用户名: 密码: 验证码:
FBG的制作及其压力传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤Bragg光栅(FBG)是沿光纤轴向在光纤内形成周期性折射率调制分布的一种新型光纤无源器件,由于其在光纤通信和传感领域有广泛的应用前景,因此受到高度重视。其中,FBG因具有高灵敏度、体积小、抗电磁干扰、波长编码、易于阵列等优点,已成为目前最具有发展前途的光纤传感器件之一。利用FBG传感器实现恶劣条件下的高温高压参数的测量是目前光纤传感领域的研究热点。
     本文在阐述FBG的模式理论和传感原理的基础上,根据实验室现有条件,对普通单模石英光纤进行了掺氢处理,利用相位掩模法制作了FBG。通过实验研究了激光脉冲能量、脉冲频率、曝光时间和退火对FBG写入的影响,得到了利用相位掩模和紫外写入技术制备FBG的最佳工艺条件,并对所制作的FBG进行了温度和应变特性分析。
     利用弹性应变筒原理,设计了用于高温高压测量的、投入式的、双层金属筒式结构的FBG压力传感头。并使用有限元分析软件ANSYS,对使用四种不同材料(高弹性不锈钢1Cr_(18)Ni_9、低碳钢Q235、铜、铝)、不同结构尺寸(壁厚分别为1.0mm和1.5mm)制作的薄壁筒在均匀分布压力下的受力和形变进行了仿真分析,验证了结构设计的合理性。通过计算得出,采用不锈钢1Cr_(18)Ni_9材料制备的应变筒所能承受的最大压力理论上达到63Mpa。利用参考光栅法有效解决了交叉敏感问题。实验测得传感器的压力测量范围为0~42Mpa,温度20℃~230℃,压力灵敏度、线性度和重复性良好,达到了项目的设计要求。
     为了解决FBG与传感结构的有效结合,实现高温下压力参数的稳定测量,本文采用了金属化封装的光栅进行测试研究,得到了理想的测量结果。
Fiber Bragg grating (FBG) is a new type passive optical component with the refractive index modulated along the fiber length. Recently FBG has become a very important component for optical sensing devices considering its many merits such as high sensitivity, light weight, small size, easily array and wavelength encoded, and it has become one of the most promising optical device. However, because of the low pressure sensitivity of bare FBG and its sensitive simultaneity of both temperature and strain, bare FBG cannot be directly used in sensing area, and the application in harsh environments (high temperature and high pressure) with high resolution and sensitivity remains a big challenge.
     FBG was fabricated on hydrogen loaded single mode optical fiber. The optimal fabrication parameters were concluded by considering the affect of the laser power, frequency and exposure time.
     Based on full analysis of bare FBG characteristics, a thin-wall cylinder pressure sensor has been designed and fabricated, which can be used in the measurement of high temperature and high pressure environment. By using ANSYS software, the strain characteristics of the cylinder (made of four different kinds of material and in different sizes) were calculated. The most theoretical result of pressure for stainless steel material 1Cr_(18)Ni_9 is 63MPa. The measurement ranges of actual pressure and temperature are 0~42MPa and 20℃~230℃, respectively. Meanwhile, because of the reference FBG, cross-sensitivity of pressure and temperature is solved effectively.
     In order to achieve the most effective integration between FBG and sensor devices, and the steady result in high-temperature environment measurement, metal-coated FBG (MFBG) is has been used in pressure sensor, which brought a better result.
引文
[1]李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用,科学出版社.
    [2]Mandal J,Pal S,Sun T et al.Bragg Grating-based fiber-optic laser probe for temperature sensing.IEEE Photonics Technology Letters,2004,16(1):218-220.
    [3]Robert R J M,William N M,James S B.Temperature dependence of the stress response of fibre Bragg gratings source.Measurement Science and Technology,2004,15(8):1601-1606.
    [4]Gangopadhyay T Z.Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fibre-optic vibration sensing,Sensors and Actuators A,2004,113(1):20-38.
    [5]Cusano A,Cutolo A,Nasser J et al.Dynamic strain measurements by fibre Bragg grating sensor.Sensors and Actuators A,2004,110(1):276-281.
    [6]Tjin S C,Hao J Z,Lam Y Z et al.A pressure sensor using fiber Bragg grating.Fiber and Integrated Optics,2001,20(1):59-69.
    [7]Lee Y W,Yoon I,Lee B.A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator.Sensors and Actuators A,2004,112(2):308-312.
    [8]Hill K O,Fujii Y,Johnson D C et al.Photosensitivity in optical waveguide:Application to reflection fiber fabrication.Appl.Phys.Lett.,1978,32(10):647-649.
    [9]Meltz G,Morey W W,Glenn W H.Formation of Bragg gratings in optical fibers by transverse holographic method.Opt Lett,1989,14(15):823-825.
    [10]Hill K O,Malo B,Bilodeau F et al.Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a pbase mask.Appl.Phys.Lett.,1993,(62):1035-1037.
    [11]P.J.Lemaire,R.M.Atkins,V.Mizrahi et al.High pressure H2 loadingas a technique for achieving utrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers.Electron.Lett,1993,29:1191-1195.
    [12]Xu M G,Reekie L,Chow Y T et al.Optical in-fiber grating high pressure sensor.Electron.Lett.1993,29(4):398-399.
    [13]Xu M G,Geiger H,Dakin J P.Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing.Electron.Lett.1996,32(2):128-129.
    [14]李婷,乔学光,王宏亮,贾振安等.光纤光栅传感器的聚合物封装增敏技术.光器件,2005,vol.12,39-41
    [15]赵红霞,鲍吉龙,陈莹.光纤光栅聚合物封装及传感特性研究.光电子技术与信息,2005Oct.18(5),39-42
    [16]文庆珍,苑秉成,黄俊斌.封装聚合物对光纤光栅压力传感增敏的影响.武汉大学学报(理学版),vol.51 No.5 Oct.2005,571-573
    [17]傅海威,乔学光,贾振安等.应力增敏的光纤布拉格光栅压强传感器.中国激光,vol.31,No.4,April,2004,474-476.
    [18]关柏鸥,刘志国,开桂云,董孝义.基于恳臂梁结构的光纤光栅位移传感研究.光子学报,vol.28,No.11,Nov,1999,983-985.
    [19]刘云启,刘志国,董孝义等.光纤光栅弹簧管压力传感器的压力和温度特性.光子学报,vol.27,No.12,Dec,1998,1111-1115.
    [20]徐天华,刘铁根等.光纤布拉格光栅压力增敏机构.现代仪器,2005(4),4-7.
    [21]于秀娟,余有龙,张敏等.钛合金片封装光纤光栅传感器的应变和温度传感特性研究.光电子激光,vol.17,2006(5),564-567.
    [22]禹大宽,乔学光,贾振安,孙安等.一种新颖的封装的耐高温光纤bragg光栅温度传感器.光子学报,vol.35,2006(2),232-234.
    [23]关柏鸥,董孝义等.单光纤光栅温度应变双参数传感研究.中国激光,vol.28,2001(4),372-374.
    [24]周智,赵雪峰,武湛君,万里冰,欧进萍.光纤光栅毛细钢管封装工艺及其传感特性研究.中国激光,vol.A29,2002(12),1090-1092.
    [25]胡家艳等.光纤光栅传感器应力补偿及温度增敏封装.传感器世界,2005(12),29-31.
    [26]孙安,乔学光,贾振交,郭团等.耐高压光纤bragg光栅压力传感技术研究.光子学报,vol.33,2004(7),823-825.
    [27]何伟,王昌,姜德生等.新型光纤gragg光栅微型压力传感器.传感器技术,vol.23,2004(11),813-86.
    [28]Peng B J,Zhao Y,Yang J et al.Pressure sensor based on a free elastic cylinder and birefringence effect on an FBG with temperature-compenastion.Measurement,2005,38:176-180.
    [29]汪俊峰,张以谟,刘铁根等.掺锗光纤德光敏性机理及增敏方法的研究现状与发展.光学技术,2002,29(2),131-135.
    [30]D.P.Hand,P.S.J.Russel,Photoinduced Refractive Index Changes in Germanosilicate Fibers.Optics Letters,1990,15:102-104.
    [31]于秀娟,余有龙.光纤光栅温度和应变交叉敏感问题解决方案.传感器技术,2004,(增刊)59-62.
    [32]郭子学.光纤Bragg光栅的制作及温度补偿方法的研究:(硕士学位论文).大连理工大学,2005.
    [33]Bnbel G M,Krause J T,Bickta B J et al.Mechanical reliability of metallized optical fiber for hermetic terminations,Journal of Lightwave Technology.1989,7(10):1488-1493.
    [34]迟兰洲,张声峰,何为,石英光纤表面镀镍钴合金工艺研究.电镀与涂饰,1998,17(4):7-15.
    [35]杨春.一种光纤表面化学镀膜方法的研究.仪器仪表学报,1999,20(4):408-410.
    [36]李小甫.石英玻璃光纤表面化学镀镍.光学与光电技术,2003,1(2):33-35.
    [37]Grattan K T V,Sun D T.Fober optic sensor technology.Sensors and Acutuators A,2000,82:40-61.
    [38]Kersey A D,Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry.IEICE Trans.Electron.,2000,E83-c(3):400~404.
    [39]张向东.光纤光栅传感技术及在油气井中的应用研究:(博士学位论文).中国科学院西安光学精密机械研究所.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700