用户名: 密码: 验证码:
激光直写SiO_2/TiO_2溶胶—凝胶薄膜制备条形光波导技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
条形光波导是光电子器件的基本元器件。近年来,随着集成光学的飞速发展,迫切需要发展工艺简单、成本低、柔性化程度高的条形光波导制备技术。激光直写技术克服了传统的以光刻技术为核心的光波导制作技术的种种弊端,成为光电子器件制造领域的热点研究课题。
     本文采用浸渍提拉法在SiO_2/Si表面制备了疏松多孔的SiO_2/TiO_2溶胶-凝胶薄膜。利用波长为1070 nm连续掺镱光纤激光器直接处理SiO_2/TiO_2薄膜,使得薄膜的致密度发生改变,然后采用化学腐蚀溶液对薄膜进行湿法腐蚀,利用薄膜致密化区域与未致密化区域具有腐蚀速率差的特点,去除薄膜的未致密化区域,形成SiO_2/TiO_2条形光波导,对所制备的条形光波导的模场分布和光传输损耗进行了分析测试。主要研究内容和结果总结如下:
     系统研究了SiO_2/TiO_2二元溶胶-凝胶体系的合成工艺以及相应的材料性能。结果表明,合成工艺路线的设计是影响制备优良性能的溶胶-凝胶材料的重要因素。采用两步水解法制备的SiO_2/TiO_2二元溶胶-凝胶体系性能稳定,可用于激光直写光波导薄膜的制备。
     在SiO_2/TiO_2溶胶-凝胶薄膜的提拉制备工艺中,提拉速度、溶胶浓度、溶胶粘度以及干燥热处理温度是影响薄膜厚度的主要因素。采用浓度为40%(V%),粘度为3.0 mPa?s的溶胶,以10 cm/min的提拉速度提拉制膜,在200℃下保温30分钟的干燥热处理,制备的薄膜表面平整,在15μm×15μm范围内的粗糙度数值为0.31 nm。薄膜折射率大小可通过调节溶胶体系内的钛含量精确控制,在波长为600 nm - 2500 nm的窗口内有较高的透光率。当SiO_2/TiO_2溶胶-凝胶薄膜的折射率和厚度达到平板光波导的设计要求时,对于波长为1550 nm的光波存在导模。棱镜耦合法测试结果显示平板光波导的光传输损耗随着波导芯层薄膜的厚度增加而降低,所制备的SiO_2/TiO_2平板光波导的光传输损耗最小值为0.34 dB/cm。
     系统研究了激光直写工艺对薄膜致密化线条的影响因素以及作用机理。提出了激光起始收缩阈值(Fc)、烧蚀损伤阈值(Fd)、临界离焦量和临界光斑直径的概念。当用于直写薄膜的激光功率密度范围(ΔF)在Fc和Fd之间时,随着激光功率密度的增大,得到的薄膜致密化线条宽度增加,收缩率增大。提高溶胶-凝胶薄膜的热处理温度,可以增大ΔF,减小临界光斑直径,进而减小致密化线条的宽度。但是同时降低了薄膜致密化区域与未致密化区域的腐蚀速率差,不利于条形光波导的腐蚀成型。薄膜的激光直写机理是利用单晶硅衬底对激光能量的吸收,然后以热传导形式将能量从衬底传导至表面的SiO_2/TiO_2多孔薄膜,使溶胶-凝胶薄膜内纳米孔隙受热收缩致密化。
     通过对薄膜致密化线条在氢氟酸溶液中腐蚀不同时间的截面轮廓的表征,计算了不同温度热处理的薄膜经激光处理后的致密化区域与未致密化区域的相对腐蚀速率差。结果表明,随着溶胶-凝胶薄膜热处理温度的提高,薄膜致密化区域与未致密化区域的相对腐蚀速率差减小,当热处理温度由200℃提高到500℃时,相对腐蚀速率差由19.5 nm/s减少到了4 nm/s。由于SiO_2/TiO_2薄膜内存在不与氢氟酸反应的其它组分,因此在条形光波导腐蚀成型过程中除了薄膜的腐蚀溶解之外,还有未反应组分的物理脱附过程,由此造成条形光波导芯层薄膜的表面粗糙度的增加,进而增加了SiO_2/TiO_2条形光波导在光传输时的表面散射损耗。在氢氟酸溶液中腐蚀28 s成型的条形光波导,表面散射损耗的理论值为1.43 dB/cm。
     在国内外首次利用光纤激光器在硅基衬底表面制备了最小宽度为15μm的条形光波导。采用FEMLAB(Finite Element Modeling Laboratory)中电磁场功能模块进行的光场模拟和实际通光测试的近场光斑均显示制备的条形光波导可以实现对波长为1550 nm光波的单模传输。
     采用截断法对SiO_2/TiO_2条形光波导的光传输损耗进行的测试结果显示,相对于平板光波导,条形光波导的光传输损耗大幅度增加,而且光波导芯层薄膜厚度越小,增加幅度越大。文中利用激光直写技术制备的条形光波导在传输1550 nm波长光时的传输损耗最小值为1.7 dB/cm。分析认为,体系中的残余碳以及化学腐蚀工艺造成的芯层表面粗糙度的增加是条形光波导的光传输损耗增加的主要原因。
Strip optical waveguides are essential components in integrated optics technology. In recent years, the strip optical waveguides fabrication technique with simple processing techniques, low cost and flexible patterning have been one important research goal so as to meet the rapid development demands of the optical communication systems. Laser direct writing technology can overcome the shortcomings of traditional processing methods to fabricate optical waveguides based on photolithography, and hence attract wide notice in the manufacturing and research field of optoelectronics parts.
     In this dissertation, SiO_2/TiO_2 sol-gel films were deposited on SiO_2/ Si surface by dip-coating technology. Strip optical waveguides were fabricated by laser direct writing of films using a continuous Ytterbium fiber laser with a wavelength of 1070 nm and followed by chemical etching to remove the non-irradiated area, which is based on the difference of the chemical etching rates between the irradiated and non-irradiated area of the films. Finally, the transverse mode field distribution and optical propagation losses of the strip optical waveguides were characterized. The following are the main works and corresponding results:
     Both the synthesis and material properties of the SiO_2/TiO_2 solutions have been examined in detail. The results demonstrate that the design of the synthesis art route is the significant factor that affects the fabrication procesing of sol-gel material. The SiO_2/TiO_2 solutions synthesized by two-step hydrolyzing method with good stabilization can be used in the fabrication of SiO_2/TiO_2 films.
     The thickness of SiO_2/TiO_2 sol-gel films is influenced evidently by the factors of drawing rate, sol viscosity, sol concentration and the temperature of heat treatment processing. The SiO_2/TiO_2 films can be prepared on SiO_2/ Si surface with a drawing rate of 10 cm/min using a sol with concentration of 40%(V%) and viscosity of 3.0 mPa?s. After being heated at temperature of 200℃for 30 minutes, the surface roughness is 0.31 nm ranging 15μm×15μm in the film, which is low enough for optical waveguides. The refractive index of the films can be controlled accurately through changing the titanium contents in the SiO_2/TiO_2 sols. And the films have high optical transparence in the communication window wavelength ranging from 600 nm to 2500 nm. When the refractive index and thickness of SiO_2/TiO_2 films meet the core layer design of planar optical waveguides in theory, there are propagation modes for the lightwave with a wavelength of 1550 nm. The propagation losses of the SiO_2/TiO_2 planar waveguides at the 1550 nm have been experimentally measured by prism coupling technique. The fabricated planar optical waveguides are low propagation loss at 1550 nm, from 0.34 to 0.75 dB, which decrease with the increase of the thickness of core layer.
     The effects of the laser processing parameters on the dimensions of densification lines in the film were studied systematically. Furthermore, the densification mechanism of the sol-gel film is analyzed. The initial condensed thresholds (Fc), damaged thresholds (Fd) of the laser power density in processing of the films and the critical beam diameter are defined. The experimental results demonstrate that the width and the shrinkage extent of the densification line in the films increase with the laser power density ranging from Fc to Fd. The available laser power density rangeΔF (ΔF = Fd– Fc) for laser processing increases with the enhancement of the heat treatment temperature of the films. The corresponding critical beam diameter and width of densification lines decrease. Whereas, the difference of the chemical etching rates between the irradiated and non-irradiated area of the films will reduce with the increase of heat treatment temperature.
     It was found that the energy of laser beam was not absorbed directly by SiO_2/TiO_2 film, but by silicon substrate during the laser direct writing processing. Then the heat conducted from silicon substrate to the SiO_2/TiO_2 film. The nanoscale pores within the film will become smaller or disappear due to the film shrinking for their high surface-to-volume ratio under the laser irradiation.
     The values of the chemical etching rate difference between the irradiated and non-irradiated area of the films were calculated by observing the transverse profiles of strip optical waveguides etched in HF solution for a given time. The value of the chemical etching rate difference in the films with a heat treatment temperature 500℃for 30 minutes is 4 nm/s, which is much smaller than the value of 19.5 nm/s about the films with a heat treatment at the temperature 200℃for 30 minutes. The surface roughness of strip optical waveguides increases with the chemical etching time due to the un-uniform etching rate about the irradiated area caused by the impurity of the films, which contributes to the surface scattering losses of the SiO_2/TiO_2 strip optical waveguides. The theoritical value of the surface scattering loss for the strip optical waveguide whose core layer has been etched by HF solution for 28 s is 1.43 dB/cm.
     Strip optical waveguides with a width of 15μm on silicon were fabricated using a fiber lasers with infrared wavelength. Both the simulated optical field obtained by the software FEMLA (Finite Element Modeling Laboratory) and the actual optical field obtained by the experimental measurement demonstrate that the strip optical waveguides can propagate the lightwave with a wavelength of 1550 nm in monomode. The optical propagation losses of the strip optical waveguides at 1550 nm were measured by cut-off method. It is found that the minimum propagation loss of strip optical waveguides is 1.7 dB/cm, which is bigger than that of planar optical waveguides. Higher surface roughness and carbon remains of the core layer are the main factors to increase the propagation loss of the strip optical waveguides.
引文
[1]侯勇.紫外写入技术制作平面光波导器件的应:[硕士学位论文].吉林:吉林大学, 2005
    [2] Namkhun Srisanit. Laser Direct Write Optical Waveguides for Optical Interconnection and Optical Isolation: [Ph.D thesis]. Miami, UAS: University of Miami, 2003
    [3] Hagberg M, Eriksson N, Kjellberg T, et al. Fabrication of gratings for integrated optoelectronics. Microelectronic Engineering, 1995, 27(1-4): 435-438
    [4] Storgaard-Larsen T, Bouwstra S, Leistiko O. Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide. Sensors and Actuators A: Physical, 1996, 52(1-3): 25-32
    [5] Liu Zhiqiang, Namkhun Srisanit, Ke Xianjun, et al. An azobenzene functionalized polymer for laser direct writing waveguide fabrication. Optics Communications, 2007, 273(1): 94-98
    [6] Hiroaki Nishiyama, Junji Nishii. Self-alignment of Ge nano-particles in laser induced Bragg grating in Ge–B–SiO2 film. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182(3): 325-329
    [7] Pani S.K, Quiling Y, Wong C.C, et al. Fabrication of buried hybrid sol–gel optical waveguides by femtosecond laser direct writing. Thin Solid Films, 2006, 504(1-2): 336-340
    [8] Namkhun Srisanit, Liu Zhiqiang, Ke Xianjun, et al. Laser writing correction of polymer waveguide fanouts. Optics Communications, 2005, 244(1-6): 171-179
    [9]唐天同,王兆宏.集成光学.第一版.北京:科学出版社,2005.145-206
    [10] Harwood D.W, Taylor E.R, Moore R, et al. Fabrication of fluoride glass planar waveguides by hot dip spin coating. Journal of Non-Crystalline Solids, 2003,332(1-3): 190-198
    [11] Znaidi L, Benyahia S, Sanchez C, et al. Oriented ZnO thin films synthesis by sol–gel process for laser application. Thin Solid Films, 2003, 428(1-2): 257-262
    [12] Liang Q.L, Zhao G.Y, Lu J.G. Synthesis and fine patterning of organic–inorganic composite SiO2–Al2O3 thick films. Applied Surface Science, 2007, 253(12): 5442-5446
    [13] Meng Xiangdong, Lin Bixia, Fu Zhuxi. Influence of CH3COO– on the room temperature photoluminescence of ZnO films prepared by CVD. Journal of Luminescence, 2007, 126(1): 203-206
    [14] Parikh R.P, Adomaitis R.A, Oliver J.D, et al. Implementation of a geometrically based criterion for film uniformity control in a planetary SiC CVD reactor system. Journal of Process Control, 2007, 17(5): 477-488
    [15] Kwoka M, Ottaviano L, Passacantando M, et al. XPS depth profiling studies of L-CVD SnO2 thin films. Applied Surface Science, 2006, 252(21): 7730-7733
    [16] Nyutu E.K, Kmetz M.A, Suib S.L. Formation of MoSi2–SiO2 coatings on molybdenum substrates by CVD/MOCVD. Surface and Coatings Technology, 2006, 200(12-13): 3980-3986
    [17] Masafumi Taguchi, Satoshi Hamaguchi. MD simulations of amorphous SiO2 thin film formation in reactive sputtering deposition processes. Thin Solid Films, 2007, 515(12): 4879-4882
    [18] Morales M, Vivet N, Levalois M, et al. Optimization of ZnSe–SiO2 nanostructures deposited by radio-frequency magnetron sputtering: Correlations between plasma species and thin film composition, structural and microstructural properties. Thin Solid Films, 2007, 515(13): 5314-5323
    [19] Tomohito Kawase, Satoshi Hamaguchi. Molecular dynamics simulation analyses on injection angle dependence of SiO2 sputtering yields by fluorocarbon beams. Thin Solid Films, 2007, 515(12): 4883-4886
    [20] Zhang Letian, Zhang Hanzhuang, Wang Jian, et al. Photosensitivity in GeO2–SiO2 glasses and optical waveguides. Materials Letters, 2006, 60(29-30): 3610-3613
    [21] Zhang Letian, Zhang Hanzhuang, Wang Jian, et al. Fabrication and ultraviolet photosensitivity of Ge-doped silica films using FHD for optical waveguide. Physica B: Condensed Matter, 2006, 373(2): 206-210
    [22] Denis Alain Guilhot. UV-written Devices in Rare-earth Doped Silica-on-silicon Grown by FHD: [Ph.D thesis]. Southampton, UK: University of Southampton, 2004
    [23] Zhang L, Xie W, Wu Y, et al. Optical and surface properties of SiO2 by flame hydrolysis deposition for silica waveguide. Optical Materials, 2003, 22(3): 283-287
    [24]张耘.极化子荧光及其断层扫描对Ti:LiNbO3光波导表征研究.物理学报,2007, 56(1):280-284
    [25]张阜文,陈福深,邱昆.Ti扩散LiNbO3光波导折射率变化研究.光电子·激光,2003,14(4):368-371
    [26] Okur I, Townsend P.D. Waveguide formation by He+ and H+ ion implantation in filter glass containing nanoparticles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 124(1): 76-80
    [27] Bolzinger J.L, Mathey P, Machet R, et al. Biaxial behavior of an optical waveguide fabricated by ion implantation in a uniaxial BaTiO3 substrate. Optics Communications, 1997, 140(4-6): 199-203
    [28] Li Shiling, Wang Keming, Chen Feng, et al. Low loss waveguide in Nd3+-doped silicate glass fabricated by carbon ion implantation. Surface and Coatings Technology, 2005, 200(1-4): 598-601
    [29] Chen Feng, Wang Linxue, Wang Keming. Development of ion-implanted optical waveguides in optical materials: A review. Optical Materials, 2006 (In Press)
    [30] Jeong C.H, Kim J.S, Kim W.H, et al. Application of the channel optical waveguide prepared by ion exchange method to the preparation and characterization of anoptical oxygen gas sensor. Sensors and Actuators B: Chemical, 2005, 105(2): 214-218
    [31] West B.R, Madasamy P, Peyghambarian N, et al. Modeling of ion-exchanged glass waveguide structures. Journal of Non-Crystalline Solids, 2004, 347(1-3): 18-26
    [32] Lee C.C, Chuang R.W. A dry electromigration process for fabricating deep optical channel waveguides on glass and their characterization. Materials Science and Engineering: B, 2004, 111(1): 40-48
    [33] Taichi Yoshioka, Yasumasa Kawakita, Akira Kawai, et al. Simple estimation of strain distribution in narrow-stripe waveguide array fabricated by selective MOVPE. Journal of Crystal Growth, 2007, 298: 676-681
    [34] Wil M, Konarski P. Ion beam shadowing effects in SIMS depth profile analysis of MBE-grown nanostructures. Vacuum, 2005, 78(2-4): 291-295
    [35] Lelarge F, Dagens B, Cuisin C, et al. GSMBE growth of GaInAsP/InP 1.3μm-TM-lasers for monolithic integration with optical waveguide isolator. Journal of Crystal Growth, 2005, 278(1-4): 709-713
    [36] Yihwan Kim, Dean Berlin, Arkadii Samoilov. Fabrication of epitaxial SiGe optical waveguide structures Applied Surface Science, 2004, 224(1-4): 175-178
    [37] Yusuke Moriguchi, Tatsuya Kihara, Kazuhiko Shimomura. High growth enhancement factor in arrayed waveguide by MOVPE selective area growth. Journal of Crystal Growth, 2003, 248: 395-399
    [38]西原浩,春名正光,栖原敏明.集成光路.第一版.梁瑞林译.北京:科学出版社, 2004. 146-232
    [39]徐兵,魏国军,陈林森.激光直写技术的研究现状及其进展.光电子技术与信息, 2004, 17(6): 1-5
    [40]徐杜,将永平,张宪民.柔性制造系统原理与实践.第一版.北京:机械工业出版社, 2001. 5-25
    [41]邱传凯,杜春雷,侯德胜.激光直写光刻工艺技术研究.光电工程, 1997, 24:36-40
    [42]李祥友.激光微细熔覆柔性布线工艺机理及系统研究: [博士论文].华中科技大学图书馆, 2005
    [43] Christensen, C. Paul. Capabilities of low power excimer lasers in micromachining. in: Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting, Piscataway, NJ, USA: IEEE, 1993. 762-763
    [44] Pelli Stefano, Righini G.C, Scaglione A, et al. Direct laser writing of ridge optical waveguides in silica-titania glass sol-gel films. Optical Materials, 1996, 5(1-2): 119-126
    [45] Zhai Jiwei, Zhang Liangying, Yao Xia, et al. Characteristics of laser-densified and conventionally heat treated sol-gel derived silica titania films. Surface and Coatings Technology, 2001, 138(2-3): 135-140
    [46] Hirose T, Fokine M, Saito K. Waveguide writing by CO2 laser annealing on sputtered silica film. Journal of Non-Crystalline Solids, 2006, 352(6-7): 664-668
    [47] Guglielmi M, Colombo P, Mancinelli Degli Esposti L Characterization of laser-densified sol-gel films for the fabrication of planar and strip optical waveguides. Journal of Non-Crystalline Solids, 1992, 147-148: 641-645
    [48] Fabes B D, Taylor D J, Weisenbach L et al. Laser processing of channel waveguide structure in Sol-Gel coatings. Sol-Gel Optics, 1990, 1328: 319-328
    [49] Taylor D J, Fabes B D. Laser processing of Sol-Gel coatings. Journal of Non-Cryst Solids, 1992, 147(48): 457-462
    [50] Favre Angélique, Lee Eric, et al. Apostolopoulos Vasilis. Fabrication and characterization of UV-written channel waveguides in Bi2O3-based glass. Optical Materials, 2004, 27(1): 7-13
    [51] Ebendorff-Heidepriem Heike. Laser writing of waveguides in photosensitive glasses. Optical Materials, 2004, 25(2): 109-115
    [52] Milanese D, Fu A, Contardi C, et al. Photosensitivity and directly UV writtenwaveguides in an ion exchangeable bulk oxide glass. Optical Materials, 18(3): 295-300
    [53] Liu Zhiqiang, Namkhun Srisanit, Ke Xianjun, et al. An azobenzene functionalized polymer for laser direct writing waveguide fabrication. Optics Communications, 273(1): 94-98
    [54] S. H. Cho, J. M. Kim, J. G. Kim, et al. Fabrication of optical waveguides using laser direct writing method. in Proceedings of SPIE High-Power Laser Ablation. 2004, 5448: 783- 789
    [55] Ermile Gaganidzea, Karsten Litfina, Johannes B?hm et al. Fabrication and Characterization of Single-Mode Integrated Polymer Waveguide Components. in: Giancarlo C. Integrated Optics and Photonic Integrated Circuits. SPIE. 2004. 32-39
    [56] Que Wenxiu, Zhou Y, Lam Y. L, Chan Y. C. Fabrication of composite sol-gel optical channel waveguides by laser writing lithography. In: Proceedings of the SPIE Conference on Optical Engineering for Sensing and Nanotechnology 1999, Yokohama: SPIE, 1999. 290-293
    [57] Mailis S. Direct ultraviolet writing of channel waveguide in congruent lithium niobate single crystal. Optical Letter, 2003, 28(16): 1433-1435
    [58] Zhang Haibin, Eaton S.M, Li Jianzhao, et al. Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass. Optical Letter, 2006, 31(23): 3495-3497
    [59] Zhang Haibin, Eaton S.M., Herman P.R, et al. Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses. Optics Epress, 2006, 14(11): 4826-4834
    [60] Pani S.K, Quiling Y, Wong C.C, et al. Fabrication of buried hybrid sol–gel optical waveguides by femtosecond laser direct writing. Thin Solid Films, 504(1-2): 336-340
    [61] Saliminia A, Vallée R, Chin S.L. Waveguide writing in silica glass with femtosecondpulses from an optical parametric amplifier at 1.5μm. Optics Communications, 256(4-6): 422-427
    [62] Hirao K, Miura K. Writing waveguides and gratings in silica and related materials by a femtosecond laser. Journal of Non-Crystalline Solids, 239(1-3): 91-95
    [63] Miura K, Inouye H, Qiu Jianrong, et al. Optical waveguides induced in inorganic glasses by a femtosecond laser. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 141(1-4): 726-732
    [64]张中太,张俊英.无机光致发光材料及应用.第一版.北京:化学工业出版社, 2005. 17-18
    [65]姜建华.无机非金属材料工艺原理.第一版.北京:化学工业出版社, 2005. 60-63
    [66]黄剑锋.溶胶-凝胶原理与技术.第一版.北京:化学工业出版社, 2005. 7-8
    [67]周立兵.硅基二氧化硅型阵列波导光栅的研制: [博士学位论文].武汉:华中科技大学图书馆, 2005
    [68]翟继卫,张良莹,姚熹.溶胶-凝胶法在平面光波导薄膜中的应用.压电与声光, 1996, 18(4): 264-269
    [69]包洪涛,戴基智,杨亚培等.厚二氧化硅光波导薄膜的制备.激光与光电子学进展, 2005, 42(5): 48-50
    [70] Fischer U, Zinke T, Kropp J.R., et al. 0.1 dB/cm Waveguide Losses in Single-Mode SOI Rib Waveguides. IEEE Photonics Technology Letters, 1996, 8(5): 647-648
    [71]林志浪. SOI集成光波导器件的基础研究: [博士学位论文].上海:中国科学院上海微系统与信息技术研究所图书馆, 2004
    [72] Zaugg T.C, Fabes B.D, Weisenbach L, et al. Waveguide formation by laser irradiation of sol-gel coatings. Submolecular Glass Chemistry and Physics, 1991, 1590: 26-35
    [73] Weisenbach Lon, Brian J, Zeinski J, et al. The Influence of Processing Variables on the Optical Properties of SiO2-Ti02 Planar Waveguides. Submolecular GlassChemistry and Physics, 1991, 1590: 50-58
    [74] Fabes B.D, Zelinski J, Taylor D.J, et al. Laser densification of optical films. Sol-Gel Optics, 1992, 1758: 227-234
    [75] Taylor D.J, Birnie D.P, Fabes B.D. Temperature Calculation for Laser Irradiation of Sol-Gel Films on Oxide Substrates. Journal of Materials Research, 1995, 10(6): 1429-1434
    [76] Guglie1mi M, Co1ombo P, Degliesposti L.M, et al. Planar and strip optical waveguides by sol-gel method and laser densification. in: Proceedings of SPIE - The International Society for Optical Engineering. Bellingham, WA, USA: SPIE, 1991. 44
    [77] Guglielmi M, Colombo P, Degliesposti L.M, et al. Characterization of Laser-Densified Sol-Gel Films for the Fabrication of Planar and Strip Optical Wave-Guides. Journal of Non-Crystalline Solids, 1992, 147: 641-645
    [78] Stefano Pelli, Righini G.C, Alessandro Verciani, et al. Laser writing of optical waveguides in sol-gel films. in: Proceedings of SPIE - The International Society for Optical Engineering. Bellingham, WA, USA: SPIE, 1994. 58-63
    [79] Brusatin G, Guglielmi M, Innocenzi P, et al. Microstructural and optical properties of sol-gel silica-titania waveguides. Journal of Non-Crystalline Solids, 1997, 220(2): 202-209
    [80] Righini G.C, Stefano Pelli. Sol-gel glass waveguides. Journal of Sol-Gel Science and Technology, 1997, 8(1-3): 991-997
    [81] Stefano Pelli, Righini G.C, Scaglione A, et al. Direct laser writing of ridge optical waveguides in silica-titania glass sol-gel films. Optical Materials, 1996, 5(1-2): 119-126
    [82]翟继卫,张良莹,姚熹.溶胶-凝胶制备TiO2-SiO2复合薄膜的FT-IR表征.功能材料, 1997, 28(5): 490-491
    [83]翟继卫,张良莹,姚熹.溶胶-凝胶制备TiO2-SiO2复合薄膜的研究.功能材料,1998, 29(3): 284-286
    [84]翟继卫,杨涛,杨合情等.溶胶-凝胶法制备TiO2-SiO2复合薄膜的波导特性研究.硅酸盐学报, 1998, 26(5): 674-678
    [85]翟继卫,张良莹,姚熹.溶胶-凝胶法制备SiO2-TiO2复合薄膜的抗刻蚀能力研究.无机材料学报, 1999, 14(1): 133-137
    [86]翟继卫,张良莹,姚熹. TiO2/SiO2复合薄膜的晶化特征和结构转变研究.无机材料学报, 1998, 13(3): 363-367
    [87] Cho S.H, Kim J.M, Kim J.G, et al. Fabrication of optical waveguides using laser direct writing method. in Proceedings of SPIE High-Power Laser Ablation. 2004. 783-789
    [88] Hewak D.W, Jerominek H.. Channel optical waveguides in polyimides for optical interconnection by laser direct writing and contact printing. In: Proceedings of SPIE. Photopolymer Device Physics, Chemistry, and Applications. 1990. 86-99
    [89]李毅刚.新型掺铒光学材料及光波导的制备与光学性质研究: [博士学位论文].上海:复旦大学, 2004
    [90]杨帆,沈军,吴广明等.溶胶-凝胶法制备SiO2/TiO2多层膜工艺研究.安阳师范学院报, 2003(2): 31-34
    [91]杨南如,余桂郁.溶胶-凝胶的基本原理与过程.硅酸盐通报, 1992, 11(2): 56-63
    [92] Brinker J.C, Scherer G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. New York: Academic Press, 1990. 43-49
    [93]侯占佳.玻璃薄膜与光波导的非线性光学性质研究: [博士学位论文].上海:复旦大学, 1999
    [94]林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报, 1997, 12(3): 363-369
    [95]庞霖,严瑛白,金国藩等.基于微结构制作的溶胶-凝胶浸渍成膜特性.中国激光, 2001, 28(2): 151-154
    [96]陆佩文.硅酸盐物理化学.北京:中国建筑工业出版社, 1979. 461
    [97]田莳.材料物理性能.第一版.北京:北京航空航天大学出版社, 2004. 385
    [98]张玲,蔡涛,姚英政等. SiO2-TiO2二元材料及其杂化材料的制备和表征.应用化学, 2005, 22(9): 984-988
    [99]柯以侃,董慧茹.分析化学手册(光谱分析,第三分册).北京:化学工业出版社, 1998
    [100]Hiroyuki I, padamakemar K N, Kazuyuki M, et al. Structure and properties of SiO2-TiO2 prepared sol-gel method in the presence of tartaric acid. Materials Research Bulletin, 1997, 32(9): 1303-1311
    [101]Yang Lin, Saavedra S.S, Armstrong N.R, et al. Fabrication and characterization of low-loss, sol-gel planar waveguides. Analytical Chemistry, 1994, 66(8): 1254-1263
    [102]佘守宪.导波光学物理基础.第一版.北京:北方交通大学出版社, 2002
    [103]Reed G.T, Knights A.P. Silicon Photonics. West Sussex: John Wiley & Sons, 2004. 16-25
    [104]赵孝祥,许政权.利用棱镜耦合器测量光波导衬底的折射率.中国激光, 1992, 19(6): 426-429
    [105]李祥友,李耀兵,刘冬生等.激光微熔覆柔性布线系统研究及应用.应用激光, 2004, 24(5): 258-260
    [106]Zhai Jiwei, Zhang Liangying, Yao Xi, et al. Characteristics of laser-densified and conventionally heat treated sol-gel derived silica-titania films. Surface and Coatings Technology, 2001, 138: 135-140
    [107]苏英,周永恒,黄武等.石英玻璃与HF酸反应动力学的研究.硅酸盐学报, 2004, 32(3): 287-293
    [108]Stephen A. Campbell著,曾莹译.微电子制造科学原理与工程技术.北京:电子工业出版社, 2003. 261
    [109]Reed G.T, Knights A.P. Silicon Photonics. West Sussex: John Wiley & Sons, 2004. 71-73
    [110]陈晓文,刘叶新,吴添洪等.条形波导的三维标量FDTD法分析.中山大学学报(自然科学版), 2005, 44(3): 119-121
    [111]梁琳.科学研究与工程数值模拟的必备工具——FEMLAB. CAD/CAM与制造业信息化, 2004, 10: 48-49
    [112]许政权.介质光波导器件原理.第一版.北京:上海交通大学出版社, 1989. 68-72
    [113]吴重庆.光波导理论.第一版.北京:清华大学出版社, 2000. 165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700