用户名: 密码: 验证码:
基于不同DNA序列形成的G-四链体结构无标记检测多种金属离子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA的G-四链体结构(G-quadruplex)是一种特殊的DNA二级结构,结构稳定且具有多样性,并且已有证据表明人染色体末端的端粒区和与癌症相关的启动子区域均含有可以形成G-四链体结构的DNA序列,因此近年来成为人们研究的热点,主要集中在生物学意义和实际应用两个方面。在生物学意义上,由于G-四链体结构的形成可以抑制癌细胞的增殖,目前已有两个相关抗癌药物进入临床二期实验:分别是化合物Quarfloxin (CX-3543)和核仁素适配体(无修饰的短链DNA序列AS1411,5’-GGT GGT GGT GGT TGT GGT GGT GGT GG-3’)。而且其更多生物学功能也不断被发现。在现实中,利用G-四链体可以和氯化血红素(Hemin)结合,形成具有过氧化物酶活性的DNA酶这一特性,可以作为各种靶目标的检测工具,在分析化学领域也受到越来越多的关注。
     研究表明,当有K+存在时,少量的K+可以促进AS1411序列形成双分子反平行G四链体结构,然后和Hemin通过π-π堆积形成2:2的G-四链体emin DNA酶,催化H2O2,氧化ABTS2-[2,2’-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐],生成有颜色的氧化物ABTS阴离子自由基ABTS·。表现出过氧化物酶活性。这一体系已成功应用于金属离子K+,Hg2+和pb2+,核酸序列,以及核糖核酸酶等的检测中。但这个检测体系需要加入Hemin,双氧水和ABTS2等反应物,实验步骤比较繁琐,且降低了体系的稳定性。
     在本文的研究中,我们用与Hemin具有相同卟啉母环结构,相似环外结构但环内没有螯合金属离子的不对称阴离子卟啉NMM (N-Methyl mesoporphyrinIX),取代Hemin,和AS1411作用。结果发现,NMM可以在无盐条件下(除少数用于调节缓冲溶液pH值的Li+)诱导AS1411形成G-四链体结构,并且具有pH依赖性和序列特异性。即,NMM可以在酸性和中性环境下诱导AS1411序列形成G-四链体结构,并释放出强烈荧光(Ex=399nm, Em=614nm),而在碱性条件下可以诱导磷硫酰化的核仁素适配体AS1411S8(5’-GsGT GSGT GSGT GSGT TGT GsGT GSGT GSGT GsG-3’, S为磷硫酰化的位置)形成G-四链体结构,并释放强烈荧光。
     由于Pb2+可以稳定NMM和AS1411作用后形成的G-四链体,我们将酸性环境下(pH=6.0)的NMM和AS1411体系用作Pb2+探针,以“Turn-on”模式检测溶液中的pb2+,检测下限为23.0nM;而在碱性环境下(pH=8.0),Hg2+由于可以和硫代序列AS1411S8中的碱基T和S原子,通过T-Hg2+-T错配和S-Hg2+-S共价键作用形成双链,抑制NMM作用下AS1411S8形成G-四链体结构,从而可以用作“Turn-off”探针检测Hg2+,检测下限为2.5nM。另外,我们还发现NMM本身可以用作Zn2+探针,常温下NMM与Zn2+螯合后,荧光显著增强并伴随最大发射峰往长波方向移动的现象(Ex=399nm,Em=624nm)。检测Zn2+的下限为78.0nM。
     此外,本论文研究发现在没有其他离子存在的情况下,Hg2+可以诱导磷硫酰化的人端粒序列Telo24-S4(5’-TTAsGGGTTAsGGGTTAsGGGTTAsGGG-5’)形成链内反平行G-四链体结构。其中,Hg2+与S的结合比例为1:2。这种新型的G-四链体形成方法有助于将修饰的G-四链体结构作为一种具有功能性的工具应用于其他领域。
G-quadruplex DNA is a kind of special DNA secondary structure, with stability and diversity, and also was found in the telomere region of human chromosome as well as the promoter region which has relationship with cancer. So, recently, people focus on this structure both in its biological significance and practical application. For the biological significance, up to now, there are two anti-cancer small molecules based on G-quadruplex, which has been reported entering in human phase II clinical trials, one is the compound Quarfloxin (CX-3543), and another one is the nucleolin aptamer AS1411(5'-GGT GGT GGT GGT TGT GGT GGT GGT GG-3'), a short DNA sequence without any modification. For the aspect of practical application, people find that, G-quadruplex can bind with Hemin and then form G-quadruplex-hemin complex, a kind of peroxidase DNAzyme, which can be used to detect many target analyte, so the application of G-quadruplex currently gets more and more attention in the field of analytical chemistry
     This special anticancer aptamer AS1411was reported to interact with anionic iron(III) porphyrin hemin in the presence of a little K+, to form a2:2complex through7r-stacking interactions, and then form a DNAzyme with excellent peroxidase-like activity, which can catalyze the oxidation of2,2'-azino-bis (3-ethylbenzothiozoline-6-sulfonic acid)(ABTS2') mediated by H2O2to produce the colored radical anion(ABTS). Actually, this system has been successfully applied in the detection of K+, Hg2+and Pb2+ions, DNA sequences and RNase. However, as a detection system, it need to add reactants such as Hemin, H2O2and ABTS2-, which increased the operation process of experiment and decreased the stability and reproducibility of the detection.
     In this paper, we used another porphyrin, having the same ring and similar side chain, but without any metal ion in the middle of the ring, unsymmetrical anionic porphyrin N-Methyl mesoporphyrin IX (NMM), to replace Hemin, and react with AS1411. To our surprise, NMM can induce AS1411to form G-quadruplex in the absence of any metal ion (except a few Li+used to adjust pH of buffer), which was pH-dependent and sequence specifical. That's to say, NMM can induce AS1411to form G-quadruplex under neutral or acidic conditions, and induce the phosphorothioate oligonucleotide AS1411S8(5'-GsGT GsGT GsGT GsGT TGT GsGT GsGT GsGT GsG-3') to fold into G-quadruplex without any metal ions in the basic condition, both giving out strong fluorescence (Ex=399nm, Em=614nm), simultaneously.
     As Pb2+can stabilize the G-quadruplex formed by AS1411and NMM, we took the system of NMM and AS1411in acidic condition (pH=6.0) as a Pb2+sensor, using a'Turn-on'mode to detect Pb2+in solution, the limit of detection was23.0nM; In another case, in the basic condition (pH=8.0), AS1411S8was utilized to sense Hg2+ions due to its T, S resides complexing with Hg2+. The formation of T-Hg2+-T and S-Hg2+-S pairs inhibited AS1411S8folding into the G-quadruplex, which was used as a'turn-off'sensor, the limit of detection was2.5nM. Besides, we also found that NMM could chelate with Zn2+in the room temperature, and the chelate complex had a much more stronger fluorescence compared with NMM, with the maxim shifted to624nm. The limit of detection was78.0nM when we used NMM to detect Zn2+.
     Another project in this paper, we have screened out one phosphorothioate oligonucleotides Telo24-S4, which could be induced by mercury ions to form intramolecular anti-parallel G-quadruplex with high selectivity, with the binding mode S:Hg2+=2:1. It was a new approach to fold G-quadruplex structures, based on the bond between Hg and S through the phosphorothioate modification of the sequences. This application illuminated that the structure of modified G-quadruplex could be utilized as a functional tool in specific fields.
引文
1. Watson J. D., Crick E. C, Genetical implication of the structure of deoxyribonucleic acid. Nature.1954,171,964-967.
    2. Breaker R., DNA aptamers and DNAenzymes. Opin. Chem. Biol.1997,1, 26-31.
    3. Willner I., Shlyahovsky B., Zayats M., Willner B., DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev.2008,37, 1153-1165.
    4. Hermann T., Patel D. J., Adaptive recognition by nucleic acid aptamers. Science. 2000,257,820-825.
    5.孔德明,G-四链体-氯化血红素DNA酶在传感器设计中的应用,化学进展,2011.23.2119-2131.
    6. Mao C. D., Sun W Q., Shen Z. Y., Secman N. C, A nanomechanical device based on the B-Z transition of DNA. Nature.1999,397,144-146.
    7. Jonathan B., Turberfield A. J., DNA nanomachines. Nature Nanotechnology. 2007.2,275-284.
    8. Frezza B. M., Coekroft S. L., Ghadiri M. R., Modular Multi-Level Circuits from Immobilized DNA-Based Logic Gates. J. Am. Chem. Soc.2007.129, 14875-14879.
    9. Seeman N. C, DNA in a material world. Nature.2003,421, 427-431.
    10. Bang I., Untersuchungen uber die Guanylsaure. Biochem. Z.1910,26,293.
    11. Bryan T. M., Baumann P., G-quadruplexes:from guanine gels to chemotherapeutics. Methods Mol Biol.2010,608,1-16.
    12. Gellert M., Lipsett M. N., Davies D. R., Helix formation by guanylic acid. Proc Natl Acad Sci USA.1962,48,2013-2018.
    13. Guschlbauer W., Chantot J. F., et al. Four-stranded nucleic acid structures 25 years later:from guanosine gels to telomer DNA. J Biomol Struct Dyn.1990, 5,491-511.
    14. Pochon F., Michelson A. M., Polynucleotides. VI. Interaction between polyguanylic acid and polycytidylic acid. Proc Natl Acad Sci U S A.1965,53, 1425-1430.
    15. Zimmerman S B., An "acid" structure for polyriboguanylic acid observed by X-ray diffraction, Biopolymers.1975,14,889-890.
    16. Henderson, E.; Hardin, C. C; Walk, S. K.; Tinoco, I. Jr; Blackburn, E. H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell.1987,51,899-908.
    17. Sen, D.; Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature.1988,334, 364-366.
    18. Zahler A. M., Williamson J. R., et al. Inhibition of telomerase by G-quartet DNA structures. Nature.1991,350,718-720.
    19. Huppert J. L., Four-stranded nucleic acids:structure, function and targeting of G-quadruplexes. Chem. Soc. Rev.2008,37,1375-1384.
    20. Neidle S., Parkinson G. N., Quadruplex DNA crystal structures and drug design. Biochimie.2008,90,1184-1196.
    21.Qin Y., Hurley L. H., Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie.2008,90,1149-1171.
    22. Phan A. T., Human telomeric G-quadruplex:structures of DNA and RNA sequences. FEBSJ.2010,277,1107-1117.
    23. Xue Y., Kan Z. Y., Wang Q., Yao Y., Liu J., Hao Y. H., Tan Z., Human Telomeric DNA Forms Parallel-Stranded Intramolecular G-Quadruplex in K+ Solution under Molecular Crowding Condition. J. Am. Chem. Soc.2007,129, 11185-11191.
    24. Wang Y., Patel D. J., Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure.1993,1,263-282.
    25. Parkinson G. N., Lee M. P., Neidle S., Crystal structure of parallel quadruplexes from human telomeric DNA. Nature.2002,417,876-880.
    26. Ambrus A., Chen D., Dai J., Bialis T., Jones, R A., Yang D., Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006,34,2723-2735.
    27. Xu Y., Noguchi Y., Sugiyama H., The new models of the human telomere d[AGGG(TTAGGG)3] in K+solution. Bioorg. Med. Chem.2006,14, 5584-5591.
    28. Luu K. N., Phan A. T., Kuryavyi V., Lacroix L., Patel D. J., Structure of the human telomere in K+solution:an intramolecular (3+1) G-quadruplex scaffold. J. Am. Chem. Soc.2006,128,9963-9970.
    29. Travascio P., Witting P. K., Mauk A. G., Sen D., The peroxidase activity of a hemin—DNA oligonucleotide complex:free radical damage to specific guanine bases of the DNA, J. Am. Chem. Soc.2001,123,1337-1348.
    30. Simonsson T., G-quadruplex DNA structures-variations on a theme. Biol. Chem.2001,382,621-628.
    31. Hu L., Lim K. W., et al. Giardia telomeric sequence d(TAGGG)4 forms two intramolecular G-quadruplexes in K+ solution:effect of loop length and sequence on the folding topology.J.Am. Chem. Soc.2009,131,16824-16831.
    32. Miyoshi D., Nakao A., Sugimoto N., Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca+. Nucleic Acids Research, 2003,37,1156-1163.
    33. Sannohe Y., Sugiyama H., Overview of formation of G-quadruplex structures. Curr Protoc Nucleic Acid Chem.2010, Chapter 17,1-17.
    34. Gilbert D. E., Feigon J., Multistranded DNA structures. Curr Opin Struct Biol. 1999,9,305-314.
    35. Hazel P., Huppert J., Balasubramanian S., Neidle S., Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc.2004,126,16405-16415.
    36. Rachwal P A., Brown T., Fox K R., Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS Lett.2007,581,1657-1660.
    37. Hud N. V., Smith F. W., Anet F. A. Feigon J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration:a thermodynamic analysis by 1HNMR. Biochemistry.1996,35,15383-15390.
    38. Creze C., Rinaldi B., et al. Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions. Acta Crystallogr D Biol Crystallogr.2007,63, 682-688.
    39. Guschlbauer W., Chantot J. F., Thiele D., Four-stranded nucleic acid structures 25 years later:from guanosine gels to telomer DNA, J. Biomol. Struct. Dyn. 1990,5,491-511.
    40. Ueyama H., Takagi M., Takenaka S., A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. J. Am. Chem. Soc.2002,124,14286-14287.
    41. Galezowska E., Gluszynska A., Juskowiak B., Luminescence study of G-quadruplex formation in the presence of Tb3+ion. J. Inorg. Biochem.2007, 101,678-685.
    42. Kotch F. W., Fettinger J. C, Davis J. T., A lead-filled G-quadruplex:insight into the G-Quartet's selectivity for Pb(2+) over K(+). Org. Lett.2000,2, 3277-3280.
    43. Muller H. J., The re-making of chromosomes. Collecting Net, Woods Hole 13. 1938,181-195 and 198.
    44. McClintock B., The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics.1941,26,234-282.
    45. Shay J. W., At the end of the millennium, a view of the end, Nat. Genet.1999, 23,382-383.
    46. Griffith J. D., Comeau L., et al. Mammalian telomeres end in a large duplex loop. Cell.1999,97,503-514.
    47. de Lange T., Shelterin:the protein complex that shapes and safeguards human telomeres. Genes Dev.2005,19,2100-2110.
    48. The Nobel Prize in Physiology or Medicine.2009.
    49. Olovnikov A. M., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol.1973,41,181-190.
    50. Watson J. D., Origin of concatemeric T7 DNA. Nat. New. Biol.1972,239, 197-201.
    51. White L. K., Wright W. E., Shay J. W., Telomerase inhibitors, TRENDS in Biotech.2001,19,114-120.
    52. Shay J. W., Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer.1997,33,787-791.
    53. Feng J., Funk W. D., Wang S. S., Weinrich S. L., Avilion A. A., Chiu C. P., Adams R. R., Chang E., Allsopp R. C, Yu J., Le S., West M., Harley C. B., Andrews W. H., Greider C. W., Villeponteau B., The RNA component of human telomerase. Science.1995,269,1236-1241.
    54. Harley C. B., Telomerase and cancer therapeutics. Nat. Rev. Cancer.2008,8, 167-179.
    55. Sun D., Guo K., et al. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res.2005,33,6070-80.
    56. Fu B., Huang J., Ren L., Weng X., Zhou Y., Du Y., Wu X., Zhou X., Yang G., Cationic corrole derivatives:a new family of G-quadruplex inducing and stabilizing ligands. Chem. Commun. (Camb).2007,3264-3266.
    57. Read M. A., Wood A. A., Harrison J. R., Gowan S. M., Kelland L. R., Dosanjh H. S., Neidle S., Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors:structure-activity relationships, J. Med. Chem.1999,42, 4538-4546.
    58. Han F. X., Wheelhouse R. T., Hurley L. H., Interactions of TMPyP4 and TMPyP2 with Quadruplex DNA, Structural Basis for the Differential Effects on Telomerase Inhibition./Am. Chem. Soc.1999,121,3561-3570.
    59. Perry P. J., Read M. A., Davies R. T., Gowan S. M., Reszka A. P., Wood A. A., Kelland L. R., Neidle S.,2,7-Disubstituted amidofluorenone derivatives as inhibitors of human telomerase. J. Med. Chem.1999,42,2679-2684.
    60. Harrison R. J., Cuesta J., Chessari G., Read M. A., Basra S. K., Reszka A. P., Morrell J., Gowan S. M., Incles C. M., Tanious F. A., Wilson W. D., Kelland L. R., Neidle S., Trisubstituted Acridine Derivatives as Potent and Selective Telomerase Inhibitors. J. Med. Chem.2003,46, 4463-4476.
    61.Salvati E., Leonetti C., Rizzo A.; Scarsella M., Mottolese M., Galati R., Sperduti I., Stevens M. F., D'Incalci M., Blasco M., Chiorino G., Bauwens S., Horard B., Gilson E., Stoppacciaro A., Zupi, G., Biroccio A., Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect, J. Clin. Invest.2007,117,3236-3247.
    62. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P., Molecular Biology of the Cell.4th edn. Garland Science, New York, NY.2002.
    63. Todd A. K., Johnston M., Neidle S., Highly prevalent putative quadruplex sequence motifs in human DNA, Nucleic Acids Res.2005,33,2901-2907.
    64. Huppert J. L., Balasubramanian S., Prevalence of quadruplexes in the human genome, Nucleic Acids Res.2005,33,2908-2916.
    65. Burge S., Parkinson G. N., Hazel P., Todd A. K., Neidle S., Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res.2006,34,5402-5415.
    66. Cylene Pharmaceuticals'Ribosomal RNA Biogenesis Inhibitor, Quarfloxin (CX-3543), Enters Phase Ⅱ Clinical Trial. PR Newswire.2007, June 28.
    67. Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol.2006,13,1055-1059.
    68. Bates P. J., Laber D. A., Miller D. M., Thomas S. D., Trent J. O., Discovery and development of the G-rich oligonucleotide AS 1411 as a novel treatment for cancer. Experimental and Molecular Pathology.2009,86,151-164.
    69. Bates P.J., Kahlon J. B., Thomas S. D., Trent J. O., Miller D. M., Antiproliferative activity of G-rich oligonucleotides correlates with protein binding.J. Biol. Chem.1999,274,26369-26377.
    70. Wyatt J. R., Vickers T. A., Roberson J. L., Buckheit R. W. Jr., Klimkait T., DeBaets E., Davis P. W., Rayner B., Imbach J. L., Ecker D. J., Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc. Natl. Acad. Sci. U. S.A.1994,91,1356-1360.
    71. Rando R. F., Ojwang J., Elbaggari A., Reyes G R., Tinder R., McGrath M. S., Hogan M. E., Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads. J. Biol. Chem. 1995,270,1754-1760.
    72. Mazumder A., Neamati N., Ojwang J. O., Sunder S., Rando R. R, Pommier Y., Inhibition of the human immunodeficiency virus type 1 integrase by guanosine quartet structures. Biochemistry.1996,35,13762-13771.
    73. Do N. Q., Lim K. W., Teo M. H., Heddi B., Phan A T., Stacking of G-quadruplexes:NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Research.2011,1-10.
    74. Jing N., Hogan M. E., Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J. Biol. Chem.1998,273,34992-34999.
    75. Cherepanov P., Este J. A., Rando R. F., Ojwang J. O., Reekmans G, Steinfeld R., David G, De Clercq E., Debyser Z., Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1. Mol. Pharmacol.1997,52, 771-780.
    76. Este J. A., Cabrera C, Schols D., Cherepanov P., Gutierrez A., Witvrouw M., Pannecouque C, Debyser Z., Rando R. F., Clotet B., Desmyter J., De Clercq E., Human immunodeficiency virus glycoprotein gpl20 as the primary target for the antiviral action of AR177 (Zintevir). Mol. Pharmacol.1998,53,340-345.
    77. Coughlin, S. R. Thrombin signalling and protease-activated receptors, Nature. 2000,407,258-264.
    78. Bock, L. C; Griffin, L. C; Latham, J. A.; Vermaas, E. H.; Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature.1992,355,564-566.
    79. Macaya R. F., Schultze P., Smith F. W., Roe J. A., Juli F., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. U.S.A.1993,90,3745-3749.
    80. Wang K. Y., McCurdy S., Shea R. G, Swaminathan S., Bolton P. H., A DNA Aptamer Which Binds to and Inhibits Thrombin Exhibits a New Structural Motif for DNA. Biochemistry.1993,32,1899-1904.
    81. Martin-Hidalgo M, Betancourt-Borges J. E., Rivera-Rfos L. R., Rivera J. M,. Molecular Nanodevices Based on the Thrombin Binding Aptamer (TBA). Nanodevices.2007.1-18.
    82. Joachimi, A.; Mayer, G; Hartig, J. S. A new anticoagulant-antidote pair:control of thrombin activity by aptamers and porphyrins, J. Am. Chem. Soc.2007,129, 3036-3037.
    83. Doherty E. A., Doudna J. A., Ribozyme structures and mechanisms. Annu Rev Biophys BiomolStruct.2001,30,457-475.
    84. Doudna J. A., Cech T. R., The chemical repertoire of natural ribozymes. Nature 2002,418,222-228.
    85. Lilley D. M. J., Structure, folding and mechanisms of ribozymes. Curr. Opin. Struct. Biol.2005,15,313-323.
    86. Breaker R. R., DNA enzymes. Nat. Biotechnol.1997,15,427-431.
    87. Sen D., Geyer C. R., DNA enzymes.Curr Opin. Chem. Biol.1998,2,680-687.
    88. Achenbach J. C, Chiuman W., Cruz R. P. G., Li Y., DNAzymes:From Creation In Vitro to Application In Vivo. Curr. Pharm. Biotechnol.2004,5,321-336.
    89. Liu J., Brown A. K., Meng X., Cropek D. M., Istok J. D., Watson D. B., Lu Y., A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. U.S.A.2007,104,2056.
    90. Liu J., Cao Z., Lu Y., Functional Nucleic Acid Sensors. Chem. Rev.2009,109, 1948-1998.
    91. Brown A. K., Li, J., Pavot C. M. B., Lu Y. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 2003,42,7152-7161.
    92. Rajendran M., Ellington A. D., Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal. Bioanal Chem.2008,390,1067-1075.
    93. Santoro S. W., Joyce G. F., Sakthivel K., Gramatikova S., Barbas C. F. III., RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc.2000,122,2433-2439.
    94. Carmi N., Balkhi H. R., Breaker R. R., Cleaving DNA with DNA. Proc. Natl. Acad. Sci. U.S.A.1998,95,2233-2237.
    95. Travascio P., Li Y., Sen D., DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol.1998,5,505-517.
    96. Travascio P., Bennet A. J., Wang D. Y., Sen D., A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chem. Biol. 1999,6,779-787.
    97. Clever G. H., Kaul C, Carell T., DNA-metal base pairs. Angew. Chem. Int. Ed. Engl.2007,46,6226-6236.
    98. Miyake Y, Togashi H., Tashiro M., Yamaguchi H., Oda S., Kudo M., Tanaka Y, Kondo Y., Sawa R., Fujimoto T., Machinami T., Ono A., Mercuryll-mediated formation of thymine-Hgll-thymine base pairs in DNA duplexes. J. Am. Chem. Soc.2006,128,2172-2173.
    99. Tanaka Y, Oda S., Yamaguchi H., Kondo Y, Kojima C, Ono A.,15N-15N J-coupling across Hg(II):direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc.2007,129,244-245.
    100. Kong D.M., Wang N., Guo X. X., Shen H. X.,'Turn-on'detection of Hg2+ion using a peroxidase-like split G-quadruplex-hemin DNAzyme. Analyst,2010, 135,545-549.
    101. Zhang D., Deng M. G, Xu L., Zhou Y Y, Yuwen J., Zhou X., The Sensitive and Selective Optical Detection of Mercury (II) Ions by Using a Phosphorothioate DNAzyme Strategy. Chem. Eur. J.2009,15,8117-8120.
    102. Li T., Dong S. J., Wang E. K., Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+-Modulated G-Quadruplex-Based DNAzymes. Anal Chem.2009,81,2144-2149.
    103. Li T, Li B., Wang E. K., Dong S. J., G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem. Comm.2009,3551-3553.
    104. Lu N., Shao C. Y., Deng Z. X., Colorimetric Hg2+detection with a label-free and fully DNA-structured sensor assembly incorporating G-quadruplex halves. Analyst.2009,134,1822-1825.
    105. Elbaz J., Shlyahovsky B., Willner I., A DNAzyme cascade for the amplified detection of Pb2+ions or L-histidine. Chem. Commun.2008.1569-1571.
    106. Li T., Wang E. K., Dong S. J., Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+Detection. Anal. Chem.2010.82,1515-1520.
    107. Li T., Wang E., Dong S., Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+Detection. Anal. Chem.2010,82,1515-1520.
    108. Li T., Wang E., Dong S., Potassium-Lead-Switched G-Quadruplexes:A New Class of DNA Logic Gates.J. Am. Chem. Soc.2009,131,15082-15083.
    109. Kotch F. W., Fettinger J. C., Davis J. T., A Lead-Filled G-Quadruplex:Insight into the G-Quartet's Selectivity for Pb2+over K+. Org. Lett.2000,2,3277-3280.
    1. Dieguez-Acuna F. J., Ellis M. E., Kushleika J., Woods J. S., Mercuric ion attenuates NF-kB activation and DNA binding in normal rat kidney epithelial cells: Implications for mercury-induced nephrotoxicity. Toxicol Appl Pharmacol.2001, 173,176-187.
    2. Lund B. O., Miller D. M., Woods J. S., Studies on Hg(II)-induced hydrogen peroxide formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol.1993,45,2017-2024.
    3. Sekowski J. W., Malkas L. H., Wei Y., Hickey R. J., Mercuric ion inhibits the activity and fidelity of the human cell DNA synthesome. Toxicol. Appl. Pharmacol. 1997,145,268-276.
    4. Liu J. W., Lu Y., Rational Design of "Turn-On" Allosteric DNAzyme Catalytic Beacons for Aqueous Mercury Ions with Ultrahigh Sensitivity and Selectivity. Angew. Chem. Int. Ed.2007,46,7587-7590.
    5.姜若兰.儿童铅中毒与预防.职业卫生与病伤.2004.2.
    6. Lan T., Furuya K., Lu Y., A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun.2010,3896-3898.
    7. Johnson Jr. E. M., Greenlund L. J., Akins P. T., et al. Neuronal apoptosis:current understanding of molecular mechanisms and potential role in ischemic brain injury. JNeurotrauma.1995,12,843-852.
    8. Kerr J. F., Wyllie A. H., et al. Apoptosis:basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer.1972,26,239-257.
    9. Jacobson M. D., Evan G. I., Apoptosis. Breaking the ICE. Curr Biol.1994,4, 337-340.
    10. Hengartner M. O., Ellis R., Horvitz R., Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature.1992,56,494-499.
    11. Majno G., et al. Apoptosis, oncosis, necrosis. An overview of cell death. Am J Pathol.1995,146,3-15.
    12. Adams J. M., Cory S., Apoptosomes:engines for caspase activation. Curt Opin Cell Biol.2002,14,715-720.
    13. Ghosh S. K., KimP., Zhang X., Yun S. H., Moore A., Lippard S. J., Medarova Z. A Novel Imaging Approach for Early Detection of Prostate Cancer Based on Endogenous Zinc Sensing. Cancer Research.2010,70.
    14.莫洁芳,韩英.水环境中汞离子检测技术研究进展.现在仪器.2010,3.14-17.
    15.GB2762-2005食品中汞的测定方法.
    16.黄广民,姚伯元.高钙强化剂中痕量汞的测定.食品科学.2003.24,112-114.
    17.严国兵等.新显色剂的合成及在环境监测中的应用研究.中国环境监测.2006,22,24-26.
    18.夏心泉等.新显色剂甲氧基-苯并噻唑重氮氨基偶氮苯与汞的显色反应及应用研究.化学世界.1999,40,28-30.
    19.李秀华等.分光光度法检测饲料中汞含量.饲群工业.2007,28.48-50.
    20.阮琼.分光光度法测定环境水样中的汞.光谱实验室.2003,20,396-398.
    21.黄运瑞等.N-问甲苯基-N-(对氨基苯磺酸钠)硫脲光度法测定微量汞(Ⅱ).南阳师范学院学报,2003,6,44-47.
    22.张海明等.胶束增溶分光光度法测定水溶液中的汞.化工技术与矛发2006,35,23-26.
    23.熊珍奎等.VA-90气态原子化装置与AAS联用测定饮用水中的汞.分析测试.2000,18,34-35.
    24.虞吉寅.冷原子吸收光谱法快速测定海水中汞.浙江预防医学.2008,20,93.
    25.赵爱东等.电感耦合等离子体发射光谱法测定痕量汞.分析化学1997,25,1469.
    26.陈晓妹.氢化物发生原子荧光法测定水中痕量砷和汞.理化检验-化学分册.2003,39,83-84.
    27. Ono A., Togashi H., Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. Engl.2004,43,4300-4302.
    28. Elghanian R., Storhoff J. J., Mucic R. C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science.1997,277,1078-1081.
    29. Jin R., Wu G., Li Z., et al., What controls the melting properties of DNA-Linked gold nanoparticle assemblies. J. Am. Chem. Soc.2003,125,1643-1654.
    30. Lee J. S., Han M. S., Mirkin C. A., Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. Engl.2007,46,4093-4096.
    31. Li D., Wieckowska A., Willner I., Optical analysis of Hg2+ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. Engl.2008,47,3927-3931.
    32. Li H., Rothberg L. J., Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 2004,126,10958-10961.
    1. Orrick L. R., Olson M. O. J., Busch H., Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by twodimensional polyacrylamide gel electrophoresis. Proc. Natl. Acad. Sci. USA.1973,70,1316-1320.
    2. Sinclair J F., et al., Cell surface-localized nucleolin is an eukaryotic receptor for adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem.2002,277,2876-2885.
    3. Tuteja R., et al., Nucleolin:a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol.1998,33,407-436.
    4. Ginisty H., et al., Structure and functions of nucleolin. J Cell Sci.1999,112, 761-772.
    5. Andersen J. S., Lyon C. E., et al., Directed proteomic analysis of human nucleolus. Curr Biol.2002,72,1-11.
    6. Destouches D., Khoury D. E., Hamma-Kourbali Y., Krust B., Albanese P., Katsoris P., Guichard G., Briand J. P., Courty J., Hovanessian A. J., Suppression of Tumor Growth and Angiogenesis by a Specific Antagonist of the Cell-Surface Expressed Nucleolin. PLoS ONE.2008,3, e2518. (doi:10.1371/journal.pone.0002518)
    7. Yanagida M., Shimamoto A., Nishikawa K., Furuichi Y., Isobe T., Takahashi N., Isolation and proteomic characterization of the major proteins of the nucleolin-binding ribonucleoprotein complexes. Proteomics.2001,1,1390-1404.
    8. Christian S., Pilch J., Akerman M. E., Porkka K., Laakkonen P., Ruoslahti E., Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. The Journal of Cell Biology.2003,163,871-878.
    9. Martelli A. M, Zweyer M., Ochs R. L., Tazzari P. L., Tabellini G., Narducci P., Bortul R., Nuclear apoptotic changes:an overview. J Cell Biochem.2001,82, 634-646.
    10. Kito S., Shimizu K., et al., Cleavage of nucleolin and argyrophilic nucleolar organizer region associated proteins in apoptosis-induced cells. Biochem Biophys Res Commun.2003,300,950-956.
    11. Mi Y., et al., Apoptosis in leukemia cells is accompanied by alterations in levels and localization of nucleolin. J Biol Chem.2003,278,8572-8579.
    12.李豪嶧.探讨Nucleolin在肺癌形成中所扮演的角色.成功大学/生物科学与科技学院/生物资讯与讯息传达研究所/99/硕士/69页。http://etds.lib.ncku.edu.tw/etdservice/view metadata?etdun=U0026-200720111814 OOOO&query field1=keyword&query word1=mRNA
    13. Tuerk C, et al., Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science.1990,249,505-510.
    14. Ellington A. D., et al., In vitro selection of RNA molecules that bind with specific ligands. Nature.1990,346,818-822.
    15. Bates P. J., Laber D. A., Miller D. M., Thomas S. D., Trent J. O., Discovery and development of the G-rich oligonucleotide AS 1411 as a novel treatment for cancer. Experimental and Molecular Pathology.2009,86,151-164.
    16. Bates P.J., et al., Antiproliferative activity of G-rich oligonucleotides correlates with protein binding.J.Biol. Chem.1999,274,26369-26377.
    17. Soundararajan S., Chen W., Spicer E. K.,Courtenay-Luck N., Fernandes D. J., The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res.2008,68,2358-2365.
    18. Cao Z. H., Tong R., Mishra A., Xu W. C, Wong G. C. L., Cheng J. J., Lu Y., Reversible Cell-Specific Drug Delivery with Aptamer-Functionalized Liposomes. Angew. Chem. Int. Ed.2009,48,6494-6498.
    19. Dapic V., et al., Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res.2003,31,2097-2107.
    20. Dapic V., Bates P.J., Trent J.O., Rodger A., Thomas S. D., Miller D. M., Discovery and development of the G-rich oligonucleotide AS 1411 as a novel treatment for cancer. Biochemistry,2002,41,3676-3685.
    21. Li T., Shi L., Wang E., Dong S., Multifunctional G-Quadruplex Aptamers and Their Application to Protein Detection. Chem. Eur. J.2009,15,1036-1042.
    22. Li T., Wang E., Dong S., G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection. Chem. Commun.2009,580-582.
    23. Li T., Dong S., Wang E., Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+-Modulated G-Quadruplex-Based DNAzymes. Anal. Chem. 2009,81,2144-2149.
    24. Li C. L., Liu K. T., Lin Y. W., Chang H. T., Fluorescence Detection of Lead(Ⅱ) Ions Through Their Induced Catalytic Activity of DNAzymes. Anal. Chem.2011,83, 225-230.
    25. Kotch F. W., et al., A Lead-Filled G-Quadruplex:Insight in the G-Quartet's Selectivity for Pb2+over K+. Org. Lett.2000,2,3277-3280.
    26. Li T., Wang E., Dong S., Lead(Ⅱ)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+Detection. Anal. Chem.2010,82,1515-1520.
    27. Li T., Wang E., Dong S., Potassium-Lead-Switched G-Quadruplexes:A New Class of DNA Logic Gates. J. Am. Chem. Soc.2009,131,15082-15083.
    28. Li Y., Geyer C R., Sen D., Recognition of Anionic Porphyrins by DNA Aptamers. Biochemistry 1996,35,6911-6922.
    29. Travascio P., Li Y., Sen. D., DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry & Biology.1998,5.505-517.
    30. Arthanari H., Basu S., Kawano T. L., Bolton P. H., Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res.1998,26,3724-3728.
    31. Hu D., Huang Z., Pu F., Ren J., Qu X., A Label-Free, Quadruplex-Based Functional Molecular Beacon (LFG4-MB) for Fluorescence Turn-On Detection of DNA and Nuclease. Chem. Eur. J.2011,17,1635-1641.
    32. Ren J., et al., Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry.1999,38,16067-16075.
    33. Hu D., Pu F., Huang Z., Ren J., Qu X., Quadruplex-Based, Label-Free, Real-Time Fluorescence Assay for RNase H Activity and Inhibition. Chem. Eur. J.2010,16, 2605-2610.
    34. Zhao C., Wu L., Ren J., Qu X., A label-free fluorescent turn-on enzymatic amplification assay for DNA detection using ligand-responsive G-quadruplex formation. Chem. Commun.2011,47,5461-5463.
    35. Ren J., Qin H., Wang J., Luedtke N., Wang E., Wang J., Label-free detection of nucleic acids by turn-on and turn-off G-quadruplex-mediated fluorescence. Anal Bioanal Chem.2011,399,2763-2770.
    36. Ma H., Zhang M., Zhang D., Huang R., Zhao Y., Yang H., Liu Y J., Weng X C., Zhou Y Y, Deng M G, Xu L., Zhou X., Corrole lsomers:Conformation Induction, Stabilization of Telomere G-quadruplex and Highly Bindings to Promoter G-quadruplexes. Chem. Asian. J.2010,5,114-122.
    37. Hardin C. C, et al., Monovalent cation induced structural transitions in telomeric DNAs:G-DNA folding intermediates. Biochemistry.1991,30,4460-4472.
    38. Fu B., Zhang D., Weng X., Zhang M., Ma H., Ma Y., Zhou X. Cationic Metal-Corrole Complexes:Design, Synthesis, and Properties of Guanine-Quadruplex Stabilizers. Chem. Eur. J.2008,14,9431-9441.
    39. Giraldo R., et al., Promotion of parallel DNA quadruplexes by yeast telomere binding protein:a circular dichroism study. Proc Natl Acad Sci U S A.1994,91, 7658-7662.
    40. Goncalves D. P., et al., Tetramethylpryidiniumporphyrazines-a new class G-quadruplex inducing and stabilising ligands. Chem. Commun.2006,4685-4687.
    41. YamashitaT., et al., Stabilization of guanine quadruplex DNA by binding of porphyrins with cationic side arms. Bioorg. Med. Chem.2005,13,2423-2430.
    42. Wang S R., Zhang D., Luo F L., Liu L., Weng X C, Huang J., Li G R., Zhang X L., Zhou X., Some Cationic Porphyrins:Synthesis, Stabilization of G-quadruplexes, and Down-regulation of C-myc in Hep G2 Cells. J. Porphyrins Phthalocyanine. 2009,73,1.
    43. Han F. X., et al., Interactions of TMPyP4 and TMPyP2 with Quadruplex DNA. Structural Basis for the Differential Effects on Telomerase Inhibition. J. Am. Chem. Soc.1999,727,3561-3570.
    44. Wheelhouse R. T., et al., Cationic Porphyrins as Telomerase Inhibitors:G the Interaction of Tetra-(N-methyl-4-pyridyl)porphine with Quadruplex DNA.J. Am. Chem. Soc.1998,120,3261-3262.
    45. Dailey M M., Miller M C, Bates P. J., Lane A. N., Trent J. O., Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Research,2010,38,4877-4888.
    46. Zhang D., Deng M., Xu L., Zhou Y., Yuwen J., Zhou X., The Sensitive and Selective Optical Detection of Mercury(II) Ions by Using a Phosphorothioate DNAzyme Strategy. Chem. Eur. J.2009,75,8117-8120.
    47. Liu J W., Lu Y., Rational Design of "Turn-On" Allosteric DNAzyme Catalytic Beacons for Aqueous Mercury Ions with Ultrahigh Sensitivity and Selectivity. Angew. Chem., Int. Ed.2007,46,7587-7590.
    48. Li D., Wieckowska A., Willner I., Optical Analysis of Hg2+Ions by Oligonucleotide-Gold-Nanoparticle Hybrids and DNA-Based Machines. Angew. Chem., Int. Ed.2008,47,3927-3931.
    49. Pal R., Parker D. Org. A ratiometric optical imaging probe for intracellular pH based on modulation of europium emission. Biomol. Chem.2008,6,1020-1033.
    50. Xue L., Liu C, Jiang H., A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells. Chem. Commun.2009,1061-1063.
    1. Rezler E. M., Seenisamy J., Bashyam S., Kim M. Y., White E., Wilson W. D., Hurley L. H., Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-Quadruplex structure. J. Am. Chem. Soc.2005,127, 9439-9447.
    2. Phan A T., Kuryavyi V., et al. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+solution. Nucleic Acids Res.2007, 35,6517-6525.
    3. Wang Y., et al., Solution structure of human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure.1993,1,263-282.
    4. Kan Z Y., Yao Y., Wang P., Li X H., Hao Y H., Tan Z., Molecular crowding induces telomere G-quadruplex formation under salt-deficient conditions and enhances its competition with duplex formation. Angew Chem Int Ed Engl,2006,45,1629-1632.
    5. Xue Y., Kan Z Y., et al. Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+solution under molecular crowding condition. J Am Chem Soc.2007,129,11185-11191.
    6. Hazel P., Huppert J., Balasubramanian S., Neidle S., Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc.2004,126,16405-16415.
    7. Rachwal P A., Brown T., Fox K R., Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS Lett.2007,581,1657-1660.
    8. Wang Q., Ma L., et al. Folding equilibrium constants of telomere G-quadruplexes in free state or associated with proteins determined by isothermal differential hybridization. Anal Chem.2010,82,9469-9475.
    9. Wang Q., Liu J Q., et al. G-quadruplex formation at the 3'end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Res.2011,1-9.
    10. Parkinson G N., et al., Crystal structure of parallel quadruplexes from the human telomeric DNA. Nature.2002,417,876-880.
    11. Luu K N., Phan A T., et al., Structure of the human telomere in K+solution:an intramolecular (3+1) G-quadruplex scaffold. J. Am. Chem. Soc.2006,128, 9963-9970.
    12. Phan A T., et al., Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+solution. Nucleic Acids Res.2006,34,5715-5719.
    13. Lim K. W., et al., Structure of the human telomere in K+solution:a stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc,2009,131, 4301-4309.
    14. Petraccone L., Duro I., Randazzo A., Virnob A., Mayol L., Giancola C, Biophysical Properties of Quadruplexes Containing Two or Three 8-Bromodeoxyguanosine Residues. Nucleosides, Nucleotides and Nucleic Acids.2007,26,669-674.
    15. Benz A., Hartig J S., Redesigned tetrads with altered hydrogen bonding patterns enable programming of quadruplex topologies. Chem. Commun.2008,4010-4012.
    16. Deng M G, Zhang D., Zhou Y Y., Zhou X., Highly Effective Colorimetric and Visual Detection of Nucleic Acids Using an Asymmetrically Split Peroxidase DNAzyme. J. Am. Chem. Soc.2008,130,13095-13102.
    17. Miyoshi D., et al., Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Research.2003,31,1156-1163.
    18. Miyoshi D., Karimata H., Wang Z M., Koumoto K., Sugimoto N., Artificial G-Wire Switch with 2,2'-Bipyridine Units Responsive to Divalent Metal Ions. J. Am. Chem. Soc.2007,729,5919-5925.
    19. Bishop J S., Guy-Caffey J K., Ojwang J O., Smith S R., Hogan M E., Cossum P A., Rando R F., Chaudhary N., Intramolecular G-quartet Motifs Confer Nuclease Resistance to a Potent Anti-HIV Oligonucleotide. J. Bid. Chem.1996,271, 5698-5703.
    20. Este J A., Cabrera C, Schols D., Cherepanov P., Gutierrez A., Witvrouw M., Pannecouque C, Debyser Z., Rando R F., Clotet B., Desmyter J., De Clercq E., Human immunodeficiency virus glycoprotein gpl20 as the primary target for the antiviral action of AR177 (Zintevir). Mol. Pharmacol.1998,55,340-345.
    21. Wang L R., Chen S., Xu T G, Taghizadeh K., Wishnok J, S., Zhou X F., You D L., Deng Z X., Dedon P C, Phosphorothioation of DNA in bacteria by dnd gene clusters. Nature Chemical Biology.2007,3,709-710.
    22. Wang L., Chen S., Vergin K L., Giovannoni S j., Chan S W., Demott M S., Taghizadeh K., Cordero O X., Cutler M., Timberlake S., Alm E J., Polz M R, Pinhassi J, Deng Z., Dedon P C, DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc NatlAcadSci USA.2011,108,2963-2968.
    23. Zhao Y., Kan Z Y., Zeng Z X., Hao Y H., Chen H., Tan Z., Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex. J. Am. Chem. Soc.2004,126,13255-13264.
    24. Xu Y., Sato H., Sannohe Y., Sugiyama H., Stable Lariat Formation Based on a G-Quadruplex Scaffold. J. Am. Chem. Soc.2008,130,16470-16471.
    25. Mergny J L., Maurizot J C, Fluorescence Resonance Energy Transfer as a Probe for G-Quartet Formation by a Telomeric Repeat. Chembiochem.2001,2,124-132.
    26. Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes. Analytica Chimica Acta.2006,568,171-180.
    27. Green J J., Ying L., Klenerman D., Balasubramanian, S. Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap. J. Am. Chem. Soc.2003,125, 3763-3767.
    28. Chang H., Tang L., Wang Y, Jiang J., Li J., Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem.2010,82, 2341-2346.
    29. Zhang M., Yin B C, Tan W H., Ye B C, A Versatile Graphene-Based Fluorescence "On/Off'Switch for Multiplex Detection of Various Targets. Biosensors and Bioelectronics.2011,26,3260-3265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700