用户名: 密码: 验证码:
离子切片成像技术研究CS_2~+和H_2S~+光解动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文应用切片的离子成像技术,研究了量子态纯净的CS_2~+和H_2S~+分子离子的光解动力学。经过分子离子的同一电子态不同振动能级共振激发,我们获取了光解反应的碎片平动能释放谱,角度分布等信息,进而探讨了中间态选模的分子离子的光解物理过程。
     CS_2~+经A~ 2∏u振动能级共振的[1+1]光子跃迁激发的光解动力学:一束483.14nm的激光(电离光),通过[3+1]共振增强多光子电离(REMPI)过程产生量子态纯净的CS_2~+( X~ 2∏g)分子离子。另一束激光(光解光)在445 -480nm范围内扫描,共振于CS_2~+的(A|~)~2∏u(v_ 1 , v_2,0),而后CS_2~+再吸收一个光子发生光解产生S~+ ( 4~ S ) + CS( X~ 1∑~+)预解离通道。
     选择共振于A~ 2∏u不同振动模的波长,对碎片S?离子做切片成像。碎片平动动能释放TER谱对应CS( X~ 1∑~+)的振转布居,获取了能量分配和振动分支比信息。在趋向角度各向同性程度上,共振于v_ 1模比v_ 2更有效。
     解离通道有一定的模选择性。经A|~ [3/ 2](0,0,0)共振得到的CS( X~1∑~+)的转动最可几分布约在J =25,对应波尔兹曼分布转动温度为1500K;经其余(A|~)( v_ 1 , v_2,0)共振得到的CS( X~1∑~+)的转动最可几分布J ~35-40,对应转动温度为3500K。除了(A|~) [3/ 2](0,0,0)的72%外, (A|~) [3/ 2]的可资用能至少77%流向了CS碎片的振转能。(A|~) [1/ 2]的CS碎片的振转能至少也占有75%。碎片内态能占较大份额意味着预解离的过程。
     CS_2~+的UV单光子激发的光解动力学:
     不经过(A|~)~ 2∏u(v_ 1 , v_2,0)共振,我们研究了用UV单光子在227-243 nm范围激发解离的CS+2~+离子的光解动力学。3/2组分和1/2组分的母体离子CS_ 2~+ ( (X|~)~ 2g,3/2,1/2)被同时激发解离。有如下三个特征的解离结果:
     (1)母体1/2组分对解离碎片贡献量的变化幅度。不同光解波长CS_ 2~+[1/2]贡献碎片量的额度是变化的,且激发能量差值很小时其变化的幅度可能很大。
     (2)双组份得到碎片不同的转动分布。来自CS_2~+[1/2]组分贡献的碎片,转动量子数最可几分布在J ~20,转动温度1000K。来自CS_2~+[3/2]组分的CS( X~1∑~+)碎片转动量子数最可几分布与之不同,J ~35-40,对应转动温度约为3500K。
     (3) CS_2~+[3/2]组分的得到CS( X~1∑~+)碎片转动布居双峰现象。242.144 nm激发得到的碎片转动最可几分布在J ~35-40和J ~25-30处双峰。
     解机理是(B|~) ~2∏u与(X|~)~ 2∏g电子-振动耦合等而后交叉于4∑~-发生解离。在242.144nm,可能是由于解离此时受到了其他相关态的微扰。CS_2~+经(B|~) ~2∏u振动能级共振的[1+1]光子跃迁激发的光解动力学:
     CS_2~+制备后,用267-283 nm范围的光解光扫描共振于(B|~) ~2∏u(v _1 ,v_ 2,0)。C S_ 2~+被激发到(C|~)~ 2∏g, (D|~)~ 2∏g电子态区域,伴随着多个S~+和CS~+光解通道的产生。
     S~+通道的TER谱具有一定的CS( X~1∑~+)振动分辨,分为A,B和C三个区域,其中A区域有一定的模选择性。最低解离限通道S~+ ( 4 S ) CS( X ~1∑~+)没有被发现。CS~+通道没有明显的分辨。CS~+通道分支比相应较大。对比S~+/CS~+分支比,弯曲振动模对S~+通道有促进作用。我们提出两个可能的光解机理,其一是(C|~)~ 2∏g,2(D|~)~ 2∏g直接与排斥态的解离,另一个是(C|~)~ 2∏g, (C|~)~ 2∏g内转换到(B|~) ~2∏u再导致解离的发生。
     H_ 2S~+经(A|~) 2 A1不同振动能级共振的光解初步结果:
     302.56 nm[2+1] REMPI过程制备母体分子离子H_ 2S~+ ,继而光解光在314-327.5nm范围激发(A|~) 2 A1 ?X? 2B1跃迁,经不同的(A|~) 2 A1 (v _1 , v_2 ,0)K共振产生+ 4 1S ( S u ) H_ 2( (X|~)~ 2∏g)通道。获取了H 2((X|~)~ 2∏g)振转态布居。经不同振动模式,其碎片转动布居有差异。在314nm附近制备ortho-/para态选择的H_ 2S~+对光解过程无明显影响。此激发能量区域,光解机理倾向于支持(A|~) 2 A1直接与4 A 2自旋-轨道耦合,然后延着~4 A_ 2解离。
The dissertation mainly presents the photodissociation dynamics of the pure CS_2~+ and H 2S~+ molecular ions investigated by the DC slicing ion imaging method. The photo-excitation dissociation was mediated by numerous vibronic levels of one specific electronic state. The translational energy releases spectra and angle distributions of the fragments were obtained, and further the dissociation mechanisms of the mode selected molecular ions were discussed.
     [1+1] photodissociation of CS_2~+ via the vibrationally mediated (A|~ ~)2∏u state: The ionic parent CS_2~+ was prepared in its (X|~) ~2∏g ground state through a [3 + 1] resonance enhanced multiphoton ionization (REMPI) process at 483.14 nm with the aid of the 4 pσ~ 3∏u Rydberg state of the neutral CS_ 2 molecule.
     The ground state of CS _2~+( (X|~) ~2∏g) cation was excited to different (A|~) ~2∏u,3/2,1/2 (υ_ 1 ,υ_2,0) vibronic levels over a wavelength range of 445– 480 nm, followed by a predissociation process leading to the first dissociation channel S~+ (4 S )+ CS(X~1∑~+) by absorbing one more photon. The translational energy release (TER) spectra of the S S pair were derived from the velocity map images. The energy partitionings and vibrational populations were obtained simultaneously.
     The C S(X ~1∑~+) fragments were found to form in a mode-selective manner. The mean value of the rotational quantum number J in the (A|~) [3/ 2](0,0,0) case is about 25, and it is derived that the rotational temperature is about 1500 K; while the other CS_2~+ ( (A|~) (υ_ 1 ,υ_2,0))cases have a maximum proportion J at 35-40 range, corresponding to the rotational temperature being about 3500K.
     In terms of the ability in reducing + to zero (i.e., to approach isotropicity to a full extent), the vibrational excitation of CS_2~+ ( (A|~) [ 3/ 2](υ1 ,υ2,0)) arising from the v_1(symmetric stretch) mode takes preference over that from the V_ 2(bend) mode. 77% and 75% of the excess energy goes to the internal excitation of CS fragments in the A~[ 3/2]( (A|~) [3/ 2](0,0,0)of 72%) and (A|~) [1/ 2]dissociation processes, respectively, implying that indirect (or metastable) rather than direct fragmentation takes place.
     One UV photo-excitation dynamics of CS_2~+ :
     With the same CS_2~+ preparation, S ~+ fragments ion images using a single UV photo-excitation were obtained that reaches the same energy region as in the [1 + 1] photo-excitation scheme via the (A|~ ~)2∏u state. Both the [3/2] and [1/2] components of the molecular cation CS_2~+ ( (X|~ )~2∏g,3/2,1/ 2)were excited at one specific resonant wavelength. The dissociation results are listed below.
     (1) Contribution variation from the CS_2~+[1/2] parent cations. The amounts of the fragments from CS_2~+[1/2] vary largely at different resonant wavelengths.
     (2) Fragments rotational distribution from the [3/2] and [1/2] components differs. The fragments from [3/2] components have a mean value of the rotational quantum number J at about 35-40 range, corresponding to the rotational temperature being about 3500K; while these from the [1/2] components have a maximum proportion J at 20, corresponding to about 1000K.
     (3) Dual peaks rotational distribution from the [3/2] components at the specific 242.144 nm wavelength. The additional peaks lie at J ~25-30.
     The dissociation mechanism was proposed as the (X|~ )~2∏g state interacts vibronically with the high vibrational levels of the (X|~ )~2∏g state leading to the S~+ (~4 S )+ CS(X~1∑~+) channel. The new dissociation path at 242.144 nm was ascribed to the perturbation by other involved state/states in the explored region. [1+1] photodissociation of CS_2~+ via the vibrationally mediated (B|~) ~2∏u state:
     CS 2( (X|~) ~2∏g) was dissociated by a [1 + 1] photo-excitation mediated via the vibrationally selected B? state over a wavelength range of 267 - 283 nm. At these wavelengths the (C|~ )~2∑_g~+ and (D|~ )~2∑_g~+ states are reached, followed by numerous S~+ and CS~+ dissociation channels. The lowest S~+ channel S~+ ( 4 S ) + CS( X~ 1∑~+)is missing.
     The S~+ channels specified as three distinct regions (Regions A, B and C) were shown with vibrationally resolved structures, in contrast to the less-resolved structures being presented in the CS~+ channels. The average TER of the fragmental ions were obtained, and the S~+ / CS~+ branching ratios with mode specificity were measured. The amount of fragments via the CS~+ + S channels in this region is a bit larger than that via the S~+ channels. The bending mode excitation leads to the significant increase of the S~+ channels.
     Two types of dissociation mechanisms are proposed. One mechanism is the direct coupling of the (C|~) and (D|~) states with the repulsive satellite states leading to the fast photo-fragmentation. The other mechanism is the internal conversion of the C? and D? states to the (B|~) state, followed by the slow fragmentation occurred via the coupling with the repulsive satellite states. H_ 2S~+ photodissociation mediated via the (A|~) 2 A1 (V _1 , V_2 ,0)K state:
     The molecular cation H_ 2S~+ was obtained by a [2+1] REMPI progress at 302.56 nm, and then was excited via different (A|~) 2 A1 (V_ 1 , V_2 ,0)K levels with the 2 2(A|~) A1 B1 transition over 314-327.5 nm, leading to the S + ( 4 S u ) + H 2( (X|~ )~2∏g) channel. The internal distribution of H 2( (X|~ )~2∏g) was obtained. Dissociation via different vibronic levels resulted in a difference in rotational distribution. The ortho-/para- selected H_ 2S~+ prepared at 314 nm has no obvious influence to the dissociation mechanism. The dissociation mechanism in the energy region tends to be the (A|~) 2 A1 state couples directly to the 4 A 2state through the spin-orbit interaction, leading to the products.
引文
1. E. H. Taylor and S. Datz, J. Chem. Phys. 23, 1711 (1955).
    2. B. Friedrich and D. R. Herschbach, Nature 353, 412 (1991).
    3. R. N. Zare and D. R. Herschbach, Proceedings of the IEEE 51, 173 (1963).
    4. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, and Y. T. Lee, J. Chem. Phys. 82, 3045 (1985).
    5. R. H. Page, Y. R. Shen, and Y. T. Lee, J. Chem. Phys. 88, 4621 (1988).
    6. J. C. Polanyi and K. B. Woodall, J. Chem. Phys. 56, 1563 (1972).
    7. J. C. Polanyi and W. H. Wong, J. Chem. Phys. 51, 1439 (1969).
    8. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
    9. G. C. Schatz and A. Kuppermann, J. Chem. Phys. 65, 4642 (1976).
    10. G. C. Schatz and A. Kuppermann, J. Chem. Phys. 65, 4668 (1976).
    11. W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).
    12. W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).
    13. R. Kosloff, J. Phys. Chem. 92, 2087 (1988).
    14. H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
    15. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
    16. M. M. WALDROP, Science 234, 673 (1986).
    17. M. N. R. Ashfold and J. E. Baggott, in Molecular Photodissociation Dynamics (Royal Society of Chemistry, London, 1987).
    18. R. Schinke, Photodissociation Dynamics. (Cambridge University Press New York, 1995).
    19. S. Rosenwaks, Vibrationally Mediated Photodissociation, 1 ed. (Royal Society of Chemistry, Cambridge, 2009).
    20. C. S. Chang, C.-Y. Luo, and K. P. Liu, J. Phys. Chem. A 109, 1022 (2005).
    1. R. Schinke, Photodissociation Dynamics. (Cambridge University Press New York, 1995).
    2. G. Herzberg, Molecular Spectra and Molecular Structure III: Spectra of Polyatomic Molecules. (Van Nostrand, New York, 1967).
    3. R. C. Dunbar, in Molecular ions: Spectroscopy, Structure and Chemistry, edited by T. A. Miller and V. E. Bondybey (Elsevier, New York, 1983).
    4. J. J. Lin, J. G. Zhou, W. C. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
    5. M. N. R. Ashfold and J. E. Baggott, in Molecular Photodissociation Dynamics (Royal Society of Chemistry, London, 1987).
    6. R. N. Zare, Mol. Photochem. 4, 1 (1972).
    7. C. H. Greene and R. N. Zare, Annu. Rev. Phys. Chem. 33, 119 (1982).
    8. A. G. Suits and O. S. Vasyutinskii, Chem. Rev. 108, 3706 (2008).
    9. A. S. Bracker, E. R. Wouters, A. G. Suits, and O. S. Vasyutinskii, J. Chem. Phys. 110, 6749 (1999).
    10. G. T. Fujimoto, M. E. Umstead, and M. C. Lin, Chem. Phys. 65, 197 (1982).
    11. N. Shafer and R. Bersohn, J. Chem. Phys. 94, 4817 (1991).
    12. H. L. Kim, M. A. Wickramaaratchi, X. N. Zheng, and G. E. Hall, J. Chem. Phys. 101, 2033 (1994).
    13. M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, O. P. J. Vieuxmaire, R. L. Toomes, T. N. Kitsopoulos, I. A. Garcia, D. A. Chestakov, S.-M. Wu, and D. H. Parker, Phys. Chem. Chem. Phys. 8, 26 (2006).
    1. A. G. Suits and R. E. Continetti, Imaging in Chemical Dynamics. (American Chemical Society, Washington, DC, 2000).
    2. B. J. Whitaker, Imaging in Molecular Dynamics: Technology and Applications (A User's Guide). (Cambridge University Press, Cambridge, 2003).
    3. A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    4. D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445 (1987).
    5. B.-Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum. 69, 1665 (1998).
    6. B. J. Whitaker, Image Reconstruction: The Abel Transform. (Oxford University Press, New York, 2000).
    7. M. J. J. Vrakking, Rev. Sci. Instrum. 72, 4084 (2001).
    8. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
    9. G. A. Garcia, L. Nahon, and I. Powis, Rev. Sci. Instrum. 75, 4989 (2004).
    10. G. M. Roberts, J. L. Nixon, J. Lecointre, E. Wrede, and J. R. R. Verlet, Rev. Sci. Instrum. 80, 053104 (2009).
    11. C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos, and T. N. Kitsopoulos, Rev. Sci. Instrum. 72, 3848 (2001).
    12. J. J. Lin, J. G. Zhou, W. C. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
    13. D. Townsend, M. P. Minitti, and A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    14. L. Dinu, A. T. J. B. Eppink, F. Rosca-Pruna, H. L. Offerhaus, W. J. van der Zande, and M. J. J. Vrakking, Rev. Sci. Instrum. 73, 4206 (2002).
    15. K. Tonokura and T. Suzuki, Chem. Phys. Lett. 224, 1 (1994).
    16. T. Kinugawa and T. Arikawa, J. Chem. Phys. 96, 4801 (1992).
    17. K. T. Lorenz, D. W. Chandler, J. W. Barr, W. Chen, G. L. Barnes, and J. I. Cline, Science 293, 2063 (2001).
    18. D. A. Chestakov, S.-M. Wu, G. Wu, D. H. Parker, A. T. J. B. Eppink, and T. N. Kitsopoulos, J. Phys. Chem. A 108, 8100 (2004).
    19. T. Nishide and T. Suzuki, J. Phys. Chem. A 108, 7863 (2004).
    20. J. Vallerga, J. McPhate, A. Tremsin, O. Siegmund, B. Mikulec, and A. Clark, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 546, 263 (2005).
    21. W. Li, S. A. Lahankar, C. S. Huang, P. S. Shternin, O. S. Vasyutinskii, and A. G. Suits, Phys. Chem. Chem. Phys. 8, 2950 (2006).
    22. A. D. Webb, N. H. Nahler, R. N. Dixon, and M. N. R. Ashfold, J. Chem. Phys. 125, 204312 (2006).
    23. O. P. J. Vieuxmaire, N. H. Nahler, J. R. Jones, R. N. Dixon, and M. N. R. Ashfold, Mol. Phys. 103, 2437 (2005).
    24. O. P. J. Vieuxmaire, N. H. Nahler, J. R. Jones, R. N. Dixon, and M. N. R. Ashfold, Mol. Phys. 103, 1677 (2005).
    25. N. H. Nahler, O. P. J. Vieuxmaire, J. R. Jones, M. N. R. Ashfold, A. T. J. B. Eppink, A. M. Coriou, and D. H. Parker, J. Phys. Chem. A 108, 8077 (2004).
    26. M. Beckert, S. J. Greaves, and M. N. R. Ashfold, Phys. Chem. Chem. Phys. 5, 308 (2003).
    27. O. P. J. Vieuxmaire, M. G. D. Nix, J. A. J. Fitzpatrick, M. Beckert, R. N. Dixon, and M. N. R. Ashfold, Phys. Chem. Chem. Phys. 6, 543 (2004).
    28. A. D. Webb, R. N. Dixon, and M. N. R. Ashfold, J. Chem. Phys. 127, 224307 (2007).
    29. A. D. Webb, N. Kawanaka, R. N. Dixon, and M. N. R. Ashfold, J. Chem. Phys. 127, 224308 (2007).
    30. C. S. Chang, C.-Y. Luo, and K. P. Liu, J. Phys. Chem. A 109, 1022 (2005).
    31. N. Hansen, A. M. Wodtke, A. V. Komissarov, K. Morokuma, and M. C. Heaven, J. Chem. Phys. 118, 10485 (2003).
    32. J. H. Huang, D. D. Xu, W. H. Fink, and W. M. Jackson, J. Chem. Phys. 115, 6012 (2001).
    33. J. H. Huang, D. D. Xu, J. S. Francisco, and W. M. Jackson, J. Chem. Phys. 118, 3083 (2003).
    34. J. R. Greene, J. S. Francisco, J. H. Huang, D. D. Xu, and W. M. Jackson, J. Chem. Phys. 121, 5868 (2004).
    35. F. Aguirre and S. T. Pratt, J. Chem. Phys. 118, 6318 (2003).
    36. W. M. Jackson and D. D. Xu, J. Chem. Phys. 113, 3651 (2000).
    37. D. D. Xu, R. J. Price, J. H. Huang, and W. M. Jackson, Z. Phys.Chem. 215, 253 (2001).
    38. L. R. McCunn, D. I. G. Bennett, L. J. Butler, H. Fan, F. Aguirre, and S. T. Pratt, J. Phys. Chem. A 110, 843 (2005).
    39. J. A. Smith, N. G. Gotts, J. F. Winkel, R. Hallett, C. A. Woodward, A. J. Stace, and B. J. Whitaker, J. Chem. Phys. 97, 397 (1992).
    40. J. A. Smith, J. Winkel, N. G. Gotts, A. J. Stace, and B. J. Whitaker, J. Phys. Chem. 96, 9696 (1992).
    41. A. G. Sage, T. A. A. Oliver, R. N. Dixon, and M. N. R. Ashfold, Mol. Phys. 108, 945 (2010).
    42. A. D. Webb, N. H. Nahler, and M. N. R. Ashfold, J. Phys. Chem. A 113, 3773 (2009).
    43. J. C. Brenot and M. D. Ferguson, In State-Slected and State-to-State Ion-Molecule Reaction Dynamics, Part I: Experiment. (Wiley, New York, 1992).
    44. M. A. Buntine, D. P. Baldwin, R. N. Zare, and D. W. Chandler, J. Chem. Phys. 94, 4672 (1991).
    45. L. Schnieder, K. Seekamp-Rahn, F. Liedeker, H. Steuwe, and K. H. Welge, Faraday Discuss. Chem. Soc. 91, 259 (1991).
    1. D. A. Dahl, J. E. Delmore, and A. D. Appelhans, Rev. Sci. Instrum. 61, 607 (1990).
    2. K. Tonokura and T. Suzuki, Chem. Phys. Lett. 224, 1 (1994).
    3. D. Townsend, M. P. Minitti, and A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    4. D. A. Chestakov, S.-M. Wu, G. Wu, D. H. Parker, A. T. J. B. Eppink, and T. N. Kitsopoulos, J. Phys. Chem. A 108, 8100 (2004).
    5. B.-Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum. 69, 1665 (1998).
    6. D. H. Parker and A. T. J. B. Eppink, J. Chem. Phys. 107, 2357 (1997).
    7. B. D. Leskiw, M. H. Kim, G. E. Hall, and A. G. Suits, Rev. Sci. Instrum. 76, 104101 (2005).
    1. R. D. Hudson, ReV. Geophys. Space Phys. 9, 305 (1970).
    2. D. Mathur and F. M. Harris, Mass Spectrom. Rev. 8, 269 (1989).
    3. H. D. Smyth and J. P. Blewett, Phys. Rev. 46, 276 (1934).
    4. V. H. Dibeler and J. A. Walker, J. Opt. Soc. Am. 57, 1007 (1967).
    5. S. Bell, T. L. Ng, and C. Suggitt, J. Mol. Spectrosc. 44, 267 (1972).
    6. B. Brehm, J. H. D. Eland, R. Frey, and A. Küstler, Int. J. Mass Spectrom. Ion Phys. 12, 213 (1973).
    7. J. Momigny, G. Mathieu, H. Wankenne, and M. A. A. Ferreira, Chem. Phys. Lett. 21, 606 (1973).
    8. W. J. Balfour, Can. J. Phys. 54, 1969 (1976).
    9. M. J. Hubin-Franskin, R. Locht, and J. Katihabwa, Chem. Phys. Lett. 37, 488 (1976).
    10. M. J. Hubin-Franskin, D. Huard, and P. Marmet, Int. J. Mass Spectrom. Ion Phys. 27, 263 (1978).
    11. R. V. Manvelyan, S. E. Kupriyanov, and A. A. Perov, Theor. Exp. Chem. 14, 207 (1978).
    12. P. Coppens, J. C. Reynaert, and J. Drowart, J. Chem. Soc. Faraday Trans. 2 75, 292 (1979).
    13. J. H. D. Eland and J. Berkowitz, J. Chem. Phys. 70, 5151 (1979).
    14. M. Miletic, D. Eres, M. Veljkovic, and K. F. Zmbov, Int. J. Mass Spectrom. Ion Phys. 35, 231 (1980).
    15. F. Carnovale, A. P. Hitchcock, J. P. D. Cook, and C. E. Brion, Chem. Phys. 66, 249 (1982).
    16. P. O. Danis, T. Wyttenbach, and J. P. Maier, J. Chem. Phys. 88, 3451 (1988).
    17. D. D. Evard, T. Wyttenbach, and J. P. Maier, J. Phys. Chem. 93, 3522 (1989).
    18. I. Tokue, H. Shimada, A. Masuda, Y. Ito, and H. Kume, J. Chem. Phys. 93, 4812 (1990).
    19. D. A. Prinslow and P. B. Armentrout, J. Chem. Phys. 94, 3563 (1991).
    20. A. L. Ingo Fischer, Andreas Strobel, Gereon Niedner-Schatteburg, Klaus Müller-Dethlefs and Vladimir E. Bondybey, Chem. Phys. Lett. 202, 542 (1993).
    21. K. Sohlberg and Y. Chen, J. Chem. Phys. 101, 3831 (1994).
    22. A. K. Shukla, R. E. Tosh, Y. B. Chen, and J. H. Futrell, Int. J. Mass Spectrom. Ion Proc. 146-147, 323 (1995).
    23. P. Baltzer, B. Wannberg, M. Lundqvist, L. Karlsson, D. M. P. Holland, M. A. MacDonald, M. A. Hayes, P. Tomasello, and W. v. Niessen, Chem. Phys. 202, 185 (1996).
    24. W. G. Hwang, H. L. Kim, and M. S. Kim, J. Chem. Phys. 113, 4153 (2000).
    25. D. Aitchison and J. H. D. Eland, Chem. Phys. 263, 449 (2001).
    26. J. B. Liu, M. Hochlaf, G. Chambaud, P. Rosmus, and C. Y. Ng, J. Phys. Chem. A 105, 2183 (2001).
    27. L. M. Zhang, J. Chen, H. F. Xu, J. H. Dai, S. L. Liu, and X. X. Ma, J. Chem. Phys. 114, 10768 (2001).
    28. J. B. Liu, M. Hochlaf, and C. Y. Ng, J. Chem. Phys. 118, 4487 (2003).
    29. M. Hochlaf, J. Phys. B 37, 595 (2004).
    30. L. M. Zhang, F. Wang, Z. Wang, S. Q. Yu, S. L. Liu, and X. X. Ma, J. Phys. Chem. A 108, 1342 (2004).
    31. X. J. Zhuang, L. M. Zhang, J. T. Wang, Y. C. Ma, M. P. Yang, S. Q. Yu, and X. X. Ma, Chem. Phys. Lett. 432, 74 (2006).
    32. X. J. Zhuang, L. M. Zhang, J. T. Wang, Y. C. Ma, S. Q. Yu, S. L. Liu, and X. X. Ma, J. Phys. Chem. A 110, 6256 (2006).
    33. C. D. Molek, R. Plasil, J. L. McLain, N. G. Adams, and L. M. Babcock, J. Phys. Chem. A 112, 934 (2008).
    34. H. B. Chang and M. B. Huang, Chem. Phys. Lett. 478, 139 (2009).
    35. J. H. Callomon, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 244, 220 (1958).
    36. S.Leach, Soc. Chim. Phys, 74 (1969).
    37. T. Ibuki and N. Sugita, J. Chem. Phys. 80, 4625 (1984).
    38. J. C. Huang, Y. S. Cheung, M. Evans, C. X. Liao, C. Y. Ng, C. W. Hsu, P. Heimann, H. Lefebvre-Brion, and C. Cossart-Magos, J. Chem. Phys. 106, 864 (1997).
    39. R. Marx, Int. J. Mass Spectrom. Ion Proc. 118-119, 661 (1992).
    40. J. Baker, M. Konstantaki, and S. Couris, J. Chem. Phys. 103, 2436 (1995).
    41. R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B.Milan, and C. A. de Lange, J. Chem. Phys. 104, 6117 (1996).
    42. R. C. Dunbar, in Molecular ions: Spectroscopy, Structure and Chemistry (1983), Vol. Chap. 9.
    43. R. Schinke, Photodissociation Dynamics. (Cambridge University Press New York, 1995).
    44. M. Richard-Viard, O. Atabek, O. Dutuit, and P. M. Guyon, J. Chem. Phys. 93, 8881 (1990).
    1. J. Baker, M. Konstantaki, and S. Couris, J. Chem. Phys. 103, 2436 (1995).
    2. R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, J. Chem. Phys. 104, 6117 (1996).
    3. J. B. Liu, M. Hochlaf, and C. Y. Ng, J. Chem. Phys. 118, 4487 (2003).
    4. L. M. Zhang, F. Wang, Z. Wang, S. Q. Yu, S. L. Liu, and X. X. Ma, J. Phys. Chem. A 108, 1342 (2004).
    5. D. Mathur and F. M. Harris, Mass Spectrom. Rev. 8, 269 (1989).
    6. W. J. Balfour, Can. J. Phys. 54, 1969 (1976).
    7. X. J. Zhuang, L. M. Zhang, J. T. Wang, Y. C. Ma, S. Q. Yu, S. L. Liu, and X. X. Ma, J. Phys. Chem. A 110, 6256 (2006).
    8. R. N. Zare, Mol. Photochem. 4, 1 (1972).
    9. S. Bell, T. L. Ng, and C. Suggitt, J. Mol. Spectrosc. 44, 267 (1972).
    10. D. Cossart and T. Bergeman, J. Chem. Phys. 65, 5462 (1976).
    11. T. A. Carlson, G. E. McGUIRE, A. E. Jonas, K. L. Cheng, C. P. Anderson, G. C. Lu, and B. P. Pullen, edited by D. A. Shirley (North-Holland PubI. Co., Amsterdam, 1972), p. 207.
    12. Y. Y. Liu, C. X. Duan, J. J. Liu, L. Wu, C. X. Xu, Y. Q. Chen, P. A. Hamilton, and P. B. Davies, J. Chem. Phys. 116, 9768 (2002).
    13. B. Brehm, J. H. D. Eland, R. Frey, and A. Küstler, Int. J. Mass Spectrom. Ion Phys. 12, 213 (1973).
    14. W. G. Hwang, H. L. Kim, and M. S. Kim, J. Chem. Phys. 113, 4153 (2000).
    15. M. Hochlaf, J. Phys. B 37, 595 (2004).
    16. H. B. Chang and M. B. Huang, Chem. Phys. Lett. 478, 139 (2009).
    17. J. Momigny, G. Mathieu, H. Wankenne, and M. A. A. Ferreira, Chem. Phys. Lett. 21, 606 (1973).
    18. A. K. Shukla, R. E. Tosh, Y. B. Chen, and J. H. Futrell, Int. J. Mass Spectrom. Ion Proc. 146-147, 323 (1995).
    19. L. M. Zhang, J. Chen, H. F. Xu, J. H. Dai, S. L. Liu, and X. X. Ma, J. Chem. Phys. 114, 10768 (2001).
    20. T. A. Carlson and G. E. McGUIRE, J. Electron. Spectrosc. 1, 209 (1972).
    1. V. H. Dibeler and S. K. Liston, J. Chem. Phys. 49, 482 (1968).
    2. R. N. Dixon, G. Duxbury, M. Horani, and J. Rostas, Mol. Phys. 22, 977 (1971).
    3. G. R. M?hlmann and F. J. de Heer, Chem. Phys. Lett. 36, 353 (1975).
    4. J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 31, 161 (1979).
    5.石勇,中国科学技术大学博士学位论文, 2007.
    6. A. D. Webb, R. N. Dixon, and M. N. R. Ashfold, J. Chem. Phys. 127, 224307 (2007).
    7. H. Sakai, S. Yamabe, T. Yamabe, K. Fukui, and H. Kato, Chem. Phys. Lett. 25, 541 (1974).
    8. G. Hirsch and P. J. Bruna, Int. J. Mass Spectrom. Ion Phys. 36, 37 (1980).
    9. P. J. Bruna, G. Hirsch, M. Peri?, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. 40, 521 (1980).
    10. D. M. Hirst, J. Chem. Phys. 118, 9175 (2003).
    11. I. Tokue, K. Yamasaki, and S. Nanbu, J. Chem. Phys. 119, 5874 (2003).
    12. W.-Z. Li and M.-B. Huang, Chem. Phys. 315, 133 (2005).
    13. S. Han, T. Y. Kang, and S. K. Kim, J. Chem. Phys. 132, 124304 (2010).
    14. M. Hochlaf, K. M. Weitzel, and C. Y. Ng, J. Chem. Phys. 120, 6944 (2004).
    15. G. Duxbury, M. Horani, and J. Rostas, Proc. R. Soc. London. A 331, 109 (1972).
    16. J. Steadman, S. K. Cole, and T. Baer, J. Chem. Phys. 89, 5498 (1988).
    17. R. Schinke, Photodissociation Dynamics. (Cambridge University Press New York, 1995).
    18. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: vol. IV - Constants of Diatomic Molecules. (New York, 1979).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700