用户名: 密码: 验证码:
光纤光栅传感技术在桥梁健康监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤布拉格光栅(FBG)以其优良的传感性能和特点,在桥梁健康监测领域得到了越来越广泛的应用。作为一种新的传感技术,尽管很早就展开了研究,但在实际工程应用水平上,与传统的电磁类传感技术相比,还存在一定的差距。本文针对光纤光栅传感技术的不完善之处,在新型低频加速度传感器研制和传感系统集成的设计和实现方面做了一些研究工作。主要内容包括:
     (1)探讨了光纤光栅传感器在实际使用中应变测试时温度补偿、光纤光栅传感器寿命预测、传感系统复用方式等几个问题。
     (2)对光纤光栅传感技术进行了不同层面的性能实验。对光纤光栅应变传感器进行了抗电磁干扰、抗零飘、可重复性等基本性能实验,表明光纤光栅传感器有较好的抗电磁干扰、抗零飘、重复性等性能,与传统的电阻应变片相比,性能更稳定、更可靠、更精确;在混凝土模型拟静力实验中,使用了不同类型的光纤光栅传感器,验证了光纤光栅传感器的可靠性和可行性;实桥实验表明光纤光栅传感技术可以用于结构的短、长期健康监测。
     (3)研究开发了一种可放大振动信号、工作频带宽的FBG低频加速度传感器。改善了以往用悬臂梁作为弹性元件,栅区直接粘贴在悬臂梁表面带来的啁啾或多峰现象,并且通过增加阻尼,拓宽了传感器的工作频带,并对提出的加速度传感器进行了优化设计。实验结果表明,所设计的光纤光栅振动传感器线性度好,抗横向干扰能力强,灵敏度达到90pm/ms~(-2),上限工作频率可取到传感器无阻尼固有频率的80%左右,根据土木工程实际应用,还可以进一步调整传感器的设计参数,从而改善其性能;与传统传感器进行了对比实验证明,设计的新型加速度传感器性能良好。
     (4)对增敏光纤光栅应变传感器进行了静、动态性能试验,验证了其性能。
     (5)设计并实现了以光纤光栅温度传感器、光纤光栅增敏应变传感器和自行研制的加速度传感器组成的桥梁健康监测集成系统;通过对实验模型完好、损伤状态下的测试实验,验证了建构的光纤光栅监测系统集成的有效性,实现了多参数测试,为独立应用光纤光栅传感技术建立桥梁健康监测实测系统奠定了基础。
The research on the application of fiber Bragg grating (FBG) sensors for bridgehealth monitoring is a recent research focus, owing to their excellent sensing capacity.Although FBG is a new sensing technology, the relative research was developed longbefore. Compared with the traditional electromagnetism technology, the FBG sensingtechnology has some disadvantages in the applications. This dissertation attempts tostudy the fresh problems brought from the new sensing technology, carry out theresearch on a novel FBG low-frequency-measurement accelerometer and design andestablish Bridge Health Monitoring (BHM) system based on FBG technology. As asummary, the research work in this dissertation contains the following:
     Firstly, some practical problems related to the temperature compensation whenusing FBG to monitor the strain, the lifetime prediction of FBG, multiplexing modesand design of BHM were analyzed.
     Secondly, different levels of tests were carried out. A series of tests wereconducted to compare the performance of the FBG strain sensors with the resistancestrain chips in terms of electromagnetic immunity, zero drift and repeatability. Theresults verified the attractive performances of the FBG strain sensors with respect tostabilization, reliability and veracity. After that, several kinds of FBG sensors wereused for the measurement of a concrete column. The results showed that the FBGsensors had its favorable workability and feasibility. Finally, a FBG sensing systemwas installed on the real Bridges. The success of these applicable researches on thelarge scale projects verified that the FBG sensing technologies have great potentialfor bridge health monitoring.
     Thirdly, a special low-frequency-measurement structure is developed to amplifythe vibration response and broaden the working frequency range. A L-shapedstructure is adopted to ward off the chirped phenomenon. Moreover, some dampingliquid is infused into the sensor to increase the working frequency range, and anoptimal design is obtained. A series of shaking table tests were then conducted toevaluate the sensitivity, linearity, transverse anti-jamming ability and amplitude-frequency characteristic of the prototype FBG accelerometer with differentdamping. The result shows that the design concept is feasible, and the sensitivity is upto 90pm/ms~(-2) and the maximum working frequency is about 80% of the undampednatural frequency. Compared with the traditional accelerometer, the prototype FBGaccelerometer shows excellent workability.
     Fourthly, the static and dynamic performance tests of the strain FBG enhancedsensors were conducted. The results verified that the strain FBG enhanced sensorshave excellent performance.
     Finally, a BHM system was designed. The FBG monitoring system composed ofthe FBG thermometers, the strain FBG enhanced sensors and the above mentionedaccelerometers. The experiments were conducted using a structure model under theintact and damage states. The results showed that the designed monitoring system hadreasonable feasibility.
引文
1. Robin Shepherd, and J. David Frost, Failures in Civil Engineering: Structural, Foundation and Geoenvironmental Case Studies, ASCE, New York 1995.
    2.王春生,陈惟珍,陈艾荣.桥梁损伤安全评定与维护管理策略.交通运输工程学报.2002.4 PP21-28
    3.欧进萍.重大工程结构损伤积累、健康监测与安全评定.建筑、环境与土木工程学科发展战略研讨会(论文摘要汇编).国家自然科学基金委员会,2004.12.PPl56-164
    4. G. W. Housner, L. A. Bergman, etc. "Structural Control: Past, Present, and Future". Journal of Engineering Mechanics, 1997.123(9) pp. 897-971
    5. Wang Cheng Yuan, Chih-Chen Chang, Paul. TY. Chang. Application and Development of Structural Health Monitoring and Condition Assessment for Bridge,第五届国际结构工程青年专家研讨会,中国,沈阳.1998.8
    6.滕军,刘红军.智能传感器及智能健康监测系统的研究与实践.建筑、环境与土木工程学科发展战略研讨会(论文摘要汇编).国家自然科学基金委员会,2004.12.PP211-215
    7.姜得生,Richard O.Claus(美).智能材料器件结构与应用武汉工业大学出版社2000.3
    8. Joan R. Casas and Paulo J. S. Cruz, M.ASCE "Fiber optic sensors for bridge monitoring" journal of bridge engineering, ASCE, 362-373 2003
    9.张颖.布拉格光纤光栅传感技术研究.南开大学博士论文,2001:47-61
    10.郭凤珍,于长泰.光纤传感技术与应用.杭州:浙江大学出版社,1992.
    11.王惠文,江先进.光纤传感技术与应用.北京:国防工业出版社,2001.
    12.巩宪锋.光纤光栅传感器及其应用的关键技术研究.博士学位论文.北京科技大学20040430
    13.张仁和,倪明.光纤水听器的原理与应用.物理.2004.07:503-507.
    14.谭健荣,刘永智,黄琳.光纤陀螺的发展现状.激光技术2006.30(5):544-547
    15.姚骏,付敬奇,张承燕,董新平.光纤流量传感器的进展.传感器技术.2002.21(3):1-5
    16. Byoungbo Lee. Review of the present status of optical fiber sensors, Optical Fiber Technology, 2003, 9: 57-79
    17. Hill K O, Fujii Y, Johnson D C and Kawasaki B S. 1978 Photo-sensitivity in optical fiber waveguides: Application to reflection filter fabrication Appl. Phys. Lett. 32 647
    18. Hill K O, Malo B, Bilodeau E, Johnson D C, Albert J. "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask", Appl. Phys. Lett, 1993, Vol. 62(10): 1035-1037.
    19. G. Meltz, W. W. Morey, andW. H. Glenm, Opt. Lett. 14, 823(1989)
    20. Byron K C, sugden K, Bricheno T, et al. Fabrication of chirped bragg gratings inphotosensitive fibre. Electronics Leters, 1993, 29(18): 1658-1660
    21. Putnam M A, Williams G M, Friebele E J. Fabrication of tapered, strain-gradient chirped fibre Bragg gratings. Electronics Leters, 1995, 31 (4):309-310.
    22. Sugden K, Bennion I, Molony A, et al. Chirped gratings produced in photosensitive optical fibres by fibre deformation during exposure. Electronics Letters, 1994, 30(5):440-442.
    23. Ohn M M,Huang S H, Measures R M, et al. Arbitrary strain profile measurement within fibre gratings using interferometric Fourier transform technique. Electronics Letters, 1997,33(14): 1242-1243
    24. Volanthen M,Geiger H,Cole M J,et al. Measurement of arbitrary strain profiles within fibre gratings. Electronies Letters, 1996, 32 (11): 1028-1029.
    25. Volanthen M, Geiger H, Dakin J P.Distributed grating sensors using low-coherence reflectometry. Journal of Lightwave Technology, 1997, 15 (11):2076-2082.
    26. Ashish M. Vengsarkar, Paul J. Lemaire, Justin B. Judkins et al. Long-period fiber gratings as band-rejection filters. J. of Lightwave Technology, 1996, 14(1):58-65.
    27. Ramesh Sundaram, G. M. Kamath, Nitesh Gupta and M. Subba Rao, Structural health monitoring of co-cured composite structures using FBG sensors, Proc. Of SPIE Vol.5764, PP559-570
    28. Geir Sagvolden, Karianne Pran, Lasse Vines, Hans Erling Torkildsen and Gunnar Wang, Fiber Optic System for Ship Hull Monitoring, Optical Fiber Sensors Conference Technical Digest, 2002. OFS 2002, 15th, 6-10 May 2002 Page(s):435-438 vol. 1
    29. Baldwin, C.; Kiddy, J.; Salter, T.; Chen, P.; Niemczuk, J. Fiber optic structural health monitoring system: rough sea trials testing of the RV Triton。Volume 3, 29-31 Oct. 2002 IEEE Page(s):1806-1813 vol.3
    30. Yun-Jiang Rao; Webb, D.J.; Jackson, D.A.; Lin Zhang; Bennion, I.; In-fiber Bragg-grating temperature sensor system for medical applications。Lightwave Technology, Journal of Volume 15, Issue 5, May 1997 Page(s):779-785
    31. Gusarov, A. I.; Berghmans, E; Deparis, O.; Fernandez, A.F.; Defosse, Y.; Megret, P.; Decreton, M.; Blondel, M.; High total dose radiation effects on temperature sensing fiber Bragg gratings Photonics Technology Letters, IEEE Volume 11, Issue 9, Sept. 1999 Page(s): 1159-1161
    32. Theune N M. Applications of Fiber Optical sensors in Power Generators: Current and Temperature Sensors, Proc. OPTO 2000 Conf. 2000, 1-6
    33. Kersey A D. Didden, F.K. CiDRA: leveraging multi-channel telecommunications technology for enhanced downhole monitoring capabilities in the oil & gas industry. Proceedings of SPIE-The International Society for Optical Engineering, v 3860, 1999, p 35-41
    34. Spring V V. Fiber Bragg grating sensors for petroleum hydrocarbon leak detection, Optics and Laser in Engineering, 2000,32:497-503
    35.胡勇勤,光纤光栅传感器的解调方法的研究,自动化与仪器仪表,2004.5:11-14
    36.张伟刚、涂勤昌、孙磊、开桂云、袁树忠、董孝义,光纤光栅传感器的理沦、设计及应用的最新进展,物理学进展,2004.12:398-423
    37.李志全、许明妍、汤敬、陈颖、赵彦涛,光纤光栅传感系统信号解调技术的研究,应用光学,2005,26(4):36-41
    38.弓俊青.光纤光栅传感监测技术及其应用研究.博士后研究工作报告.同济大学.200412
    39.《采用光纤光栅及无线智能传感技术的桥梁结构健康监测系统研究》项目研发总结报告(上海市科学技术委员会科研计划项目NO.03dz11003),同济大学、上海光机所、上海市政工程设计研究院,2005.11
    40.邓炎、严普强,桥梁结构损伤的振动模态检测,振动、测试与诊断,1999.9:157-163
    41. Raymond M. Measures, A. Tino Alavie, Robert Maaskant, Myo M. Ohn, Shawn E. Karr, and Shang Yuan Huang. Bragg grating structural sensing system for bridge monitoring. Proc. SPIE 2294, 53-59 (1994)
    42. Seim, J., Udd, E., Schulz, W., and Laylor, H. (1999) "Health Monitoring of an Oregon. Historical Bridge with Fiber Grating Strain Sensors, " Smart Structures and Materials 1999: Smart Systems for Bridges, Structures, and Highways, Proceedings of SPIE, vol. 3, 671, pp. 128-134.
    43. Davis, M. A. (Naval Res. Lab., Washington, DC, USA); Bellemore, D.G.; Kersey, A. D.; Putnam, M. A.; Friebele, E. J.; Idriss, R.L.; Kodinduma, M. High sensor-count Bragg rating instrumentation system for large-scale structural monitoring applications Proceedings of the SPIE-The International Society for Optical Engineering, v 2718, 1996, p 303-9
    44. Todd, Michael D. (Naval Research Lab); Johnson, Gregg A.; Chang, C.C. Real-time girder deflection reconstruction using a fiber Bragg grating system. Proceedings of SPIE-The International Society for Optical Engineering, v 4062 (I, 2000, p 1313-1319
    45. Sylvain Magne, Jonathan Boussoir, Stephane Rougeault, Veronique Marty-Dewynter, Pierre Ferdinand, and Lionel Bureau~ Health monitoring of the Saint-Jean bridge of Bordeaux, France using fiber Bragg grating extensometerso Proc. SPIE 5050, 305-316 (2003)
    46. Rolf Bronnimann, Marcel Held, and Philipp M. Nellen. Reliability, availability, and maintainability considerations for fiber optical sensor applications. Proc. SPIE vol. 6167, 61671B (Mar. 30, 2006)
    47.梁磊,姜德生,周雪芳,南秋明.光纤Bragg光栅传感器在桥梁工程中的应用.光学与光电技术.2003年02期:36-39
    48.欧进萍;周智;武湛君;赵雪峰;莫淑华;黑龙江呼兰河大桥的光纤光栅智能监测技术土木工程学报,2004年01期:45-49
    49. Sun, R. J., Sun, L. M., Shi, Jiajun, Yan, Xinfei and Gong, Junqing Development and Implementation of FBG Sensors for Bridge Health Monitoring, The 2nd International Structural Health Monitoring and intelligent infrastructure, 421-426(2005).
    50. Ru-Jiao Sun, Zhi Sun, Dan-Hui Dan, and Li-Min Sun. An integrated FBG sensing system for bridge health monitoring. Proc. SPIE 6174, 61742Q (2006)
    51.王惠文 主编.光纤传感技术与应用.国防工业出版社.北京.2001.4
    52.靳伟,廖延彪,张志鹏等.导波光学传感:原理与技术.北京:科学出版社,1998
    53.《功能材料及其应用手册》编写组编.功能材料及其应用手册.北京.机械工业出版社. 1991
    54.贾宏志.光纤光栅传感器的理论和技术研究.博士论文.中国科学院西安光学精密机械研究所20000801
    55.鲍吉龙,章献民,陈抗生,周文.FBG传感网络技术研究.光通信技术.2001.2 PP84-89
    56. S Abbenseth, S I Lochmann. Distinct enlargement of network size or measurement speed for serial FBG sensor networks utilizing SIK-DS-CDMA. Journal of Physics: Conference Series 15 (2005) 149-154 Sean Calvert, Joel P.Conte, Babak Moaveni, Whitten L. Schulz, Raymond de Callafon. Real time damage assessment using fiber optic grating sensors. Proccding of SPIE Vol.5278 PP 110-121
    57. Kersey, A.D.; Berkoff, T.A.; Morey, W.W. Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection. 1993.Optics Letters. PP 72-74
    58.江俊峰.用于结构健康监测的光纤传感解调系统的理论与方法研究,博士论文(光学工程),天津大学20040601
    59. Xu M G. Dong L, Rekie L, Temperature-independent strain sensor Using a Chirped Bragg Grating in a Tapered Optical Fiber,[J].Electronics,Vol.31,No. 10,1995
    60.张亮等.光纤Bragg光栅温度补偿封装.吉林大学学报(理学版).Vol.40,No.3.2002.7 PP294-295
    61. James S W, Dockney M L, Tatam R P, Simultaneous independent temperature and strain measurement using in-fiber grating sensors, [J]. Electon. Lett., 1996,32(12)PP1133-1134
    62. Wei Jin, Simultaneous measurement of strain and temperature: error analysis, Society of Photo-Optical instrumentation Engineering.36(2)1997.2,PP598-609
    63. Patrick, H. J.; Williams, G. M.; Kersey, A. D.; Pedrazzani, J. R.; Vengsarkar, A. M.; Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination Photonics Technology Letters, IEEE Volume 8, Issue 9, Sept. 1996 PP1223-1225
    64.王宝珠,邓宏林,李小瑞,詹祎民.制导光缆中光纤寿命预期,应用光学,2005,26(6)41-45
    65. Felix P.Kapron.; Hakan H. Yuce; Theory and measurement for predicting stressed fiber lifetime, Optical Engineering, 30(6)June 1991:700-708
    66. P.Mauron; Ph. M. Nellen; U. Sennhauser; M. N. Trutzel; D. Betz; L. Staudigel; V. Hagemenn; M. Rothhardt; Lifetime of Fiber Bragg Grating Under Cyclic Fatigue, SPIE Vol.3848:212-220
    67.杨学志等.DP传感器研究及桥梁自振特性测试.振动、测试与诊断.1997.6 P51-56
    68.严普强,乔陶鹏.工程中的低频振动测量与其传感器.振动、测试与诊断.2002.12 P247-253
    69. T. A. Berkoff and A. D. Kersey. Experimental Demonstrain of a Fiber Bragg Grating Accelerometer. IEEE Photonics technology letters, Vol. 8, NO. 12, 1677-1679(1996)
    70. M.D. Todd, G. A. Johnson, B. A. Althouse, et al. Flexural Beam-Based Fiber Bragg Grating Accelerometers. IEEE Photonics technology letters, Vol. 10, NO. 11, 1605-1607 (1998)
    71. Akira Mita, Isamu Yokoi. Fiber Bragg grating accelerometer for buildings and civil infrastructures. Proceedings of SPIE Vol. 4330, 479-486 (2001).
    72.单成祥.传感器的理论与设计基础及其应用.国防工业出版社.北京.1999.8
    73.巩宪锋,衣红钢,周晓敏,王长松,岳士丰.低频光纤光栅加速度传感器.北京科技大学学报.2006.28(1):75-77
    74.刘波,牛文成,杨亦飞,罗建花,曹晔,开桂云,张伟刚,董孝义.新型光纤光栅加速度传感器的设计与实现.仪器仪表学报.2006.27(1):42-44
    75.戴锋,黄国君.一种布拉格光纤光栅加速度传感器.激光杂志.2005.26(1):26-27
    76. Stephanus J. Spammer, Peter L. Fuhr, Yinian Zhu, and Anatoli A. Chtcherbakov. Optical fiber Bragg grating accelerometer. Proc. SPIE 3740, (1999): 496-500
    77. James B. Star, Squeeze-film damping in solid-state accelerometer, IEEE Workshop on solid-state sensor and actuator, Hilton head Island, SC, USA, 1990, PR 44-47
    78.纽伯特(Neubert,H.K.R)著中国计量科学研究院力学处,清华大学精密仪器教研组译,仪器传感器性能和设计入门,科学出版社,北京,1985
    79. T. Tschan, N. de Rooij, A. Bezinge. Oil-damped piezoresistive silicon accelerometers. 1991. IEEE. PR 112-114
    80.郁有文,常健.传感器原理及工程应用.西安电子科技大学出版社.西安.2002.8
    81.李慧敏,荆志彬.用谐振方法测试振动传感器的线性度.矿业研究与开发.2004.6 P51-52
    82. Charles R. Farrar, Gyuhae Park, David W. Allen and Mike D. Todd. Sensor network paradigms for structural health monitoring. Structural Control and Health Monitoring.2006; 13: 210-225
    83. G. C. Yao, K. C. Chang, G. C. Lee, "Damage diagnosis of steel frames using vibratioal signature analysis", Journal of Engineering Mechanics, 1992, 118(9): 1949-1961
    84.李德葆,诸葛鸿程,王波.实验应变模态分析原理和方法.清华大学学报,1990,30(2):105-111
    85.李德葆.实验应变/应力模态分析若干问题的进展评述.振动与冲击,1996,15(1):13-17
    86.周先雁,沈蒲生.用应变模态对混凝结构进行损伤识别的研究.湖南大学学报,1997,24(5):69-74
    87. Davis, M. A.; Kersey, A. D.; Berkoff, R. T.; Idriss, R. L. and Kodinduma, M. Dynamic strain monitoring of an in-use interstate bridge using Fiber Bragg Grating sensors. Proceedings of the SPIE Vol. 3043, 1997: 87-95
    88. Whitten L. Schulz, Joel R conte, Eric Udd, Marley Kunzler. Structural Damage Assessment Via Modal Property Identification using Macro-Strain Measurements with Fiber Bragg Gratings as an Alternative to Accelerometers. IEEE. 2002: 67-70
    89.姜德生,罗斐,梁磊.光纤布拉格光栅传感器与基于应变模态理论的结构损伤识别.仪表技术与传感器,2003.2:17-19
    90.励强华.用于动态测量的光纤光栅传感技术.博士论文.哈尔滨工业大学.20031001
    91.孙丽.光纤光栅传感技术与工程应用研究.大连理工大学.博十学位论文.2006.2
    92.刘钦朋,乔学光,贾振安,王向宇,李婷.光纤Bragg光栅传感原理及增敏技术.光电子技术与信息.2006.3(3):18-22
    93.周振安,刘爱英.光纤光栅传感器用于高精度心变测量研究.地球物理学进展. 2005,20(3):864-866
    94. http://www.isiscanada.com
    95. Christopher S. Baldwin, Toni Salter, John B. Niemczuk, Peter C. Chen, and Jason S. Kiddy. Structural monitoring of composite marine piles using multiplexed fiber Bragg grating sensors: in-field applications. SPIE, Vol.4696:82-91
    
    96. Baldwin, C, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk,. Fiber Optic Structural Health Monitoring system: Rough Sea Trials Testing of the RV triton. MTS/IEEE Oceans 2002, Vol.3 :1807-1814
    97. Christopher S. Baldwin, Toni J. Salter, and Jason S. Kiddy. Static shape measurements using a multiplexed fiber Bragg grating sensor system. SPIE, Vol.5384:206-217
    98. Childers, B. A. et al. Use of 3000 Bragg grating strain sensors distributed on four eight-meter-optical fibers during static load tests of a composite structure. SPIE, Vol.4332:133-142
    99. Chris S. Baldwin. Multi-parameter sensing using fiber Bragg grating sensors. Proc, of SPIE Vol.6004(2005):A(1)-(10)
    100. Marley Kunzler, Rob Edgar, Eric Udd, Tad Taylor, Whitten Schulz, Wesley Kunzler, Steve Soltesz. Fiber Grating Traffic Monitoring Systems. SPIE, Vol.4696:238-243
    lOl.Jinping Ou, Xuefeng Zhao, Hui Li, Zhi Zhou, Zhizhun Zhang, Chuan Wang. Health monitoring of Binzhou yellow river highway bridge using fiber Bragg gratings. SPIE, Vol.5765:576-583
    102. Qingli Hu, Wang Chuan, Zhi Zhou, Jinping Ou. Application of FRP-package FBG temperature sensors in large mass concrete monitoring for the Third Nanjing Yangtze Bridge. SPIE, Vol.5851:332-338
    103. H. Y. TAM, S. Y. Liu, B. O. Guan, W. H. Chung, T. H.T Chan, and L. K. Cheng. Fiber Bragg Grating Sensors for Structural and Railway Applications. SPIE, Vol.5634:85-97
    104. M. A. Davis, A. D. Kersey, T. A. Berkoff, R. T. Jones, R. L. Idriss, and M. Kodinduma. SPIE, Vol.3043:87-95
    105. Sylvain Magne, Jonathan Boussoir, Stephane Rougeault, Veronique Marty-Dewynter, Pierre Ferdinand and Lionel Bureau. Health Monitoring of the Saint-Jean bridge of Bordeaux, France using Fiber Bragg Grating Extensonmeters. SPIE, Vol.5050:305-316
    106. Yan Zhang, Haiwen Cai, Robert Pastore, Jing Ju, Debing Zeng, Zhifan Yin, Hong-Liang Cui. Acivil structural monitoring system based on fiber grating sensors. SPIE, Vol.5057:535-542
    107. Sean Calvert, Joel P. Conte, Babak Moaveni, Whitten L. Schulz, Raymond de Callafon. Full scale testing results of structural damage detection using long gage fiber Bragg gratings and modal analysis. SPIE, Vol.5057:467-477
    108. Mark Seaver, Steven T. Trickey, Jonathon M. Nichols, Linda Moniz, Lou Pecora, and Micheal D. Todd. High-performance fiber optic systems for damage detection and structural monitoring. SPIE, Vol.5590:37-46
    109. Daniele Zonta, Matteo Pozzi, Marco Forti, Oreste S. Bursi. SPIE, Vol.5765:430-441
    110.马锁柱. 光纤传感技术在地下工程中的应用.铁道工程学报 2006.4 (2): 67-70
    111.梅加纯,姜德生,范典,程健,董谊.基于光纤光栅温度传感技术的面板坝渗漏监测系统.传感器技术.2005.24(9):65-66
    112.林述涛,李志刚.卫运河特大桥的光纤光栅智能监测系统.徐州建筑职业技术学院学报.2005.5(2):15-18
    113.信思金,李斯丹,舒丹.光纤Bragg光栅传感器在锚固工程中的应用.华中科技大学学报(自然科学版)2005.33(3):75-77
    114.万里冰,武湛君,张博明,王殿富.基于光纤光栅传感技术的桥梁结构内部应变监测.光电子(激光).2004.15(12):1472-1476
    115.丁延滨,韩刚,孙玉瑞,葛新春,莫淑华.基于光纤光栅传感技术的呼兰河大桥监测.交通科学与经济.2004(1):1-2
    116. http://www.pioptics.com
    117. http://www.synetoptics.com
    118.袁万城、崔飞、张启伟,桥梁健康监测与状态评估的研究现状与发展,同济大学学报,1999,27(2):5-8
    119.李国强,李杰.工程结构动力学检测理论与应用.北京:科学出版社,2002
    120. Y. Gao and B. E Spencer. Damage Localization uder Ambient Vibration Using Changes in Flexibility Earthquake Engineering and Engineering Vibration. 2002,1 (1)
    121. Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, 1979,14(2):49-57
    122. West W M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. Proceedings of Air Force Conference on Aircraft Structural Integrity, 1984:1-6
    123. Yuen M M F. A numerical study of eigenparameters of a damages cantilever. Journal of Sound and Vibration, 1985,103:301-310
    124. Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145(2):321-332
    125. Stubbs N., Osegueda R., Global nondestructive damage evaluation in solid. International Journal of Analytical and Experimental Modal analysis. 1990,5(2):67-79
    126. Hearn G., Yeata R. B., Modal analysis for damage detection in structures. Journal of Structural Engineering, ASCE. 1991,117(10):3042-3061
    127. R. D. Adams, P. Cawley, Pye, and Stone, "A vibration technique for non-destructively assessing the integrity of structures", Journal of Mechanical Engineering, science, 1978, 20(2),: 93-100
    128.田迎春,杜守军,刘京红.模态分析法在建筑结构损伤诊断中的应用研究[J].河北农业大学学报,2002,25(增):26-28
    129. P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas, "Identification of crack location and magnitude in a cantilever beam from the vibration modes", Journal of sound and vibration, 1990, 138(3),:381-388
    130. Robert Y., Liang, Jialou Hu, and Fred Choy, "Theoretical study of crack-induced eigenfrequency changes on beam structures", Journal of Engineering Mechanics, 1992, 118(2): 384-396
    131. N.T. Khiem, and T. V. lien, "A simplified method for natural frequency analysis of a multiple cracked beam", Journal of sound and vibration, 2001,245 (4),:437-751
    132. X. F. Yang, A. S. J. Swamidas, and R. Seshadri, "Crack identification in vibrating beams using the energy method", Journal of sound and vibration, 2001, 244(2): 339-357
    133.周先雁,沈蒲生,刘希.用断裂动力学对混凝土平面杆系进行破损评估.湖南大学学报,1998,25(1):66-76
    134. G. C. Yao, K. C. Chang, G. C. Lee, "Damage diagnosis of steel frames using vibratioal signature analysis", Journal of Engineering Mechanics, 1992, 118(9): 1949-1961
    135.李德葆,诸葛鸿程,王波.实验应变模态分析原理和方法.清华大学学报,1990,30(2):105-111
    136.李德葆.实验应变/应力模态分析若干问题的进展评述.振动与冲击,1996,15(1):13-17
    137.周先雁,沈蒲生.用应变模态对混凝结构进行损伤识别的研究.湖南大学学报,1997,24(5):69-74
    138. Jay-Ching, Chen, and John A. Garba, "On-orbit damage assessment for large space structures", AIAA, 1988, 26(9): 1119-1126
    139. R. J. Allemany, and D. L. brown, "A correlation coefficient for modal vector analysis", Proceedings of the 1st IMAC, 1982:110-116
    140. T. Wolff, and M. richardson "Fault detection in structures from changes in their modal parameters", Proceedings of the 7th IMAC, 1989: 87-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700