用户名: 密码: 验证码:
模拟光链路的高频线性化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟光链路是微波光子学的重要组成部分,融合了微波技术和光子技术。利用光子技术的优势,如消除电磁干扰,高隔离度,低损耗等,实现了微波信号的光域传输和处理。本论文对模拟光链路的性能进行了详细的理论和仿真分析,提出了基于数字信号处理(DSP)的三阶交调失真抑制技术,提出了基于双并行马赫增德尔强度调制器(DPMZM)的全光下变频方案,并结合数字后补偿技术,实现了高频信号的失真抑制。论文主要工作有:
     1.模拟光链路性能的理论与仿真分析
     论文重点介绍了使用MZM的强度调制直接探测链路的性能评价指标,包括链路增益、噪声指数和动态范围等。给出了指标的具体定义,理论推导和仿真分析了各指标和激光器输出光功率、调制器半波电压以及调制器偏置角度等链路参数的关系。参考仿真结果,对链路性能的影响因素有了更加形象的认识,得到了链路性能的优化方法。
     2.基于数字信号处理的三阶交调失真抑制技术
     提出了基于DSP的三阶交调失真抑制技术,给出了理论分析与实验验证。测量了MZM强度调制器的传输性能,一阶输出信号和三阶失真分量与输入射频功率的关系。使用DSP后补偿技术抑制了三阶交调失真分量,由实验结果可知,失真被抑制了20dB左右,但是该方案的性能受限于信号的频率,随着频率的增加,性能将会恶化。
     3.基于双并行强度调制器的全光下变频方案
     提出了基于DPMZM的频率下变换方案,并结合数字后补偿技术,实现了三阶交调失真分量的抑制。频率变换性能可以通过改变调制器的偏置电压、本振信号功率以及激光器的输出功率灵活地调节。理论分析和实验验证了这些因素对变频效率的影响。同时,还验证了矢量信号在全光下变频链路中的传输,分析了传输性能和载波频率以及本振信号功率的关系。
Analog Photonic Link (APL) is the essential part of Microwave Photonics, converging microwave and photonics technologies. The transmission and processing of microwave signal in optical domain are realized, taking advantages of photonics, such as immunity to electromagnetic interference, high isolation, and low loss.
     In this thesis, the performance of APL has been researched through theoretical derivation and, simulation analysis. A nonlinear distortion compensation scheme for the intensity-modulated APL based on post digital signal processing has been proposed and experimentally demonstrated, In addition, a photonic microwave frequency down-conversion approach based on integrated Dual Parallel Mach-Zehnder Modulator (DPMZM) has been proposed. Incorporating digital post compensation technique, third-order intermodulation distortion (IMD3) has been suppressed successfully for high frequency signal. The works in this dissertation include:
     1. Theoretical derivation and simulation analysis of APLs' performance
     In this thesis, a set of parameters have been introduced to describe the performance of intensity-modulation direct-detection (IMDD) APL with Mach-Zehnder Modulator (MZM), including gain, noise figure and dynamic range. The detailed definitions of these parameters are introduced, as well as the relationships among these parameters and their main effecting factors, such as input optical power to the modulator, modulator half-wave voltage and modulator bias angle. According to the simulation results, several approaches to optimize the performance of APL have been identified.
     2. IMD3suppression technology based on digital signal processing
     An IMD3suppression scheme for the intensity-modulated APL based on digital signal processing has been proposed, as well as theoretically analyzed and experimentally demonstrated. The transfer characteristics of intensity modulator used in our experiment has been measured. The functions of the output fundamental signal power and IMD3power with input signal power have been also obtained. Using this scheme, IMD3components have been suppressed about20dB. However, this scheme is frequency limited, performance deteriorating with signal frequency increasing.
     3. Photonic microwave frequency down-conversion approach based on integrated Dual Parallel Mach-Zehnder Modulator
     A photonic microwave frequency down-conversion approach based on integrated DPMZM has been proposed. Incorporating digital post compensation technique, IMD3has been suppressed successfully for high frequency signal. The conversion performance can be tuned flexibly by simply adjusting bias voltages of the modulator, local oscillator (LO) power and optical power. The influence of these parameters on the conversion efficiency have been theoretically analyzed and experimentally verified. At the same time, the transmission of vector signal in this photonic frequency downconversion links has been experimentally demonstrated. The dependence of transmission performance on carrier frequency and LO power has also been analyzed experimentally.
引文
[1]J. Capmany and D. Novak,"Microwave photonics combines two worlds," Nat. Photonics, vol.1, no.6, Jun.2007, pp.319-330.
    [2]D. Jager, R Kremer and A. Stohr, "Travelling-wave optoelectronic devices for microwave applications", in IEEEMTT-S Digest,1995, pp.327.
    [3]A. J. Seeds and'K. J. Williams, "Microwave photonics," J. Lightw. Technol., vol.24, no.12, Dec.2006, pp.4628-4641.
    [4]Y. Inaba, H. Nakayama and M. Kito, "High-power 1.55-μm mass-transport grating DFB lasers for externally modulated systems," IEEE J. Sel. Topics Quantum Electron., vol.7, no.2, Mar/Apr.2001, pp.152-158.
    [5]EM4, inc. AA1401 14-pin high power DFB laser. [Online]. Available: http://www.em4 inc.com/product_transmission_lasers.htm.
    [6]K. Williams, L. Nichols and R Esman, "Externally-modulated 3 GHz fibre optic link utilising high current and balanced detection," Electron. Lett., vol.33, no.15, Jul.1997,pp.1327-1328.
    [7]Photonic Systems, inc. PSI-3600-LNLS light source. [Online]. Available: http://www.photonicsinc.com/pdfs/3600_LNLS/PSI-3600-LNLS.pdf.
    [8]J. McKinney, M. Godinez and V. Urick, "Sub-10-dB noise figure in a multiple-GHz analog optical link," IEEE Photon. Technol. Lett., vol.19, no.7, Apr.2007, pp.465-467.
    [9]E. Ackerman, G. Betts and W. Burns, "Signal-to-noise performance of two analog photonic links using different noise reduction techniques," in Proc. IEEE MTT-S Int. Microwave Symp,,2007, pp.51-54.
    [10]Y. Shi, C. Zhang and W. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science, vol.288, no.5463, Apr.2000, pp.119-122.
    [11]W. M. J. Green, M. J. Rooks and Y. A Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express, vol.15, no.25, Dec. 2007,pp.17106-17113.
    [12]D. Tulchinsky, J. Campbell and K. Williams, "High-saturation current wide-bandwidth photo-detectors," IEEE J. Sel. Topics Quantum Electron., vol.10, no.4, July-Aug.2004, pp.702-708.
    [13]A Beling and J. C. Campbell, "InP-based high-speed photo-detectors," J. Lightw. Technol., vol.27, no.3, Feb.2009, pp.343-355.
    [14]U. Gliese, S. Norskov and T. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links," IEEE Trans. Microw. Theory Tech., vol.44, no.10, Oct 1996, pp.1716-1724.
    [15]P. Devgan, V. Urick and J. Diehl, "Long-haul microwave analog link with shot-noise-limited performance above the stimulated brillouin scattering threshold," in Proc. IEEE Int. Topical Meeting Microwave Photonics(MWP), Oct. 2008, pp.326-329.
    [16]R Williamson and R Esman, "RF photonics," J. Lightw. Technol., vol.26, no.9, May.2008, pp.1145-1153.
    [17]A. Cooper, "Fibre/radio for the provision of cordless/mobile telephony services in the access network," Electron. Lett., vol.26, no.24, Nov.1990, pp.2054-2056.
    [18]D. Wake, A. Nkansah and J. Vilcot, "Optically powered remote units for radio-over-fiber systems," J. Lightw. Technol., vol.26, no.15, Aug.2008, pp.2484-2491.
    [19]S. Montebugnoli, M. Boschi and E. Pirazzini, "Large antenna array remoting using radio-over-fiber techniques for radio astronomical application," Microw. Opt. Technol. Lett., vol.46, no.l, Jul.2005, pp.48-54.
    [20]E. Ackerman, C. Cox and D. DeBoer,"Tiber-optic antenna remoting for radio astronomy applications," 27th URSI General Assembly, Aug.2002, pp.595.
    [21]W. Shieh, G. Lutes and J. Garnica, "Performance of a 12-kilometer photonic link for X-band antenna remoting in NASA's deep space network," Telecommunications and Mission Operations Progress Report, vol.138, Apr. 1999, pp.1-8.
    [22]R Beresford, "ASKAP photonic requirements," in Proc. IEEE Int. Topical Meeting Microwave Photonics (MWP), Oct.2008, pp.62-65.
    [23]H. Roussell, M. Regan and C. Cox, "Gain, noise figure and bandwidth limited dynamic range of a low-biased external modulation link," in Proc. IEEE Int. Topical Meeting Micro wave Photonics (MWP), Oct.2007, pp.84-87.
    [24]M. L. Farwell, W. S. C. Chang and D. R Huber, "Increased linear dynamic range by low biasing the Mac h-Zehnder Modulator", IEEE Photon. Technol. Lett, vol.5, no.7, Jul.1993, pp.779-782.
    [25]Darko Zibar, Leif A Johansson and John E. Bowers, "Dynamic range enhancement of a novel phase-locked coherent optical phase demodulator", Opt. Express, vol.15, no.l,2007.
    [26]W. van Etten, Introduction to Random Signals and Noise. Chisester, West Sussex: John Wiley & Sons,2005.
    [27]A Yariv and P. Yeh, Photonics:Optical Electronics in Modern Communications, 6th ed. New York:Oxford University Press,2007.
    [28]G. P. Agrawal, Fiber-Optic Communication Systems. New York:John Wiley & Sons,1997.
    [29]L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits. New York:John Wiley & Sons,1995.
    [30]C. H. Cox, Analog Optical Links:Theory and Practice. Cambridge:Cambridge University Press,2004.
    [31]B. Kolner and D. Dolfi,'Intermodulation distortion and compression in an integrated electrooptic modulator," Appl. Optics, vol.26, no.17, Sep.1987, pp.3676-3680.
    [32]R. Meijerink, A. Meijerink and W. van Etten, "Performance study of a ring resonator-based optical beam forming system for phased array receive antennas," in Proc. IEEE SC VT Benelux, Enschede, the Netherlands, Nov.2007, pp.1-5.
    [33]R M. D. Ridder and S. K. Korotky, "Feedforward compensation of integrated optic modulator distortion," OSA Technical Digest Optical Fiber Communication America, WH5,1990.
    [34]S. K. Korotky and R. M. D. Ridder, "Dual parallel modulation schemes for low-distortion analog optical transmission," IEEE J. Selected Areas Commun., Sep.1990, vol.8, pp.1377-1381.
    [35]J. L. Brooks, G. S. Maurer and R. A Becker, "Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission," J. Lightwave Technol., vol.11, Jan.1993, pp.34-41.
    [36]R B. Childs and Y A. O' Bryne, "Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator," IEEE J. Selected Areas Commun., vol.8, Sep.1990, pp.1369-1376.
    [37]V. Magoon and B. Jalali, "Electronic linearization and bias control for externally modulated fiber optic link," Microwave Photonics,2000, pp.145.
    [38]周欣,RoF系统中预失真电路的研究[硕士论文],天津:天津大学,2009
    [39]王翠,基于虚拟仪器的引信时序电路测试系统的研制[硕士论文],南京:南京航空航天大学,2008
    [40]王晓东,孙雨南等,光学模数转换器的原理及发展,电讯技术,42(4),2002,08: 115-120.
    [41]G. K. Gopalakrishnan, W. K. Burns and C. H. Bulmer, "A LiNbO3 microwave-optoelectronic mixer with linear performance", IEEE Trans. Microw. Theory Tech., vol.2,1993, pp.1055-1058.
    [42]S. Gao, Y. Gao and H. Fu, "Microwave frequency up/downconversion based on dual-wavelength fiber laser", IEEE Elec. Lett, vol.45,2009, pp.932-934.
    [43]R Wang A. Bhardwaj and Y Li, "Efficient RF frequency down-conversion using coupled quantum-well optical phase modulator," IEEE Photon. Technol. Lett., vol.23,2011,pp.645-647.
    [44]R P. Vincent, M. H. Bryan and T. E. Murphy, "Linearized electro-optic microwave down-conversion using phase modulation and optical filtering", Opt Express, vol.19,2011, pp.883-895.
    [45]C. K. Sun, R. J. Orazi, and S. A Pappert, "Efficient microwave frequency conversion using photonic link signal mixing", IEEE Photoa Technol.Lett, vol.8, 1996, pp.154-156.
    [46]J. T. Gallo, K. D. Breuer, and J. B. Wood, "Millimeter wave frequency converting fiber optic link modeling and results", Proc. SPIE,3160,106 (1997).
    [47]G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave optical mixing in LiNbO3 modulators", IEEE Trans. Microw. Theory Tech., vol.41, no.12,1993,pp.2383-2391.
    [48]Y. L. Guennec, G. Maury and B. Cabon, "New optical microwave up-conversion solution in radio-over-fiber networks for 60GHz wireless applications", J. Lightwave Technol, vol.24,2006, pp.1277-1282.
    [49]W. S. C. Chang RF photonic technology in optical fiber links, Cambridge University Press, Cambridge, U.K.,2002.
    [50]徐坤,李建强,面向宽带无线接入的光载无线系统,电子工业出版社,2009,pp.114-123.
    [51]T. Kuri and K. Kitayama, "Novel photonic downconversion technique with optical frequency shift for millimeter wave band radio-on-fiber systems", IEEE Photon. Technol. Lett., vol.14, no.8,2002, pp.1163-1165.
    [52]M. H. Zadeh and A. F. J. Levi,'Photonic microwave down-conversion based on linear modulation and filtering", IEEE Photonics Conference (PHO),2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700