<0.05). The apparent phosphorous digestibility of FM was significantly higher than those of MBM, PMM and PPM (P<0.05); PNM was significantly lower than those of FSBM, ESBM, WGM and CGM (P<0.05). The apparent energy digestibility of PPM, FM, CGM, WGM and PNM were significantly higher than those of PMM, FSBM and SPM (P<0.05); except that PMM and FSBM, SPM was significantly lower than those of other feedstuffs (P<0.05). The apparent digestibility of all kinds of essential amino acids and non-essential amino acids of ESBM, PNM and FM were higher in all feedstuffs (P<0.05), but apparent amino acid digestibility of MBM, PMM and SPM were significantly lower than other materials (P<0.05)。
     2. Effects of combination of extruded soybean meal and fish meal on growth, digestive enzyme activities, blood biochemical indexes and apparent nutrient digestibility for Litopenaeus vannamei Boone
     A total of 720 shrimp (initial body weight 0.67±0.02g) were randomly distributed into eighteen 0.5m3 fiberglass tanks with 40 shrimp per tank and 3 tanks per diet, fed respectively with six kinds of isonitrogenous and isoenergetic diets, which composed by compounded 0,4.28%,8.40%,12.62%,16.82% and 25.26% extruded soybean meal (ESBM) and 30%,27%,24%,21%,18% and 12% fish meal, respectively. The shrimp were fed 4 times a day and the feeding experiment lasted for 56 d.
     The results indicated that WG, SGR and SR of white shrimp significantly decreased (P<0.05), with the diet containing ESBM above 12.62%, but FCR increased significantly (P<0.05).Compared to those of the diets containing 4.80% and 8.4% ESBM, respectively. With the containing of ESBM increasing and fish meal decreasing, when the diet containing ESBM was above 4.28%, the protein and phosphorous content of whole body in shrimp significantly decreased (P<0.05), but the lipid content of whole body in shrimp, G and TC content and activity of AKP and ACP in serum were increased significantly (P<0.05). Activities of hepatopancreas protease and lipase significantly decreased (P<0.05) with the diet containing ESBM was above 12.62%, while activity of amylase significantly increased (P<0.05). Total protein content and LZM activity in serum significantly decreased (P<0.05) with the diet containing ESBM above 7.56%. Apparent digestibility of dry matter, protein and energy in diet with 4.28% ESBM and the control diets were higher than those with 16.82% and 25.26%, respectively (P<0.05).The apparent digestibility of total amino acid, all kinds of essential amino acids and non-essential amino acids significantly decreased (P<0.05) with the diets containing 16.82% and 25.26% ESBM than those in control diets (P<0.05). But, changes in proportion combination of ESBM and fish meal showed no significant (P> 0.05) effect on SR, ash content of whole body in shrimp and apparent lipid digestibility, respectively. Results from this study indicated:(1) when the isonitrogenous compounded ESBM and fish meal was over 8.40%:24% in diet,it showed that with decrease in growth performance and FCR with ESBM increasing and fish meal decreasing of white shrimp; decrease in apparent digestibility of protein, amino acid and energy in diet and as well as the activities of hepatopancreas protease and lipase; decrease in content of total protein and triglyceride and acid phosphatase activities in serum; (2) the optimal proportion of compounding with ESBM and fish meal was 8.40%:24% in the control diet for white shrimp, which contained 40% protein and 30% fish meal.
     3. Effects of combination of peanut meal and fish meal on growth, digestive enzyme activities, blood biochemical indexes and apparent nutrient digestibility for Litopenaeus vannamei Boone
     A total of 720 shrimp (initial body weight 0.75±0.01g) were randomly distributed into eighteen 0.5m3 fiberglass tanks with 40 shrimp per tank and 3 tanks per diet, fed respectively with six kinds of isonitrogenous and isoenergetic diets, which composed of combinations of 0,3.83%,7.65%,11.48%,15.30% and 22.96% peanut meal (PNM) and 30%,27%,24%,21%,18% and 12% fish meal, respectively. The shrimp were fed 4 times a day and the feeding experiment lasted for 56d. The results indicated:the diet containing PNM was above 3.83%, WG, SGR and PER of white shrimp significantly decreased (P<0.05), with PNM increasing and fish meal decreasing. FCR increased significantly (P<0.05) with the diet containing PNM was above 11.48%, while the protein content of whole body in shrimp significantly decreased (P<0.05). The lipid content of whole body in shrimp significantly increased (P<0.05) with PNM was above 22.96% in the diets. Activities of hepatopancreas protease and lipase significantly decreased (P<0.05) with peanut meal was above 7.56% in the diets, while activity of amylase significantly increased (P<0.05). In the group with 7.56% PNM, content of total protein and cholesterol, and acid phosphatase activities in serum were significantly higher than those of the diet with 22.96% PNM (P<0.05). The apparent digestibility coefficients of dry matter, protein and energy in control diet were significantly higher than those of other diets (P<0.05). Apparent protein digestibility in group with containing 3.83% and 7.65% PNM was higher than those with 15.30% and 22.9% PNM (P<0.05).The apparent digestibility of total amino acid, nine kinds of essential amino acids and non-essential amino acids significantly decreased (P<0.05) with PNM increasing and FM decreasing, at the same time, those in control diet were significantly higher than those in other diets (P<0.05). The group containing 22.96% PNM was significantly lower than those of others (P< 0.05). However, changes in compounded proportion of PNM and FM showed no significant (P> 0.05) effect on SR, phosphorus and ash content of whole body in shrimp and apparent lipid digestibility. Results from this study indicated:(1) with the isonitrogenous compounded proportion of PNM and FM was above 3.83%:27% in diet, it showed that with decrease in WG and FCR of white shrimp with PNM increasing and FM decreasing, decrease in apparent digestibility of protein, amino acids and energy in diets, and as well as the activities of hepatopancreas protease and lipase; decrease in total protein content and triglyceride and acid phosphatase activitiesd in serum; (2) the optimal proportion of compounding with PNM and FM was 3.83%:27% in the control diet for Litopenaeus vannamei shrimp, which contained 40% protein and 30% fish meal.
     4. Effects of combination of corn gluten meal and fish meal on growth, digestive enzyme activities, blood biochemical indexes and apparent nutrient digestibility for Litopenaeus vannamei Boone
     A total of 720 shrimp (initial body weight 0.712±0.012g) were randomly distributed into eighteen 0.5m3 fiberglass tanks with 40 shrimp per tank and 3 tanks per diet, feeding respectively with six kinds of isonitrogen and isoenergetic diets, which composed by combination of 0,3.14%,6.29%,9.44%,12.59% and 18.88% com gluten meal (CGM) and 30%,27%,24%,21%,18% and 12% fish meal (FM), respectively. The shrimp were fed 4 times a day and the feeding experiment lasted for 56 d. The results showed that the diet containing CGM was above 9.44%, weight gain (WG) and SGR of white shrimp significantly decreased (P<0.05) with corn gluten meal increasing and fish meal decreasing, while FCR increased significantly (P<0.05); the content of CGM in diet was above 6.29%, the protein and phosphorus content of whole body in shrimp significantly decreased (P<0.05), while lipid content significantly increased (P<0.05). The diet containing CGM was 9.44%, accompanied with its increasing and fish meal decreasing, protease and lipase activities of hepatopancreas significantly decreased (P<0.05), while activities of amylase significantly increased (P<0.05). Total protein and triglyceride content in serum significantly decreased (P<0.05) when the diet containing CGM was above 3.14%, while glucose content in serum significantly decreased significantly (P<0.05) with the diets containing CGM above 9.44%. The cholesterol content in serum significantly increased (P<0.05) when CGM was above 6.9%. Acid phosphatase activities in serum significantly decreased (P<0.05) when the content of CGM in the diet was above 9.44%. Meanwhile, the apparent digestibility of dry matter, protein, lipid and energy significantly decreased in diet (P<0.05), and apparent digestibility of essential amino acids (lysine, threonine, methionine, leucine, isoleucine, phenylalanine, valine and histidine, respectively) were significantly lower, when the diet included 9.44% CGM, accompanied with its increasing and fish meal decreasing, than those in control and groups included 3.14% and 6.29% CGM in diet, respectively (P<0.05). Apparent digestibility of non-essential amino acid (glycine, alanine, proline, glutamic acid, aspartic acid and tyrosine) significantly decreased (P<0.05) except serine. Apparent arginine digestibility in group included 12.59% and 18.88% CGM were significantly lower than that in other groups (P<0.05). But the variations were not marked (P> 0.05) in SR and ash contents of whole body among treatments.
     Results of this study indicated:(1) the isonitrogenous proportion compounded of CGM and fish meal was above 9.44%:21% in the diets, it showed that with decrease in growth performance of white shrimp and FCR with CGM increasing and FM decreasing; decreasing of apparent digestibility of dry matter, protein, amino acid and energy in diets and as well as the activities of hepatopancreas protease and lipase, the content of total protein, cholesterol, glucose and triglyceride, and acid phosphatase activities in serum; but, increasing activity of lipase; (2) the optimal proportion of compounding of CGM and FM was 9.44%:21% in the basic diet for Litopenaeus vannamei, which contained 40% protein and 30% fish meal.
     5. Effects of combination of soy protein concentrate and fish meal on growth, blood biochemical indexes, activities of non-specific immune enzymes, and apparent nutrient digestibility for Litopenaeus vannamei Boone
     A total of 840 shrimp (initial body weight 0.44±0.002g) were randomly distributed into twenty- one 0.5m3 fiberglass tanks with 40 shrimp per tank and 3 tanks per diet, fed respectively with six kinds of isonitrogenous and isoenergetic diets, which composed by compounded of 0,3.07%,6.14%,9.20%,12.27%,18.41% and 25.54% soy protein concentrate (SPC) and 30%,27%,24%,21%,18%,12% and 6% fish meal(FM). respectively. The shrimp were fed 4 times a day and the feeding experiment lasted for 56d. Results indicated that the compounded proportion of SPC and FM was above 9.20%:21% in the diet, weight gain (WG) and SGR of white shrimp significantly decreased (P<0.05) with SPC increasing and fish meal decreasing, but FCR significantly increased (P<0.05). When the compounded proportion was above 12.27%:18%, protein efficiency ration (PER) and survival rate (SR) significantly decreased (P<0.05). The lipid content of whole body in shrimp with the diet containing 24.54% SPC was significantly lower than that of other groups (P<0.05). Content of protein and cholesterol and activities of ACP, AKP, T-SOD and NOS in serum all significantly decreased (P<0.05), with the diet containing 9.2% SPC. With containing SPC above 12.27% in diets, acid phosphatase activities, apparent digestibility of dry matter and energy decreased significantly (P<0.05), on the contrary, the content of triglyceride glucose (TG) in serum were increased significantly (P<0.05). Apparent digestibility of protein and lipid in control group and the group with containing 3.07% SPC, were higher than those in other groups significantly (P<0.05), then, there were in group with 18.41% and 25.54% SPC were lower than other groups, significantly (P<0.05).When the content of SPC in diet was above 9.20%, accompanied with SPC increasing and fish meal decreasing, apparent digestibility of AA significantly decreased (P<0.05); With containing 24.54% SPC in the diets, apparent digestibility of all the essential AA were lower than those of other groups, significantly(P<0.05), at the same time, apparent digestibility of all non-essential amino acids were significantly lower than those in control group and group with containing SPC ranging from 3.07%-12.27%, with the diet containing 25.54% SPC (P<0.05), except phenylalanine, tyrosine and serine. But the variations were not marked (P> 0.05) in moisture, protein and phosphorous contents of whole body among treatments. Results from this study indicated:(1) with the isonitrogenous compounded proportion of SPC and fish meal was higher than 9.20%:21%, it showed that with decrease in growth performance of white shrimp and FCR as SPC increasing and FM decreasing, decrease in apparent digestibility of dry matter, protein, AA, lipid and energy, the content of protein, cholesterol and activities of ACP, AKP, NOS and SOD, increase in the content of triglyceride glucose; (2) the optimal proportion of compounding with SPC and FM was 9.02%:21% in the basic diet for shrimp, which contained 40% protein and 30% FM.
     6. Effects of combination of the plant protein mixture and fish meal on growth, blood biochemical indexes, activities of non-specific immune enzymes, and apparent nutrient digestibility in Litopenaeus vannamei Boone
     A total of 1440 shrimp (initial body weight 0.518±0.005g) were randomly distributed into thirty-six 0.5m3 fiberglass tanks with 40 shrimp per tank and 3 tanks per diet, fed respectively with six kinds of isonitrogenous and isoenergetic diets composed by compounded of 0,3.91%,7.82%,11.73%,15.64% and 23.46% plant protein mixture (ESBM:PNM:CGM=38%:17%:45%) and 30%,27%,24%,21%,18% and 12% fish meal (number:NO, N10, N20, N30, N40 and N60), respectively; at the same time, on this basis, adding crystalline amino acids(AA) (including L-lysine, DL-methionine, L-threonine and L-arginine) in order to balance content of AA to produce corresponding other six diets (number: C0, C10, C20, C30, C40 and C60), The shrimp were fed 4 times a day and the feeding experiment lasted for 56 d. Results from this study indicated: WG, SGR, PER and the protein content of whole body in shrimp were significantly lower than those in other groups of white shrimp (P<0.05), with the diet containing plant protein mixture was above 15.64% accompanied with its increasing and FM decreasing, while FCR significantly higher than other groups (P<0.05).When the complex protein was above 11.73%, accompanied with its increasing and FM decreasing, the content of TG in serum of white shrimp were significantly increased (P<0.05). With the diet containing complex protein was above 7.82%, the apparent digestibility of dry matter, protein, AA and energy were significantly decreased (P<0.05). With the diet containing complex protein was above 11.73%, the apparent digestibility of eight essential amino acids including lysine, methionine, threonine, arginine, leucine, isoleucine, phenylalanine and valine were significantly decreased (P<0.05), and so as well to the six non-essential amino acid including aspartic acid, proline, glutamic acid,serine, glycine and alanine (P<0.05). But, the variations were not marked (P>0.05) in moisture and lipid content of whole body, SR, HBI, total cholesterol content and activities of T-SOD and NOS in serum and apparent Serine digestibility among treatments. When the proportion was 3.91%:27% in the die with amino acid balance, the WG and SGR of shrimp, the total protein content and activity of AKP and ACP in serum were significant increased (P<0.05), meanwhile, the apparent digestibility of dry matter, energy, methionine and serine were significantly increased(P<0.05). With the proportion of plant protein mixture compounded with fish meal was 15.64%:18% in the diet with adding crystalline amino acids, the protein content of whole body in shrimp significantly increased (P<0.05).
     The results showed that (1) when the proportion of plant protein mixture (including ESBM: PNM: CGM=38%:17%:45%) compounded with FM above 11.73%:21%, growth performance and feed utilization, apparent digestibility coefficients of protein, AA, lipid and energy, the total protein content and TG in serum were significantly decreased of juvenile shrimp (P<0.05), so as well to the activities of ACP and AKP; (2) When the proportion of compounded plant protein mixture with fish meal was 3.91%:27% in the diet with adding crystalline amino acids, WG, SGR, the apparent digestibility of dry matter, energy and methionine and serine, total protein content and activities of ACP and AKP in serum were significantly increased (P<0.05); (3) the optimal proportion of plant protein mixture (ESBM:PNM:CGM=38%:17%:45%) compounding with FM was 11.73%:21%, in the basic diet for Litopenaeus vannamei, which contained 40% protein and 30% fish meal.
     In summary, fish meal is a high quality protein resource for Litopenaeus vannamei, and the experiments results of the apparent digestibility of dry matter, protein, AA and energy revealed ESBM, PNM and CGM are comparable to fish meal regarding bioavailability. However, through the differential combinations of extruded soybean meal, peanut meal, corn gluten meal and soy protein concentrate with fish meal, respectively, growth performance feed utilization reduced as content of FM decreasing; the activities of proteinase and lipase and the apparent digestibility of dry matter, protein, AA, lipid and energy decreased of Litopenaeus vannamei. As well as, the total protein and glucose content in serum decreased too, same as to the ACP and AKP activities. Decreased.in the growth, protein utilization, digestive enzyme activity, apparent nutrient digestibility, blood biochemical index and non-specific immunity, when exorbitanced proportion of plant protein mixture (composed by:ESBM:PNM: CGM=38%:17%:45%) compounding with FM in the diets. Based on the different compounded proportion, balanced AA could reduce the negative effect, which caused by compounded of plant protein mixture and FM. In the control diet which containing 40% protein and 30% FM for white shrimp, the optimal proportion of ESBM, PNM, CGM and SPC, respectively, compounding with fish meal were 8.40%:24%, 3.83%:27%,9.44%:21% and 9.20%:21%, respectively, and the optimal proportion compounded of plant protein mixture and FM was 11.73%:21%.
引文
[1]National Research Council (NRC). Nutrition requirement of fish [M].National Academy Press,Washington DC,USA,1993.114 pp.
    [2]Hardy R W, Kissil G W M. Trends in aquaculture feeding. Feed Mii.1997.5:31-34.
    [3]Allan G L, Parkinson S, Booth M A, et al. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus:1. Digestibility of alternative ingredients [J]. Aquaculture,2000,186: 293-310.
    [4]Akiyama D M, Coelho S R, Lawrence A L, et al. Apparent digestibility of feedstuffs by the marine shrimp, Penaeus vannamei Boone[J]. Nippon Suisan Gakkaishi,1989,55:91-98.
    [5]韩斌,黄旭雄,华雪铭,等.玉米蛋白粉替代部分鱼粉对凡纳滨对虾摄食量、生长和肌肉成分的影响[J].2009a,33(4):658-665.
    [6]Tacon A G J. Feed ingredients for warm water fish:Fish meal and other processed feedstuffs [J]. Food and Agriculture Organization Fisheries Circular,1993,856.
    [7]Fagbenro 0 A, Davies S J. Use of soybean flour (dehulled solvent-extracted soybean) as fishmeal substitute in practical diets for African catfish, Clarias gariepinus (Burchell 1822):Growth, feed utilization and digestibility [J]. Journal of Applied Ichthyology,2001,17:64-69.
    [8]Moyano F J, Cardenete G, Higuera M. Nutritive values of diets containing a high percentage of vegetable proteins for trout, Oncorhynchus mykiss [J]. Aqua Living Resour,1992,5:23-29.
    [9]Shimeno S, Masumoto T, Hujita T, et al. Alternative protein sources for fish meal in diets of young yellowtail [J]. Bull Jap Soc Sci Fish,1993,59 (1):137-143.
    [10]郭亮,李德发.玉米蛋白粉日粮纤维和能量对猪氮代谢的影响[J].粮食与饲料工业,2001,4:34-36.
    [11]Masumoto T, Ruchimat T, Ito Y, et al. Amino acid availability values for several protein sources for yellowtail(Seriola quinqueradiata) [J]. Aquaculture,1996,146:109-119.
    [12]Hansen J Q, Storebakken T.Effects of cellulose inclusions on pellet quality and digestibility of main nutrients and minerals in rainbow trout(Oncorhynchus mykiss) [J]. Aquaculture,2007,272: 458-465.
    [13]Williams A S, Davis D A, Arnold C R. Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system[J]. J. World Aquac. Soc. 1996,27:107-112.
    [14]中国农业部.中国渔业年鉴.北京:海洋出版社.1995-2009.
    [15]李爱杰.水产动物营养与饲料学[M].北京,中国农业出版社,1996.
    [16]AL-Mohana S.Y, Nott, J A. R-cells and digestive cycle in Penaeus Semisulcatus Vannamei DEHaan,1844 (Decepoda,Natantia).Crustacean.4MarineBio,95,1987,129-137
    [17]Dall W, David G W M. Functional aspects of nutrition and digestion In The Biology of Crustacea (Ed. by L H Mantel)[M]. New York:Acdemic Press,1982,5:231-241.
    [18]Tsai I H, Chuang K L. Chymotrypsins in digestive tracts of crustacean decapods [J]. Comp Biochem Physiol,1986,85:235-239.
    [19]潘鲁青,刘泓宇,肖国强.甲壳动物幼体消化酶研究进展[J].中国水产科学,2006,13(3):492-501.
    [20]Lovett D L, Flder D L. Ontogenetic change in digestive enzyme activity of larval and post larval white shrimp Penaeus setiferus [J]. Biol Bull,1990,178 (2):144-159.
    [21]Lee P G. Digestive enzymes of Penaeid shrimp: A descriptive and quantitative examination of the relationships of enzyme activity with growth, age and diet[D].Galveston Texas A & M University,1984.154.
    [22]Kamarudin M S, Jones D A, Le Vay, et al. On to genetic change in digestive enzyme activity during larval developnent of Macrobrachium rosenbergii [J]. Aquaculture,1994,123:323-333.
    [23]杨奇慧,周歧存,马丽莎,等.凡纳滨对虾幼体胃蛋白酶和类胰蛋白酶活力的研究[J].海洋科学,2005(5):6-9.
    [24]刘玉梅,朱谨钊.对虾消化酶的研究[J].海洋科学,1984,5:215-219.
    [25]Gagcia-carreno F L, Patricia Hernandez-Cotes M. Enzymes with peptidase and proteinase activity from the digestive systems of a freshwater and a marine deczpod [J]. J Agic Food,1994, 42:145621461.
    [26]魏华,赵维信.罗氏沼虾幼体及成虾消化酶活性[J].水产学报,1996,20(1):61-63.
    [27]潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究[J].水产学报,1997,21(1):26-31.
    [28]王淑红,陈昌生,刘志勇.南美白对虾幼体消化酶活力的初步研究[J].厦门大学学报,2004,43(3):389-392.
    [29]Biesiot P M, Capuzzo J M. Changes in digestive enzyme activities during early development of the American lobster, Homarus americanus[J]. Exp. Mar. Biol Ecol,1990,136:107-122.
    [30]Dall W, Hill B J, Rothlisberg PC.对虾生物学[M].青岛:青岛海洋大学出版社,1992.171-186.
    [31]Moullac G L, Roy P, Van W. Effects of trophic prophylactic factors on some digestive enzymatic activities of Penaeus vannamei larvae [J]. Cenaim,1992,81-86.
    [32]朱春华,李广丽,文海翔.南美白对虾早期幼体消化酶活性的研究[J].海洋科学,2003,27(5):54-57.
    [33]迟淑艳,周歧存,杨奇慧,等.南美白对虾幼体和仔虾淀粉酶和脂肪酶活力的研究[J].水产科学,2005(24):4-6.
    [34]黄建华,江世贵,杨其彬,等.不同生长阶段斑节对虾消化酶活性变化[J].海洋水产研究,2007,28(6):19-24.
    [35]庞璐,何金星,唐建清,等.不同饲料对克氏原螯虾消化酶活性的影响[J].江苏农业科学2009,2:12-214.
    [36]苏时萍,施培松,杨启超,等.饲料蛋白质水平对克氏原螯虾幼体消化酶活性和肌肉成分的影响[J].安徽农业大学学报,2009,36(2):231-235.
    [37]董云伟,牛翠娟,杜丽.饲料蛋白水平对罗氏沼虾(Macrobrachium rosenbergii)生长和消化酶活性的影响[J].北京师范大学学报,2001,37(1):96-99.
    [38]Ezquerra J M, Garcia C F L, Haard N F. Effects of feed diets on digestive proteases from the hepatopancre2as ofwhite shrimp (Penaeus vannamei) [J]. J Food Biochem,1997,21:401-419.
    [39]黄凯,杨鸿昆,战歌,等.盐度对凡纳滨对虾幼虾消化酶活性的影响[J].海洋科学,2007,3:37-41
    [40]丁贤,李卓佳,陈永青.芽孢杆菌对凡纳对虾生长和消化酶活性的影响[J].中国水产科学,2004,11(6):580-584.
    [41]叶建生,马甡,王兴强,等.中草药制剂对凡纳滨对虾生长和消化酶活性的影响[J].中国海洋大学学报,2007,37:151-154.
    [42]杨凤.动物营养学(第二版)[M].北京:中国农业出版社,2001.
    [43]Lin H Z, Guo Z X., Yang Y Y,et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone[J]. Aquaculture Research, 2004,35:1441-1447.
    [44]Brunson J F, Romaire R, Reigh R C. Apparent digestibility of selected ingredients Boone [J]. Aquaculture Research,1997,3:9-16.
    [45]Leavitt D F. An evaluation of gravimetric and inert marker techniques to measure digestibility in the American lobster [J]. Aquaculture,1985,47:131-142.
    [46]Smith D M, Tabrett S J. Accurate measurement of in vivo digestibility of shrimp feeds [J]. Aquaculture,2004,232,563-580.
    [47]Shiau S Y, Lin K. P, Chiou C L. Digestibility of different protein sources by Penaeus monodon raised in brackish water and sea water[J]. J. Appl. Aquac,1992,1,47-53.
    [48]Lee P G, Lawrence A L. Digestibility. In:D'Abramo, L.R., Conklin, D.E., Akiyama, D.M. (Eds.), Crustacean Nutrition, Advances in World Aquaculture, vol.6. World Aquaculture Society, Baton Rouge, LA, USA,1997,194-260.
    [49]Jones P L, De Silva S S. Influence of differential movement of the marker chromic oxide and nutrients on digestibility estimations in the Australian freshwater crayfish Cherax destructor [J]. Aquaculture,1997,154,323-336.
    [50]Teeter R G, Owens F N, Mader T L. Ytterbium chloride as a marker for particulate matter in the rumen [J]. J. Anim. Sci.1984.58:465-473.
    [51]Siddons R C, Paradine J, Beever D E et al. Ytterbium acetate as a particulate phasedigesta flow marker [J]. Br. J. Nutr,1985,54,509-519.
    [52]Cruz-Suarez L E, Nieto-L6pez M, Guajardo-Barbosa C, et al. Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets [J].. Aquaculture,2007,272:466-476.
    [53]Rivas-Vega M E, Goytort'ua-Bores E, Ezquerra-Brauer J M, et al. Nutritional value of cowpea (Vigna unguiculata L.Walp) meal as ingredients in diets for Pacific white shrimp (Litopenaeus vannamei Boon) [J]. Food Chem,2006,97:41-49.
    [54]Irvin S J, Williams KC. Apparent digestibility of selected marine and terrestrial feed ingredients for tropical spiny lobster Panulirus ornatus, Aquaculture,2007,269:456-463.
    [55]Zhou Q C, Tan B P, Mai K S,et al. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum[J]. Aquaculture,2004,241:441-451.
    [56]郭冉,牛津,张朝正.南美白对虾饲料中发酵豆粕替代鱼粉的研究[J].中大水生通讯,2004(5):12-14.
    [57]冷向军,王文龙,李小勤.发酵豆粕部分替代鱼粉对凡纳滨对虾的影响[J].粮食与饲料工业.2007,3:40-41.
    [58]杨耐德,符广才.凡纳滨对虾饲料中发酵豆粕替代鱼粉的研究[J].饲料工业,2008,29(10):20-24.
    [59]Alvarez] J S, Ndez-Llamas A H, Galindo J, et al.Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti (Perez-Farfante & Kensley 1997) [J]. Aquaculture Research,2007,38:689-695.
    [60]Piedad-Pascual F, Emmanuel M C, Amado S.Supplemental feeding of Penaeus monodon juveniles with diets containing various levels of, defatted soybean meal Aquaculture,1990, 89:183-191.
    [61]谯仕彦,李德发,王凤来,等.不同温度挤压膨化全脂大豆对肉仔鸡生产性能和养分利用率的影响[J].中国畜牧杂志,1998,34(4):12-15.
    [62]Cheftel J C.Nutritional effects of extrusion-cooking [M]. Food chemistry,1986,20(4):263-283.
    [63]Thomas M,Van derpoel A B. Effects on the physical quality of feed. Expander processing of Animal Feeds, chemical, physical and nutrition effects.1997,31-38.
    [64]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding [J]. Anal Biochem,1996,72:2482254.
    [65]CFIA.Canadian Food Inspection Agency. Approved Feed Ingredients. Schedule Ⅳ Part1. List of approved feed ingredients. Class%.Http://www.inspection.gc.ca/english/animal/feebeta/sched 4/tabae.shtml.2003
    [66]Paripatananont T M B, Peng seng P, Chotipuntu P. Substitution of soy protein concentrate for fishmeal in diets of tiger shrimp Penaeus monodon[J]. Aquaculture Research,2001,32:369-374.
    [67]李二超,陈立侨,蔡永久,等.配饵中不同大豆浓缩蛋白含量对中华绒螯蟹消化酶活力的影响[J].湛江海洋大学学报,2006,26(4):14-21.
    [68]Kaushik S J, Cravedi J P, Lalles J P, et al. Partial or total replacement of fishmeal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterol aemia and flesh quality in rainbow trout, Oncorhynchus mykiss[J].Aquaculture,1995 (3):257-274.
    [69]Stickney R R, Hardy R W, Koch K, et al. The effects of substituting selected oilseed protein concentrates for fish meal in rainbow trout Oncorhyn-chus mykiss diets [J]. J. World Aquacult. Soc, 1996 27:57-63.
    [70]Mambrini M, Roem A J, Cravedi J P, et al. Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss[J]. J. Anim. Sci.1999,77:2990-2999.
    [71]Deng J, Mai K S, Ai Q H, et al. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus[J]. Aquaculture, 2006,258:503-513.
    [72]National Research Council (NRC) Nutrient Requirements of Poultry.9th rev. ed. Natl. Acad. Press, Washington, DC.1994.
    [73]Robinson E H, Wilson R P. Nutrition and feeding. C.S. Tucker, ed. Channel Catfish Culture. Elsevier, New York, New York.1985,323-404
    [74]Munsiri P, Lovell R T. Comparison of satiated and restricted feeding of channel catfish with diets of varying protein quality in production ponds. Journal of the World Aquaculture Society.1993,24:459-465.
    [75]Lim C. Replacement of Marine Animal Protein with Peanut Meal in Diets for Juvenile White Shrimp, Penaeus vannamei[J].Journal of Applied Aquaculture,1997,7(3):67-78
    [76]刘立鹤,黄峰,侯永清,等.饲料中用花生粕替代鱼粉对凡纳对虾生长和氨基酸组成的影响[J].大连水产学院学报,2008,23(5):370-375.
    [77]伍代勇.四种植物蛋白源对凡纳滨对虾(Litopenaeus vannamei)生长、氨基酸沉积和非特异性免疫力的影响[D][硕士学位论文].江苏苏州,苏州大学,2007.
    [78]Phillips R D. Process for Producing Bland, Protein Enriched Products from Grain Gluten. U.S. Pat.1977,4:212-220.
    [79]Ketola H G. Amino acid nutrition of fish requirements and supplementation of diets [J]. Comp Bichem Physiol B,1982,73:17-24.
    [80]Seneriches M LM, Chiu Y N. Effect of fishmeal on the growth, survival and feed efficiency of milkfish (Chanos ehanos) fry [J]. Aquaculture,1988,71:61-69.
    [81]Watanabe T, Pongmaneerat J, Sato S, Takeuchi T. Replacement of fish meal by alternative protein sources in rainbow trout diets. Nippon Suisan Gakkaishi,1993,59,1573-1579.
    [82]Morales F J, Cardenete G, De La Higuera, et al. Effects of diet protein source on growth feed conversion and energy utilization in rainbow trout [J]. Comp Biochem Physiol A,1994,100:752-762.
    [83]Gomes E F, Rema P, Kaushik S J. Replacement of fishmeal by plant proteins in the diets of rain bow trout (Oncorhynchu smykiss):digestibility and growth performance [J]. Aquaculture,1995, 130:177-186.
    [84]Regost C, Arzel J, Kaushik S J. Partial or total replacement of fish meal by corn gluten meal in diet for turbot(Psetta maxima) [J]. Aquaculture,1999,180:99-117.
    [85]Kikuchi K P. replacement of fish meal with corn gluten meal in diets for Japanese Flounder Paralichthys olivaceus [J].World Aquaculture Society,1999,30(3):357-363.
    [86]韩斌,周洪琪,华雪铭.凡纳滨对虾对玉米蛋白粉表观消化率的研究[J].饲料工业,2009b,30(4):24-25.
    [87]程媛媛,周洪琪,华雪铭,等.玉米蛋白粉部分替代鱼粉对罗氏沼虾生长、氨基酸沉积率和肌肉营养成分的影响[J].中国水产科学,2009,16(4):572-579.
    [88]林浩然.鱼类生理学[M].广州:广东高等教育出版社,1999.
    [89]罗日祥.甜菜渣对中国对虾消化酶的影响研究[J].海洋与湖沼,1997,28(3):280-284.
    [90]Maugle P D, Deshimaru O, Katayama T. Effect of short necked clam diets on shrimp growth and digestive enzyme activities [J]. Bulletin of the Japanese Soeiety of Seientific Fisherie,1982, 48(12):17-59.
    [91]姜光丽,周小秋.大豆分离蛋白对幼建鲤肝胰脏发育及消化道蛋白酶活力的影响[J].大连水产学院学报,2005,20(3):198-202.
    [92]钱曦,王桂芹,周洪琪,等.饲料蛋白水平及豆粕替代鱼粉比例对翘嘴红鲌消化酶活性的影响[J].动物营养学报,2007,19(2):182-187.
    [93]孙盛明,叶金云,陈建明,等.配合饲料中豆粕、菜粕替代鱼粉对青鱼消化酶活力和表观消化率的影响[J].浙江海洋学院学报(自然科学版),2008,27(4):395-400.
    [94]Das K M, Tripat hi S D. Studies on t he digestive enzymes of grass carp,Ctenopharyngodon
    idella (Val) [J]. Aquaculture,1991,92:12-32.
    [95]黄峰,李惠,刘军,等.发酵豆粕替代鱼粉对斑点叉尾蛔消化酶活性的影响[J].水利渔业,2008,28(4):38-40.
    [96]陈然,华雪铭,黄旭雄,等.玉米蛋白粉替代鱼粉对异育银鲫生长、蛋白酶活性及表观消化率的影响[J].上海交通大学学报,2009,27(4):358-363.
    [97]Pavasovic A, Alex J. Anderson B, et al. Mather. Effect of a variety of animal, plant and single cell-based feed ingredients on diet digestibility and digestive enzyme activity in red claw crayfish, Cherax quadricarinatus (Von Martens 1868) [J]. Aquaculture,2007,272:564-572.
    [98]Venou B, Alexix M N, Fountoulaki E, et al. Effect of extrusion of wheat and corn on gilthead sea bream (Sparus aurata) growth, nutrient utilization efficiency, rates of gastric evacuation and digestive enzyme activities [J]. Aquaculture,2003,225:207-223.
    [99]Ostaszewska, T., Dabrowski, K., Palacios, M.E., etal. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins[J]. Aquaculture,2005,245:273-286.
    [100]Santigosa E, Sanchez J, Medale F, et al. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream(Sparus aurata) in response to dietary fish meal replacement by plant protein sources [J]. Aquaculture,2008,282:68-74.
    [101]李广丽,王义强.草鱼、鲤鱼肠道、肝胰脏消化酶活性的初步研究[J].湛江水产学院学报,1994(11:34-40.
    [102]Djangmah J S. Effects of feeding and starvation on copper in the blood and hepatopancreas and on blood p roteins of Crangon villgaris (Fabricius) [J]. Com Biochem Physiol,1970,32:709- 731.
    [103]Chen L C. Aquaculture in Taiwan. Fishing News Books Ltd, Oxford, England,1990,273.
    [104]周歧存.军曹鱼对植物蛋白的利用及赖氨酸和蛋氨酸的营养需要[D].[博士学位论文].广东广州,中山大学,2005.
    [105]王崇,雷武,解绶启,等.饲料中豆粕替代鱼粉蛋白对异育银鲫生长、代谢及免疫功能的影响[J].水生生物学报,2009,33(4):740-747.
    [106]Setchell K D R, Cassidy A. Dietary isoflavones:biological effects and relevance to human health [J]. J. N utr.,1999,129:758-767.
    [107]Dabrowski K, Glogowski J. Studies on the role of exogenous proteolytic enzymesin digestion processes in fish[J]. Hydrobiologia,1977,54:129-134.
    [108]王镜岩.生物化学(第三版)(上册).上海:高等教育出版社(第3版).2002
    [109]吴莉芳,秦贵信,刘春力,等.饲料大豆蛋白对鲤鱼消化酶活力和血液主要生化指标的影响[J].西北农林科技大学学报,2008,37(8):63-69.
    [110]王雷,李光友,毛远兴.中国对虾血淋巴中的溶菌活性与酚氧化酶活性的测定及其特性研究[J].海洋与湖泊,1995,26(2):179-185.
    [111]牟海津,江晓路,刘树青,等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物岐化酶活性的影响[J].青岛海洋大学学报,1999,29(3):463-468.
    [112]Chou R L, Her B Y, Su M S. et al. Substituing fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum[J]. Aquaclture,2004,229:236-333.
    [113]Charkravortty D, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens [J]. Microbes Infect,2003,5 (7):621-27.
    [114]姜国建,于仁诚,王云峰,等.中国明对虾血细胞中一氧化氮合成酶的鉴定及其在白斑综合症病毒感染过程中的变化[J].海洋与湖沼,2004,35(4):342-350.
    [115]伍代勇,叶元土,张宝彤,等.四种植物蛋白对凡纳滨对虾肌肉必需氨基酸组成和氨基酸沉积率的影响[J].饲料工业,2009,30(10):25-28.
    [116]李二超.大豆浓缩蛋白作为中华绒螯蟹饵料蛋白源的综合评价.上海.华东师范大学2005硕士学位论文.
    [117]杨严鸥,张艳,潘宙.豆粕替代不同水平的鱼粉对黄颡鱼饲料利用、ATP酶活性和免疫功能的影响[J].饲料广角,2006,15:39-41.
    [118]刘勇,冷向军,李小勤,等.混合发酵蛋白替代鱼粉对奥尼罗非鱼幼鱼生长、营养物质消化率及血清非特异性免疫的影响[J].上海海洋大学学报,2009,24(12):95-100.
    [119]Tibaldi E, Hakim Y, Uni Z. Effects of the partial substitution of dietary fishmeal by differently processed soy bean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European seabass (Dicentrarchuslabrax) [J]. Aquaculture,2006, 261:182-193.
    [120]张锦秀.大豆蛋白源对幼建鲤生长性能及肠道免疫的影响[D][硕士学位论文].四川雅安,四川农业大学,2003.
    [121]徐奇友,李婵,杨萍,等.用大豆分离蛋白和肉骨粉代替鱼粉对虹鳟生产性能和非特异性免疫指标的影响[J].大连水产学院学报,2008,23(1):8-12
    [122]邓君明.动植物蛋白源对牙鲆摄食、生长和蛋白质及脂肪代谢的影响.[博士论文].山东青岛,中国海洋大学,2006.
    [123]Elangovan A, Shim KF. The influence of replacing fish meal partial·in the diet with soybean meal on growth and body composition of juvenile tinfoilbarb (Bcrrbodes crltns). Aquaculture, 2000,189:133-144.
    [124]Barros M M, Lim C, Klesius P H. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish(Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture,2002,207:263-279.
    [125]Bautista Teruel MN, Fermin A C, Koshio S S. Diet development and evaluation for juvenile abalone. Haliotis asinina: animal and plant protein sources. Aquaculture,2003,219:645-653.
    [126]Storebakken T, Shearer K D, Roem A J. Availability of protein, phosphorus and other elements in fish meal, soy-protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar [J]. Aquaculture,1998,161:365-379.
    [127]Alexis M A. Use of plant materials in fish diets:carbohydrate fraction and its effect in fish nutrition. In:Howell, B, Flos, R. (Eds.), Lessons From the Past to Optimise the Future, Aquaculture Europe,2005,35:3-8.
    [128]Olli I J, Hielmeland K, Krogdahl A. Soybean type in inhibitor in diets for Atlantic salmon on nutrient digestibilities and in pyloric caeca homogenate and intestinal content [J]. Comp Biochem Physiol A,1994,109:923-928.
    [129]Refstie S, Svihus B, Shearer K D, et al. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim. Feed Sci [J]. Technol,1999,79:331-345.
    [130]Boonyaratpalin M, Suraneiranat P, Tunpibal T. Replacement of fish meal with various types of soybean products in diets for the Asian sea bass. Lates calcarifer[J]. Aquaculture,1998.161:67-78.
    [131]Spinelli J, Houle C R, Werkell J C. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium[J]. Aquaculture,1993,30:71-83.
    [132]Gomez-Requeni P, Mingarro M, Kirchner S, et al. Effects of dietary amino acid profile on growth performance, key metabolic enzymes and soma to tropic axis responsiveness of gilthead sea bream (Sparus aurata) [J]. Aquaculture,2003,220:749-767.
    [133]Vilhelmsson 0 T, Martin S A M, Medale F, et al. Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss) [J]. Br. J. Nutr,2004,92:71-80.
    [134]Sudaryono A, Tsvetnenko E, Hutabarat J, et al. Lupin ingredients in shrimp (Penaeus monodon) diets:influence of lupin species and types of meals [J]. Aquaculture.1999,171:121-133.
    [135]BiswasA K, Kaku H, J i S C. Use of soybean meal and phytase for partial replacement of fishmeal in the diet of red sea bream (Pagrus major) [J]. Aquaculture,2007,267:284-291
    [136]Hernandez M D, Martinez F J, Jover M, et al. Effects of partial rep lacement of fish meal by soy bean meal in sharp snout seabream (Dip lodus puntazzo) diet [J]. Aquaculture,2007,263: 159-167.
    [137]潘勇,曹文宣,徐立蒲,等.国内外鱼类入侵的历史及途径[J].大连水产学院学报,2006,21(1):72-78.
    [138]Mundheim H A A, Growth B.feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources in combination with two fish meal qualities[J]. Aquaculture,2004,237:31-33.
    [139]Storebakken T, Shearer K D, Roem A J. Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein [J]. Aquac. Nutr.2000,6:103-108.
    [140]Takagi S H. Utilization of corn gluten meal in a diet for red sea bream Pagrus major [J]. Bulletin of the Japanese Society of Scientific Fisheries,2000,66(3):417-427.
    [141]Davis D A, Arnold C R. Replacement of fish meal in practical diets for the Pacific white shrimp. Litopenaeus vannamei[J]. Aquaculture,2000,185:291-298.
    [142]Samocha TM, DavisD A, Saoud 1 P, et al. Substitution of fish meal by coextruded soybean poultry by product meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei [J]. Aquaculture,2004,198:197-203.
    [143]Molina-poveda, Morales M. Use of a mixture of barley-based fermented grains and wheat gluten as an alternative protein source in practical diets for Litopenaeus vannamei, Boone. Aquaculture research,2004,35:1158-1165
    [144]Amaya E A, Allen D D. Rouse D B. Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions [J]. Aquaculture,2007a,262: 393-401.
    [145]Amaya E, Allen D D, Rouse D B. Alternative diets for the Pacific white shrimp Litopenaeus vanname i[J]. Aquaculture,2007b,262:419-425.
    [146]Mendoza R, De Dios A, Vazquez C, et al. Montemayor J. Fishmeal replacement with feather-enzymatic hydrolyzates co-extruded with soya-bean meal in practical diets for the Pacific white shrimp(Litopenaeus vannamei) [J]. Aquaculture Nutrition,2001,7:143-151.
    [147]Fox J, Lawrence A L, Li C E. Apparent lysine requirement of Penaeusacute annamei Boone. using covalent and crystalline lysine supplementation[J]. Aquaculture,1992,21:96-97.
    [148]Fox J, Lawrence A L, Li C E. Dietary requirement for lysine by juvenile Penaeus annamei using intact and free amino sources [J]. Aquaculture,1995,131:279-290.
    [149]Lim C, Dominy W. Evaluation of soybean meal as a replacement forma marine animal protein in diets for shrimp (Penaeus vannamei) [J]. Aquaculture,1990,87:53-63.
    [150]Eric A T F, Robert C B,Paul B B. The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus. Aquaculture,2000,189:211-235
    [151]Espe M, Lemme A, Petri A, et al. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets [J]. Aquaculture,2007,263:168-178.
    [152]侯鑫,梁桂英,阳会军,等.杂交罗非鱼饲料中豆粕、发酵豆粕和晶体氨基酸替代鱼粉的研究[J].南方水产,2009,5(2):28-33.
    [153]刘永坚,田丽霞,刘栋辉,等.实用饲料补充结晶或包膜赖氨酸对草鱼生长、血清游离氨基酸和肌肉蛋白质合成率的影响[J].水产学报,2002,26(3):252-258.
    [154]Pongmaneerat J, Watanabe T, Takeuchi T, et al. Use of different protein meals as partial or total substitution for fish meal in carp diets [J]. Bull Jap Soc Sci Fish,1993,59:1249-1257.
    [155]陈昌明,袁绍庆,程宗佳.去皮膨化豆粕取代进口鱼粉对仔猪生长的影响[J].饲料广角,2004,17:18-19.
    [156]余林,梁海英,程宗佳.膨化豆粕取代鱼粉对断奶仔猪生产性能的影响[J].饲料广角,2005,1:29-30.
    [157]吴新民,傅仕洪.豆粕中抗营养因子常用的几种处理技术的效果[J].黑龙江畜牧兽医,2004,9:66-67.
    [158]Akiyama D M, Dominy W G, L awrence A L. Penaeid shrimp nutrition. In: Fast A W, Lester L J.(Eds), Marine Shrimp Culture: Principles and Practices.1992,555-568.
    [159]Cho C Y, Slinger S J. Apparent digestibility measurement in feedstuff for rainbow trout. In: Halver,J.E,Tiews,K. (Eds.)[M]. Finfish Nutrition and Fish feed Technology,vol. II. Heeneman, Berlin,1979,239-248.
    [160]AOAC, Official Methods of Analysis (Helrich, K. ed.),15th edn,Vol. I. Association of Official Analytical Chemists. Arlington, VA.1995,684.
    [161]Pond W.G, Church D.C, Pond K.R. (1995) Basic Animal Nutrition and Feeding,4th edn. JohnWiley & Sons, New York, NY, USA,615pp
    [162]Cho C Y, Slinger S J, Bayley H S. Bioenergetics of salmonid fishes:energy intake, expenditure and productivity [J]. Comp. Biochem. Physiol.1982,73:25-41.
    [163]Ogino C, Takeuchi L, Takeda,H and Watanabe T. Availability of dietary phosphorus in carp and rainbow trout [J]. Nippon Suisan Gakkaishi,1979,45:1572-1532.
    [164]Hafez, Y.S., Mohammed, A.I., Perear,P. A., etal. Effects of microwave heating and gamma irradiation on phytate and phospholipid contents of soybean (Glycine max L.). Journal of Food Sicence,1989,54:958-962.
    [165]Davis S J, Morris P C. Influence of multiple amino acid supplementation on the performance of rainbow trout, Oncorhynchus mykiss (Walbaum),fed soya based diets [J] Aquaculture Reseach,1994,28:65-74.
    [166]Hardallou E S B, Walker A F. The effect of multi-mineral mix (Fe, Zn, Ca and Cu) on magnesium binding to starchy legumes under simulated gastrointestinal conditions[J].Food Chem,1999,67:113-121.
    [167]Roy P K, Lall S P. Dietary phosphorus requirement of juvenile haddock(Melanogrammus aeglefinus L.)[J].Aquaculture,2003,221:451-468.
    [168]邓碧玉,袁勤生,李文杰.改良的连苯三酚自氧化测定超氧化物歧化酶活性的方法[J].生物化学与生物物理进展,1991,18(2):163-168.
    [169]Hultmark D. Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J].Eur Biochem, 1980,106:7-16.
    [170]Olli JJ, Krogdahl A, Vabenφ A. Dehulled solvent-extracted soybean meal as a protein source in diets for Atlantic salmon, Salmo salar L [J]. Aquac. Res,1995.26:167-174.
    [171]Refstie S. Korsen J, Storebakken T, et al. Differing nut ritional responses to dietary soybean meal in rainbow t rout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) [J]. Aquaculture,2001,190:49263.
    [172]Takii, K., Shimeno, S, Nakamura, M, et al. Evaluation of soy protein concentrate as a partial substitute for fish meal protein in practical diet for yellowtail. In:Takeda M., Watanabe, T. Eds. The Current Status of Fish Nutrition in Aquaculture. Tokyo Univ. Fisheries, Tokyo, Japan,1998, 4:281-288
    [173]Jackson L S, Li M H, Robinson E H. Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus [J]. J World Aquac Soc,1996, 27:309-313
    [174]唐胜球,董小英,邹晓庭.水产饲料中的植物源抗营养素(下)[J].科学养鱼,2002,(12).
    [175]荣长宽,梁素秀,岳炳宜.研究中国对虾对16种原料蛋白质和氨基酸的消化率[J].水产学报,1994,18(2):131-137.
    [176]Luo Z, Li X D, Gong SY, Xi WQ. Apparent digestibility coefficients of four feed ingredients for Synechogobius hasta[J]. Aquaculture Research,2009,40,558-565
    [177]Wu XY, Liu YJ, Tian LX, et al. Apparent digestibility coefficients of selected feed ingredients for yellowfin seabream, Sparus latus[J].Jouranl of the World Aquaculture Society,2006,37(3): 237-244.
    [178]袁森泉.影响动物蛋白粉蛋白质质量和氨基酸消化率的因素[J].江西饲料,2001,5:14-16.
    [179]梅娜,周文明,胡晓玉,等.花生粕营养成分分析[J].西北农业学报,2007,16(3):96-99.
    [180]常青,梁萌青,王家林.花鲈对常用饲料原料中氨基酸和磷的利用率研究[J].海洋水产研究,2004,25(2):35-40.
    [181]叶元土,蔡春芳,蒋蓉.鱼粉、豆粕、菜籽粕、棉籽粕、花生粕对草鱼生长和生理机能的影响[J].饲料工业,2005,26(12):17-21.
    [182]丁雪燕,何中央,何丰,等.豆粕粉、肉骨粉和玉米蛋白粉替代部分鱼粉对大黄鱼生长与经济效益的影响[J].浙江海洋学院学报,2007,26(4):384-390.
    [183]Robaina L, Izquierdo M S, Moyano F J, et al.. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata) nutritional and histological implications [J]. Aquaculture 1,1995,30:219-233.
    [184]Pereira T G, Oliva-Teles A. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L) juveniles [J]. Aquaculture Research,2003,34(13):1111- 1117.
    [185]Dias J, Alvarez M J, Arzel J, et al. Dietary protein source affects lipid metabolism in the European sea bass (Dicentrarchus labrax) [J]. Comparative Biochemistry and Physiology,2005, 142:19-31.
    [186]卢峥,张日俊.非淀粉多糖对饲料营养价值的影响及其机理和消除方法[J].中国农业大学学报,1997,2(3):106-112.
    [187]张艳铭,甄二英,宋智娟.复合蛋白饲料替代豆粕饲喂蛋鸡作用效果[J].饲料博览,2006,27(1):1-4.
    [188]Anderson J S, Lall S P, Anderson D M. Apparent and true availability of amino acids from common feed ingredients for Atlantic salmon (Salmosalar) reared in sea water [J]. Aquaculture, 1992,108:111-124.
    [189]Spyridakis P, Gabaudan J, Metailler R, et al. Digestibilite des proteines et disponibilite des acides amines de quelques matieres premieres chez le bar(Dicentrarchus labrax) [J]. Reprod. Nutr. Dev,1988,28(6):1509-1517.
    [190]于书坤,张树荣.虾类及甲壳动物消化酶研究的现状[J].海洋科学,1986,10(2):60-63.
    [191]吴垠,孙建明,周遵春.中国对虾亲虾生殖周期中消化酶活性及组织生化成分的变化[J].水产学报,2003,6:258-262
    [192]周遵春,孙建明,吴垠,等.不同饲养条件对中国对虾血清蛋白、血脂、血糖含量变化的初步研究[J].水产科学,1994,5:16-21.
    [193]刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J].海洋与湖沼,1999,30(3):276-281.
    [194]Medale F, Boujard T, Vallee F, et al. Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout Oncorhynchus mykiss fed increasing dietary levels of soy protein concentrate [J]. Aquat. Living Resour,1998,11:239-246.
    [195]Day 0 J, Gonzalez H G P. Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L [J]. Aquac. Nutr.2000,6:221-228.
    [196]Aragao C, Conceiccao L E C, Dias J, et al. Soy protein concentrate as a protein source for Senegalese sole (Solea senegalensis Kaup 1858) diets: effects on growth and amino acid metabolism of postlarvae [J]. Aquac. Res.2003,34:1443-1452.
    [197]Stuart J S, Hung S S O. Growth of juvenile white sturgeon (Acipenser transmontanus) fed different proteins[J]. Aquaculture,1989,76:303-316.
    [198]Chatzifotis Stavros, Irene Polemitou. Pascal Divanach, Efthimia Antonopoulou。Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture 275(2008)201-208
    [199]Kissil G W, Lupatsch I, Higgs D A, et al. Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata [J]. Aquac. Res.2000,31:595-601.
    [200]Anderson R L, Wolf W. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing [J].J.Nutr,1995,125:581-588.
    [201]Francis G, Makkar H P S, Becker K. Anti nutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish [J].Aquaculture,2001,199:197-227.
    [202]Bach-Knudsen K E. Carbohydrate and lignin contents of plant material used in animal feeding [J]. Anim. Feed. Sci. Technol,1997,67:319-338.
    [203]Berge G M, Grisdale-Helland B, Helland S J. Soy protein concentrate in diets for Atlantic halibut(Hippoglossus hippoglossus) [J]. Aquaculture,1999,178:139-148.
    [204]Sveier H, Raae A J, Lied E. Growth and protein turnover in Atlantic salmon(Salmo salar L); the effect of dietary protein level and protein particle size. Aquc hum,2001,185:101-120
    [205]Coma J, Carrion D, Zimmerman D R. Use of Plasma Urea Nitrogen as a Rap id Response Criterion to Determine the Lysine Requirement of Pigs[J]. Journal of Animal Science,1995,73: 472-481.
    [206]Waibel P, Cuperl ovic EM, Hurrell R F, et al. Processing Damage to Lysine and other Amino Acids in the Manufacture of Blood Meal [J]. J Agric Food Chem,1977,25 (10):171-175.
    [207]Carroll K K. Review of clinical studies on cholesterol-lowering response to soy protein [J]. J. Am. Diet. Assoc.1991,91:820-827.
    [208]Potter S M, Bakhit R M, Essex-Sorlie D, et al.Depression of plasma cholesterol in men by consumption of baked products containing soy protein [J]. Am. J. Clin. Nutr.1993,58:501-506.
    [209]Bakhit R M, Klein B P, Essex-Sorlie D, et al. Intake of 25 g soybean protein with or without soybean fiber alters plasma lipids in men with elevated cholesterol concentrations[J]. J. Nutr.1994, 124:213-222.
    [210]Forsythe W A. Ⅲ. Comparison of dietary casein or soy protein effects on plasma lipids and hormone concentrations in the gerbil [J]. J. Nutr.1986,116:1165-1171.
    [211]Howles P N, Carter C P, Hui D Y. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice [J]. J. Biol. Chem.1996.271:
    [212]Freed L M, York C M, Hamosh M, etal. Bile salt-stimulated lipase in non primate milk-longitudinal variation and lipase characteristics in cat and dog milk. Biochim. Biophys [J]. Acta, 1986,878:209-215.
    [213]Takii, K., Shimeno, S., Nakamura, M., Itoh, Y., et al. Evaluation of soy protein concentrate as a partial substitute for fish meal protein in practical diet for yellowtail [A]. In: Takeda,-. M., Watanabe, T. Eds., The Current Status of Fish Nutrition in Aquaculture [C]. Tokyo Univ: Fisheries, Tokyo, Japan,1990.281-288.
    [214]Hansen A C, Rosenlund G, Karlsen Q. Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I-Effects on growth and protein retention [J]. Aquaculture,2006,272:599-611.
    [215]Muzinic L A, Kenneth R, Thompson D, et al. Partial and total replacement of fish meal with soybean meal and brewer's grains with yeast in practical diets for Australian red claw crayfish Cherax quadricarinatus [J]. Aquaculture,2004,230:359-376.
    [216]Opstvedt J, Aksnes A, Hope B. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.)fed diets with increasing substitution of fish meal with vegetable proteins[J]. Aquaculture,2003, 221:365-379.
    [217]王吉桥,蒋湘辉,姜玉声,等.在饲料中添加包膜赖氨酸对仿刺参幼参生长、消化和体成分的影响水产科学,2009,28(5):241-245.
    [218]Albrektsen S, Mundheim H, Aksnes A. Growth, feed efficiency, digestibility and nutrient distribution in Atlantic cod (Gadus morhua) fed two different fish meal qualities at three dietary levels of vegetable protein sources [J]. Aquaculture,2006,261:626-640.
    [219]Tidwell J H, Schumeister G, Mahl C, et al. Growth, survival rate and biochemical composition of freshwater prawn Macrobrachium rosenbergii fed natural food organisms under controlled conditions [J]. World Aqua Soc,1997,28 (2):123-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700