用户名: 密码: 验证码:
基于超磁致伸缩材料的光纤光栅电流传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业、农业、交通、国防事业的发展,用电量越来越大,电力工业在人民生活中起着越来越重要的作用,但是随着用电负荷越来越多,对电流检测提出了更高的要求,传统的电流传感器已经不能很好的满足当今工业技术发展的需要,导致电力故障频频出现。新型的光学电流传感器能够很好的弥补传统电流传感器的不足,因此被广泛的研究,成为未来电流测量的一个热点领域。
     光纤光栅是近年来飞速发展的一种新型光纤无源器件,具有成本低、重量轻、体积小、抗电磁干扰、易于实现分布式测量等特点而被广泛地应用于通信和传感领域,尤其是在电流传感领域中,各种结构的光纤光栅电流传感器不断涌现出来。
     本文回顾了近年来出现的各种光纤光栅电流传感器,比较和分析了它们的发展和存在的问题,在此基础上提出了一种将光纤布拉格光栅与超磁致伸缩材料Terfenol-D结合起来构成的光学电流传感器。Terfenol-D棒材在磁场中随待测电流的增加产生伸长,从而带动沿轴向粘贴在材料上的光纤布拉格光栅的光学参数发生变化,其中心波长发生偏移。在一定磁场范围内,中心波长偏移量与待测电流成较好的线性关系。因此可以通过测量光纤布拉格光栅的波长偏移量,来获得产生磁场的待测直流电流的大小。主要研究工作如下:
     1、研究了光纤布拉格光栅的光学特性和传感原理,建立了光纤布拉格光栅的应力和温度测量模型。
     2、研究了磁致伸缩效应的现象、产生的机理和磁致伸缩材料的特性,通过比较稀土超磁致伸缩材料和普通磁致伸缩材料的优缺点,选择稀土超磁致伸缩材料Terfenol-D作为光纤光栅电流传感器的传感媒介,确定了整个基于超磁致伸缩材料的光纤光栅电流传感器的研究方案。
     3、采用电阻应变法对超磁致伸缩材料的磁致伸缩系数进行测量,并且根据磁致伸缩材料的特性设计了预应力施加装置,从理论和实验上分析了施加应力对磁致伸缩材料性能的影响。
     4、设计并制作了将被测电流转换成对应磁场的硅钢磁芯线圈和产生偏置磁场的偏置磁芯线圈,实现了用多匝小电流产生的磁场模拟单根大电流直导线产生的磁场。
     5、设计了光纤光栅电流传感系统,包括传感头设计、磁回路设计、测量光路设计、偏置磁场设计和优化。
     6、完成光纤光栅电流传感器的数据测量,并对数据进行分析。
With the fast developments of the industry,agriculture,transportation,and national defense,the power industry plays an increasingly important role in people's living.However,higher requests are put forward to electric detection.The traditional current sensors can't meet the requirements of recent industrial technology development and the power failures are appearing frequently with the increase of the electricity consumption.The optical current sensor can make up for the shortcomings of the traditional current sensors,and this field has been extensive researched.The optical current sensors have become a hot research field of current measurement.
     Fiber Bragg grating(FBG) is one of the most rapidly developed optical passive devices in recent years.FBG has the features of low cost,light weight,small size, anti-electromagnetic interference and can realize the distributed measured,so it has been widely applied in communication and sensing fields,especially in the field of current sensing.Various structures of fiber Bragg grating current sensors are emerging constantly.
     This essay reviewed the present situation of FBG current sensors,compared and analyzed their developments and existing problems.Based on this research,this paper proposed a new optical current sensor composed by combining FBG with the giant magnetostrictive material(GMM) Terfenol-D.The Terfenol-D rod was elongated in the magnetic field,and the strain caused the change of the optical parameters of FBG, which was stuck on the material along the axial direction.Thereby the center wavelength of FBG was shift.In certain biased magnetic field,the relationship between the measured current and the wavelength shift is linear.So the value of the current which produced the magnetic field can be got through measuring the center wavelength shift.The main research works are as following:
     1.The optical properties and sensing principles of FBG was studied,and the FBG temperature and stress model was established.
     2.The magnetostrictive phenomena,mechanism and material characteristics of the magnetostrictive material was studied.Compared the GMM Terfenol-D with other magnetostrictive material,Terfenol-D was chosen as sensor medium.The whole scheme of FBG current sensor based on GMM was designed on this basis.
     3.The magnetostriction coefficient of GMM was measured by the resistance strain gauges.The prestressed device was designed according to the characteristics of magnetostrictive materials.The effect of prestress impact on the properties of magnetostrictive materials was analyzed from the theory and the experiments.
     4.The silicon plate magnetic core coils which were used to change the measured current into magnetic field were designed and made.The magnetic field generated by one circle of great electric current was simulated by many circles of little current.
     5.The FBG current sensing system,including the sensing head,magnetic circuit, light path was designed and the bias magnetic field was designed and optimized.
     6.The data measurement of FBG current sensor was completed and analyzed.
引文
[1]高攸纲.电磁兼容总论[M].北京:北京邮电大学出版社,2001.
    [2]Z.P.Wang,S.Q.Zhang,L.B.Zhang.Recent advances in optical current-sensing techniques[J].Sensors and Actuators A:Physical 1995,50(3):169-175.
    [3]Sascha Liehr,Hans Sohlstr(o|¨)m.Optical measurement of currents in power converters[D].Sweden:Kungliga Tekniska Hogskolan,2006.
    [4]方志,段乃欣,朱周侠等.电力系统用光电电流互感器的发展[J].华东电力,2002(12):51-53.
    [5]王奕.光学电流互感器的发展概况[J].宿州教育学院学报,2006,9(1):104-106,110.
    [6]聂一雄,尹项根,张哲.对光纤电流传感器应用中若干问题的探讨[J].高压电器,2001,27(1):27-31.
    [7]J.Song,P.G.McLaren,D.J.Thomson,R.L.Middleton.A Faraday effect based clamp-on magneto-optical current transducer for power systems[J].IEEE WESCANEX'95PROCEEDINGS:329-333.
    [8]童凯,汪梅婷,李志全.一种新型的Bragg光纤光栅电流传感器的设计[J].光学技术,2006,32(2):260-262.
    [9]P.M.Cavaleiro,F.M.Araujo,A.B.Lobo Ribeiro.Metal-coated fibre Bragg grating sensor for electric current metering[J].ELECTRONICS LETTERS,1998,34(11):1133-1135.
    [10]李晓瞻,简伟.一种新型光纤光栅电流传感器的研究[J].仪器仪表用户,2007,144(6).
    [11]丰明坤,陈曜.一种新颖的光纤Bragg光栅小电流传感器设计[J].半导体广电,2006,27(3):331-333.
    [12]J.Mora,A.D(?)ez,J.L.Cruz,M.V.Andr(?)s.A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination[J].IEEE PHOTONICS TECHNOLOGY LETTERS,2000,12(12):1680-1682.
    [13]赵洪霞,鲍吉龙.一种新颖的光纤光栅电流传感器[J].量子电子学报.2005,22(6):951-954.
    [14]赵立民,秦天鹤.利用电磁铁的光纤光栅电流传感实验[J].沈阳工业大学学报.2005,27(5):537-539.
    [15]D.Reilly,A.J.Willshire,G.Fusiek,P.Niewczas,J.R.McDonald.A fiber Bragg grating based sensor for simultaneous AC current and temperature measurement[J].IEEE SENSORS JOURNAL2006,6(6):1539- 1542.
    [16]D.Satpathi,J.A.Moore,M.G.Ennis.Design of a Terfenol-D based fiber-optic current transducer[J].IEEE SENSORS JOURNAL,2005:1-9.
    [17]Zhao Hong,Xiong Yanling,Zhang Jian,and Wang Shurong.Measurement of Power Frequency AC Current Using FBG and GMM[C].Proceedings of 2005 International Symposium on Electrical Iusulating,2005:741-743.
    [18]熊燕玲,赵洪,张剑等.基于超磁致伸缩材料的光纤光栅交流电流传感系统[J].电工技术学 报,2006,21(4):16-19,45.
    [19]张记龙,曾光宇.光纤光栅(FBG)传感技术及其应用[J].华北工学院测试技术学报,2001,15(4):214-220.
    [20]光纤光栅在光通信领域中的应用[J].电子元器件应用,2005(11):42-46.
    [21]姜德生,方炜炜.Bragg光纤光栅及其在传感中的应用[J].传感器世界,2003,7.
    [22]李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005.
    [23]K.O.Hill.Photosensitivity in optical fiber waveguides:From discovery to commercialization[J].IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,2000,6(6):1186-1189.
    [24]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [25]李川,张以谟,赵永贵,李立京.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005.
    [26]A.Bertholds.Determination of the individual strain-optical coefficients in single-mode optical fibers[J].Lightwave Techonol,1988,6:17-20.
    [27]G.B.Hocker.Fiber-optical sensing of pressure and temperature[J].Appl.Opt,1979,18(9):1445-1448.
    [28]靳伟,廖延彪,张志鹏等.导波光学传感器:原理与技术[M].北京:科学出版社,1998.
    [29]张家坤,弓俊青,岳清瑞.光纤光栅传感技术在土木工程结构监测中的应用[J].北方交通大学学报,2003,27(5):94-97.
    [30]J.Seim,H.M.Laylor.Health monitoring of an Oregon historical bridge with fiber grating strain sensors[J].SPIE,1999,3671:35 - 99.
    [31]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005(1):8-12.
    [32]杨波,彭俊毅.光纤光栅传感器在现代大型飞机中的应用探讨[J].中国航空学会2007年学术年会.机载航电专题25:1-5.
    [33]W.Ecke,I.Latka,R.Wdlsch.A.Reutlinger,R.Graue.Optical fibre grating strain sensor network for X-38 spacecraft health monitoring[C].Proc.of the SPIE.2000,4185:888-891.
    [34]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002,13(4):420-430
    [35]李忠旺,王庆雄.电力电缆温度的在线监测[J].包钢科技,2007,33(3):41-43.
    [36]赵增玉,陈聚武.光纤光栅测温技术在变电站的应用[J].山东煤炭科技,2007(2):1-2.
    [37]Y.J.Rao,D.J.Webb,D.A.Jackson,etal.In-fiber Bragg grating temperature sensor system for medical applications[J].JOURNAL OF LIGHTWAVE TECHNOLOGY,1997,15(5):779-785.
    [38]Y.J.Rao,D.J.Webb,D.A.Jackson,L.Zhang,I.Bennion.In-fibre Bragg grating flow directed themodilution catheter for cardiac monitoring[C].Proc.of the Optical Fiber Sensors Conf.(OFS 212).Williamsburg,VA,USA,1997:354-357.
    [39]张伦伟.基于光纤光栅传感的智能内窥镜形状感知系统[D].上海:上海大学,2005.
    [40]文西芹,宁晓明,张永忠等.磁致伸缩传感器技术应用的发展[J].传感器技术,2003,22(2):1-4,7.
    [41]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅰ)[J].稀有金属材料与工程,2000,29(6):366-369.
    [42]杜挺,张洪平,邝马华.稀土-铁系超磁致伸缩材料的应用研究[J].金属功能材料,1997(4):173-176.
    [43]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006.
    [44]贾振元,杨兴,郭东明.超磁致伸缩材料控制模型的研究[J].压电与声光,2001,23(2):164-166.
    [45]钟文定.铁磁学[M].北京:科学出版社,2000.
    [46]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [47]何忠波,王新宇,赵海涛.超磁致伸缩材料特性及其工程应用综述[J].军械工程学院学报,2007,19(2):63-69.
    [48]黄玲.稀土超磁致伸缩材料在机械工程中应用概述[J].甘肃科技,2007,23(8):91-92.
    [49]李成英,袁惠群,周卓.我国稀土超磁致伸缩材料研究与应用开发概况[J].辽宁工学院学报,1999,19(3):14-20.
    [50]H.Kwun,K.A.Bartels.Magnetostrictive sensor technology and its applications[J].Ultrasonics,1998,36(1-5):171-178.
    [51]吴安国.磁致伸缩型非晶磁性传感器-磁性传感器的现状与未来(二)[J].磁性材料及器件,1994,25(3):37-38.
    [52]闫荣格,杨庆新,樊长在等.超磁致伸缩力传感器的研究[J].中国稀土学报,2005,23:32-34.
    [53]J.L.Cruz,A.Diez,M.V.Andrirs,A.Segura,B.Ortega,L.Dong.Fibre Bragg gratings tuned and chirped using magnetic fields[J].ELECTRONICS LETTERS,1997,33(3):235-236.
    [54]R.Chung,R.Weber,D.C.Jiles.A Terfenol Based Magnetostrictive Diode Laser Magnetometer[J].IEEE TRANSACTIONS ON MAGNETICS.1991,27(6):5358-5360.
    [55]D.J.Feng,G.Y.Kai,Q.D.Zhao,X.Y.Dong.Study on the electric current sensor of fiber Bragg grating[J].J.Infrared Millim.Waves,2001,20(4):241-243.
    [56]朴德慧.基于超磁致伸缩材料的光纤光栅电流传感器的初步研究[D].长春:吉林大学,2006.
    [57]江小霞,钟荣龙,卢长耿.磁致伸缩位移传感器的应用[J].传感器技术,2003,22(1):50-52.
    [58]王昌,李强,李银祥,张一玲,胡明哲.新型微位移致动器的研究[J].机械工程材料,2003,27(1):35-37.
    [59]王悦民,谢俊丽,刘东等.基于磁致伸缩效应的导波无损检测技术研究进展[J].NDT无损检测,2007,29(5):280-284.
    [60]龙士国,马天朗.稀土超磁致伸缩换能器的研制及其在桥梁检测中的应用[J].功能材料,2007,增刊(38):1139-1141.
    [61]刘迎春,叶湘滨.传感器原理设计与应用[M].长沙:国防科技大学出版社,2002,7.
    [62]K.KAKWNO.A new measuring method of magnetositdction vibration[J].J Appl Phys,1979(50):7713-7715.
    [63]蒋洪川,张文旭,彭斌等.薄膜磁致伸缩系数测试系统的研究[J].压电与声光,2006,28(3):344-346.
    [64]万红,邱佚,谢海涛等.电容位移法精确测量磁性薄膜的磁致伸缩系数[J].功能材料,2002,33(3):262-263,264.
    [65]孟令凡,蓝金辉.传感器原理与应用[M].北京:电子工业出版社,2007,8.
    [66]倪忠英.应变片式传感器的温度补偿浅谈[J].衡器,2003,32(4):22.
    [67]梁立凯.电阻应变片测量中温度误差的补偿方法[J].呼伦贝尔学院学报,2001,9(1):68-69,106.
    [68]戴娟,汪大鹤,陈蕾,刘美.电测应力实验中应变片的粘贴技巧[J].湖南工程学院学报,2003,13(3):55-57.
    [69]穆荣,顾持真.应变片防护剂的选用及测试[J].粘结,2002,23(4):38-39.
    [70]A.E.Clark,M.L.Spano,H.T.Savage.Effect of stress on the magnetostriction and magnetization of rare earth-Rel.95alloys[J].IEEE Transactions on magnetics,1983,19(5):1964-1966.
    [71]赵凯华,陈熙谋.电磁学[M].北京:高等教学出版社,1985.
    [72]孟爱华,项占琴,吕福在.偏置优化对Terfenol-D致动器性能的影响[J].中国机械工程,2005,16(18):1603-1606.
    [73]贺西平,李斌,周寿增.稀土超磁致伸缩材料及其高效应用方法[J].兵器材料科学与工程,1998,21(3):61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700