用户名: 密码: 验证码:
可摘除局部义齿支架激光快速成型技术与设备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可摘除局部义齿支架是人体口腔修复的重要辅助工具,其形状多为复杂的三维曲面,一般用铸造工艺进行单件生产。但传统的铸造技术工序繁琐复杂,周期长,容易产生粘砂、缩孔、裂纹、冷隔与偏析等铸造缺陷。另外,对于活性高、易氧化的钛及钛合金支架,制作环境难保证,制造成本高。因此,迫切需要寻找一个新的制造技术来克服传统制造方法的不足。
     激光快速成型技术具有制造周期短、精度高、工艺简便等诸多优点,可以克服传统铸造工艺的不足。然而,国内外对于采用激光快速成型技术进行可摘除局部义齿支架制造的相关研究还在探索之中,缺乏相应的试验数据和理论研究。本文以激光直接制造技术DLF(Direct laser fabrication)和选择性激光熔化技术SLM(Selective Laser Melting)为基础,从设备研制、软件开发、基础工艺、加工效率、成型精度、成型件的微观组织和机械性能入手,对激光快速成型技术在可摘除局部义齿支架制造上的应用进行了深入的研究。主要研究结果如下:
     首先,构建了一个由Nd:YAG激光器及辅助设备、数控工作台、送粉系统、控制软件组成的DLF系统,能够方便地调节各加工工艺参数。通过相关工艺研究,获得了DLF快速成型优化的工艺参数范围:激光功率为200~500W、扫描速度为700~1400mm/min、送粉量为4.2~6.8g/min;系统地分析了DLF快速成型工艺对所加工零件的组织、机械性能的影响。通过测试,成型件的物相为奥氏体,与粉末材料相同,拉伸强度可达912MPa以上,平均显微硬度为HV261。实验证明,DLF技术虽然在微观组织和机械性能方面很优异,但由于它采用开环三轴数控与同轴送粉方式,对于复杂形状零部件的加工,在精度(尺寸误差2.5%)和效率(1.06cm~3/h)方面难以满足实际要求,特别是对于复杂三维曲面的可摘除局部义齿支架而言更加困难。因此,DLF方法不适合用于直接制造可摘除局部义齿支架。
     我们决定采用选择性激光熔化技术(Selective Laser Melting,SLM)解决支架直接制造问题。为此,本文构建了一个由Yb光纤激光器、扫描振镜、气体净化装置、铺粉装置、控制系统组成的选择性激光熔化系统,该系统由控制系统实现各个部分的协调工作。通过相关基础工艺研究,获得了优化的工艺参数范围:激光功率150~200W、扫描速度5~25mm/min、切片层厚0.02mm~0.04mm。实验发现,为了获得性能理想的金属零件,在激光加工过程中必须注意如下几个关键技术:(1)基板必须预先进行磨削(Ra为0.8μm)、去油污和水分、喷砂毛化处理;(2)切片层厚度在0.01~1.0mm精确可调,并且重复性好;(3)激光功率密度适中,不产生球化或飞溅现象。
     通过测试,SLM激光快速成型技术所制备金属零件致密度可达96%以上,拉伸强度为635MPa,平均显微硬度为HV307,成型件的物相为奥氏体,也与粉末材料相同;成型件平均误差为1.1%,制造效率为1.77cm~3/h。通过对成型件表面粗糙度的研究发现,表面粗糙度与切片层厚、激光加工参数、表面倾斜角度有关。切片层厚越小,表面粗糙度值越小;相对于XOY平面的倾斜角度越大,表面粗糙度值越小;在其它参数相同情况下,搭接率为30%时,表面粗糙值最小。实验结果表明,SLM成型件微观组织性能与机械性能良好,制造精度和制造效率比DLF要高。
     系统地开展了SLM快速成型加工效率的研究。结果表明,在保证成型件精度、微观组织与机械性能的前提下,要提高加工效率,应该从扫描路径规划、铺粉工艺、节约切片与扫描填充计算时间等多方面入手。在此基础上,本文提出了用于路径规划的“二分法”分区扫描算法,它可以消除扫描区域中包含内环时激光加工的跳转用时;同时,引入多线程技术,使切片、扫描填充计算与激光加工同步执行,节约了加工时间50%以上,从而提高了制造效率。
     利用上述设备、加工工艺和软件,采用优化的工艺参数,成功地实现了可摘除局部义齿支架的制造,特别是实现了钛合金支架的制造。通过对制造的可摘除局部义齿支架的形状精度的测试表明,利用本文SLM设备所制造的义齿支架,平均加工精度可达±0.172mm;通过支架在石膏模上的佩戴试验表明,所制造的可摘除局部义齿支架,通过一定的后续加工处理,完全可以应用于临床。
The removable partial denture framework is very complex in shape with many curved surfaces, which is a very important assistant tool in prosthodontics. Generally, frameworks are fabricated by single piece basing on mould by traditional cast technology, which has many shortages of multiple steps, time cost and defects such as sand adheres, inner holes, cracks and segregation etc. Note that it is difficult for this method to be used to fabricate frameworks of titanium alloys due to their high activity. In order to achieve the proper fabrication environment, the cost of casting is very high. Hence, it is significant to find a novel manufacturing technology to overcome shortages of the traditional dental framework fabrication method.
     As a novel method, the laser rapid prototyping technology (LRPT) has the advantages of short manufacturing cycle, high precision and flexibility, simple fabrication arts, which can be used to replace the conventional cast technology in the areas of prosthodontics. Whereas, the experimental and theoretical researches on the fabrication of removable partial denture frameworks by LRPT are very few up to now, which retard the applications of this technology in prosthodontics. In this Ph.D. dissertation, the technologies of direct laser fabrication and selective laser melting were compared to investigate the possibility of fabricating the removable partial denture frameworks. The equipment design, software development, basic fabrication parameters, processing efficiency and precision, microstructure and mechanical properties of final parts are investigated to realize the formation of removable partial denture frameworks. The following are the main results:
     Firstly, a DLF (Direct Laser Fabrication) setup composed of a Nd: YAG laser, a CNC stable and a powder feeder was built up. The effects of DLF parameters on the structure and mechanical properties of parts were analyzed systemically on the basis of the DLF setup above mentioned were investigated. The optimized parameter ranges are as follows: laser power 200~500W, scan velocity 700~1400mm/min, powder feed rate 4.2~6.8g/min. The phase of the fabricated parts is austenite, which is the same as that of the starting powder material. The fabricated sample has a tensile strength over 912MPa and an average micro-hardness of HV261. But the open-loop control and coaxial powder nozzle decide the DLF technology is not suitable for denture framework fabrication with high precision (smaller than 2.5% in dimension) and high efficiency (1.06cm~3/h) despite good microstructure and mechanical properties can be obtained.
     Accordingly, the selective laser melting technology was used to fabricate removable partial denture frameworks. In our project, a SLM system was designed and developed by ourselves, which is consisted of a Yb-fiber laser, an optical scanner, a powder coating device, a gas purification system and a control system. By using above SLM system, the process parameters were investigated systematically and optimized. The optimized parameter ranges are: laser power 150~200W, scan velocity 5~25m/min, slicing layer thickness 0.02~0.04mm. The experimental results show that several key steps should be noticed during SLM process to obtain metal parts with better performance: (1) the substrates should be milled to Ra0.8μm and free of water before sand blasting; (2) The thickness of slice should be adjusted easily and controlled in the range of 0.01~1.0mm. (3) Proper laser power density should be adopted to prevent the emergence of balling or splash.
     The parts formed by optimized parameters have a density above 96%, a tensile strength of 635MPa and an average micro hardness of HV307 for stainless steel powder. It is interesting to find that the phase of the built parts is also austenite, which is the same as that of the starting material. The measurements also show that the average dimension error is about 1.1% and the manufacturing efficiency of SLM is 1.77cm~3/h. The surface roughness is decided by slicing thickness, laser process parameters and the incline angle. The smaller slicing thickness or bigger incline angle leads to low roughness surface. Importantly, the overlap is a key parameter to control the roughness, the surface with lowest roughness can be obtained at an overlap of 30% when other parameters are kept the same. Hence, the microstructure and mechanical properties of fabricated parts is better, but the manufacturing precision and efficiency is high by SLM in comparison with that of DLF technology.
     The manufacturing efficiency of SLM was studied systemically by using this system. The results indicate the main ways to increase the manufacturing efficiency on the basis of ensuring the precision, microstructure and mechanical properties are proper scanning path layout, higher powder coating velocity, less time of slicing and filling path calculation. In this dissertation, a partition scanning arithmetic called dichotomy was used to design the scanning paths on the basis of reducing the laser skipping time. In addition, multithread calculation was introduced to make the slicing, scanning filling calculation and laser process run synchronous, which saves 50% of all manufacturing time and increases the manufacturing efficiency.
     We finally fabricated removable partial denture frameworks with stainless steel and titanium materials successfully by using the SLM system under optimized parameters. The tests showed that the frameworks have an average dimension precision of±0.172mm. The wearing experiments on the plaster mouth molds demonstrated the removable partial denture frameworks fabricated by SLM can be fully applied to clinic after some postprocessing procedures.
引文
[1] 中国机械工业教育协会组编.金属工艺学.(第一版).北京:机械工业出版社,2001:75
    [2] 吴江,高勃,谭华等.激光快速成型技术制造全口义齿钛基托.中国激光,2006,33(8):1139-1142
    [3] 朱林泉.快速成型与快速制造技术.北京:国防工业出版社,2003:172
    [4] 杜桂馥,张振起编.粉末冶金ABC.第1版.北京:冶金工业出版社,1993:15
    [5] 王晓波.冠、桥及全口钛基托的激光立体成型制备研究:[博士论文].西安:第四军医大学图书馆,2005
    [6] D. T. Pham, R. S. Gault. A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture, 1998, (38): 1257-1287
    [7] 张永忠,石力开,章萍芝等.基于金属粉末的激光快速成型技术新进展.稀有金属材料与工程,2000,29(6):361-365
    [8] P. A. Kobryn, S. L. Semiatin. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. Journal of Materials Processing Technology, 2003, 135(2-3): 330-339
    [9] 中国机械工程协会.机械制造技术的发展及其高技术化.中国制造业信息化,2004,(05):4-12
    [10] P. A. Kobryn, E. H. Moore, S. L. Semiatin. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scripta mater, 2000, 43(4): 299-305
    [11] N. A. Waterman, P. Dickens, Rapid product development in the USA, Europe and Japan. World Class Design To Manufacture, 1994, 1 (3): 27-36
    [12] Xue Yan, P Gu. A review of rapid prototyping technologies and systems. Computer-Aided Design, 1996, 28(4): 307-318
    [13] Jeng-Ywan Jeng, Ming-Ching Lin. Mold fabrication and modification using hybrid processes of selective laser cladding and milling. Journal of Materials Processing Technology, 2001, 110(1): 98-103
    [14] Krutha J P, Froyenb L, Vaerenbergha J V, et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149: 616-622
    [15] 钟敏霖,宁国庆,刘文今.金属零件的激光直接快速制造.激光技术,2002,26(5):388-391
    [16] 张魁武.国外激光熔覆应用和直接熔覆金属零件及梯度材料制造.金属热处理,2002,27(9):1-4
    [17] Mazumder J, Dutta D, KikuchiN, Ghosh A. Closed loop direct metal deposition art to part. Optics and Lasers in Engineering, 2000, 34: 397-414
    [18] Milewski J O, Lewis G K, Thoma D J, et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. Journal of Materials Processing Technology, 1998, 75: 165-172
    [19] GaryK Lewis, Eric Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21: 417-423
    [20] 何金江,钟敏霖,刘文今.基于激光直接制造技术的材料研究.金属热处理,2006,31(1):4-7
    [21] Li Peng, Ji Shengqin, Zeng Xiaoyan. Direct laser fabrication of thin-walled metal parts under open-loop control. International Journal of Machine Tools & Manufacture, 2007, 47: 996-1002
    [22] Gray K. Lewis, Eric Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21 (4): 417-423
    [23] Jan H B. File format requirements for the rapid prototyping technologies tomorrow. Hongkong: internation conference on manufacturing automation (ICM'97)1997, 4: 878-882
    [24] Chua C K, Gan G K J, Tong Mei. Interface between CAD and rapid prototyping systems. Part 1: A study of exiting interface. Advanced Manufacturing Technology, 1997, 13: 566-570
    [25] 陈永府,张华,陈兴等.任意曲面的三角形网格划分.计算机辅助设计与图形学学报,1997,9(5):396-401
    [26] 徐向阳,陈光南,刘文今.先进的激光直接制造技术与现代航空装备维修.工程与技术,2004,(3):28-30
    [27] C. O. Brown, E. M. Breinan, B. H. Kear. Method for fabricating articles by sequential layer deposition. US Patent, 4323756, 1982
    [28] K. I. Schwendner, R. Banerjee, P. C. Collins, et al. Direct laser deposition of alloys from elemental powder blends. Scripta Materialia, 2001, 45 (10): 1123-1129
    [29] G. K. Lewis, R. B. Nemec, J. O. Milewski, et al. Directed light fabrication. Proceedings of the ICALEO '94. Laser Institute of America, Orlando, Florida, 1994: 17-26
    [30] J. O. Milewski, G. K. Lewis, D. J. Thoma, et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. Journal of Materials Processing Technology, 1998, 75(1-3): 165-172
    [31] Romero JA, Griffith ML, Atwood CL, et al. Laser engineered net shaping LENS~(TM) for additive component processing. Proceedings of the Rapid Prototyping and Manufacturing Conference. Dearborn, MI, 1996: 23-25
    [32] D. M. Keicher, W. D. Miller, J. E. Smugeresky, et al. Laser Engineered Net Shaping (LENS): Beyond Rapid Prototyping to Direct Fabrication. Proceedings of the 1998 TMS Annual Meeting, San Antonio, Texas, 1998: 369-377
    [33] C. Atwood, M. Griffith, L. Harwell, et al. Laser Engineered Net Shaping (LENS~(TM)): A tool for direct fabrication of Metal Parts. Proceedings of ICALEO '98, November 16-19, 1998, Orlando, FL: E-1
    [34] Li Peng, Ji Shengqin, Zeng Xiaoyan. Direct laser fabrication of nickel alloy samples. International Journal of Machine Tools & Manufacture, 2005(45): 1288-1294
    [35] 李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究:[博士论文].武汉:华中科技大学图书馆,2005
    [36] 吴利英.梯度功能材料的发展及应用.航空制造技术,2003(12):57-61
    [37] P. A. Carlvalho, N. Braz, M. M. Pontinha, et al. Automated workstation for variable composition laser cladding-its use for rapid alloy scanning. Surface and Coatings Technology, 1995, 72(1-2): 62-70
    [38] Li L. Steen, W. M. Sensing. Modeling and closed loop of powder feeder for laser surface modification. FL, ICALEO, Orlando, USA, 1993: 965-974
    [39] X. Wu, J. Mei. Microstructure and mechanical properties of laser-fabricated Ti6A14V samples. European Congress and Exhibition on Powder Metallurgy (PM2001), 22-24 Oct, 2001, Nice, France. 2001: 213-218
    [40] 杨永强,吴伟辉.金属零件选区激光熔化直接快速成型工艺及最新进展.航空制造技术,2006,2:73-97
    [41] 来克娴,杨永强.光纤激光器及其在选区激光熔化中的应用.http://www.iec.gd.cn/laser.htm,2008-02-06
    [42] EOS GmbH. EOSINT. M270. http://www.eos.info/fileadmin/download/literature/EOSINT_M_270_DE_0803.pdf, 2009-01-25
    [43] D. L. Bourell, H. L. Marcus, J. W. Barlow, et al. Int. J. Powder Metall, 1992(28): 369
    [44] G. N. Levy, R. Schindel, J. -P. Kruth, et al. Manuf. Technol, 2003 (52): 589
    [45] Yadroitsev, L. Thivillon, Ph. Bertrand, et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied surface science, 2007(254): 980-983
    [46] 史玉升,鲁中良.选择性激光熔化快速成型技术与装备.中国表面工程,2006,19(5):150-153
    [47] Kozo Osakada, Masanori Shiomi. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 2006 (46): 1188-1193
    [48] N. K. Tolochko, V. V. Savich, T. Laoui, et al. Dental root implants produced by the combined selective laser sintering/melting of titanium powders, Proc. MECHE Part L: J. Mater.: Des. Appl. 216 (2002) 267-270.
    [49] http://www.eos.info/en/applications.html
    [50] Jiang Wu, Bo Gao, Hua Tan, et al. A feasibility study on laser rapid forming of a completetitanium denture base plate. Lasers Med Sci, DOI 0.1007/s 10103-008-0603-X
    [51] R. J. Williams, Richard Bibb, Dominic Eggbeer, et al. Use of CAD/CAM technology to fabricate a removable partial denture framework. The Journal of Prosthetic Dentistry, 2006, 96(2): 96-99
    [52] R. J. Williams, Richard Bibb, Dominic Eggbeer, et al. A technique for fabricating patterns for removable partial denture frameworks using digitized casts and electronic surveying. The Journal of Prosthetic Dentistry, 2004, 91 (1): 85-88
    [53] DirkAH, Tobias W, MatthiasW, et al. Development of individual three-dimensional bone substitutes using selective laser melting. European Journal of Trauma, 2003, 29(4): 229-234
    [54] Rob Day, Alan Kop. Heat treatment of Ti-6A1-7Nb components produced by elective laser melting. Rapid Prototyping Journal, 2008, 14(5): 300-304
    [55] F Abe, E Costa Santors, Y Kitamura. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(7): 711-719
    [56] H. Meier, Ch.Haberiand. Experimental studies on selective laser melting of metallic parts. Mat.-wiss. u. Werkstofftech. 2008, 39( 9):665-670
    [57] Adam T. Clare ,Paul R. Chalker, et al. Selective laser melting of high aspect ratio 3D nickel-titanium structures two way trained for MEMS applications. Int J Mech Mater Des, 2008 (4):181-187
    [58] M. Wong a, I. Owena, C.J. Sutcliffe, et al. Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting. International Journal of Heat and Mass Transfer, 2009 (52) :281-288
    [59] L.E. Murra, S.A. Quinones, S.M. Gaytan,et al. Microstructure and mechanical behavior of Ti-6A1-4V produced by rapid-layer manufacturing for biomedical applications. Journal of the mechanical behavior of biomedical materials, 2009(2) :20-32
    [60] F. Bayle, M. Doubenskaia. Selective Laser Melting process monitoring with high speed infra-red camera and pyrometer. Proc. of SPIE Vol. 6985 698505-1
    [61] Yadroitsev, I. Shishkovsky, P. Bertrand. Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Applied Surface Science, 2009(255) :5523-5527
    [62] Kamran Aamir Mumtaz, Neil Hopkinson. Laser melting functionally graded composition of Waspaloy and Zirconia powders. J Mater Sci, 2007 (42):7647-7656
    [63] P. Fox , S. Pogson, C.J. Sutcliffe, et al. Interface interactions between porous titanium/tantalum coatings, produced by Selective Laser Melting (SLM), on a cobalt-chromium alloy. Surface & Coatings Technology, 2008(202): 5001-5007
    [64] Y. F. Shen, D. D. Gu, P. Wu. Development of porous 316L stainless steel with controllable microcellular features using selective laser melting. Materials Science and Technology, 2008, 24(12): 1501-1505
    [65] Maarten van Elsen, Farid Al-Bender, Jean-Pierre Kruth. Application of dimensional analysis to selective laser melting. Rapid Prototyping Journal, 2008, 14 (1): 15-22
    [66] 吴峥强.金属零件选区激光熔化快速成型技术的现状及发展趋势.热加工工艺,2008,37(13):118-121
    [67] WangK. The use of titanium for medical applications in the USA. Materials Science andEngineering, 1996, 213: 134-137
    [68] D. Frank, G. Fadel, Preferred direction of build for rapid prototyping processes, 5th International Conference on Rapid Prototyping, Dayton, Ohio, 1994: 191-201
    [69] 付立定,史玉升,章文献等.316L不锈钢粉末选择性激光熔化快速成型的工艺研究.应用激光,2008,4(2):108-111
    [70] Over C, Meiners W, W issenbach K, et al. Selective laser melting: a new approach for the direct manufacturing of metal parts and tools. 1st International Conference on Laser Assisted Net Shape Engineering, Germany: Frankfurt, 2001
    [71] 李宁,王高潮.SLS烧结参数对快速成型制件精度与强度的影响.模具制造技术,2004,10:51-53
    [72] 陈忠,刘晓东.激光振镜扫描系统的快速软件校正算法研究.华中科技大学学报(自然科学版),2004,31(5):68-69
    [73] 赵毅,卢秉恒.振镜扫描系统的枕形畸变校正算法.中国激光,2003,30(3):216-218
    [74] 步进电机与交流伺服电机的性能比较.http://www.ot88.com,2007-12-5
    [75] 白俊生,唐亚新,余承业.激光烧结粉末快速成型铺粉辊筒运动参数的分析研究.舰空精密制造技术,1997,33(1)::15-17
    [76] 魏庆同编.刀具合理几何参数.(第一版).兰州:甘肃人民出版社,1978:100-130
    [77] 刘强.选择性激光熔化设备和工艺的研究:[硕士论文].武汉:华中科技大学图书馆,2007
    [78] Jouni Hanninen. Direct metal laser sintering. Advanced Materials & Processes, 2000, (2):33
    [79] 陈鸿,程军.激光快速成型系统中自适应分层算法及实现.应用基础与工程科学学报,2003,11(3):329-335
    [80] Ines Stassen B(o|¨)hlen, Jim Fieret, Andrew Holmes. CAD/CAM software for an industrial laser manufacturing tool. Proc. of SPIE, 4977: 198-206
    [81] 张海藩编.软件工程导论(第三版).北京:清华大学出版社,1997:38-39
    [82] 史玉升,黄树槐,陈绪兵等.三维CAD模型直接切片技术及其在快速成型中的应用.计算机辅助设计与图形学学报,2002,14(12):1172-1178
    [83] 杨薇,刘淑鲜.RPM系统优化分层的算法研究.制造业自动化,2005,27(9):70-72
    [84] Jan HB. File format rquirements for the rapid prototyping technologies tomorrow. Hongkong: international conference on manufacturing automation (ICM. 97), 1997, 4: 878-882
    [85] ChuaCK, GanGKJ, TongMei. Interface between CAD and rapid prototyping systems. Part1: A study on exiting interface. Advanced Manufacturing Technology, 1997, 13: 566-570
    [86] 黎步松,周钢,王从军等.基于STL文件格式的实体分割算法研究与实现.华中科技大学学报,2002,3(3):40-42
    [87] 王珊,陈红编.数据库系统原理教程.(第一版).北京:清华大学出版社,2000:37
    [88] 刘正林.面向对象的程序设计.(第一版).武汉:华中科技大学出版社,2001:6
    [89] 江早.OpenGL VC/VB图形编程.(第一版).北京:科学出版社,2001:3-8
    [90] R. C. Luo, P. T. Yu, Yih-Fang Lin et al. Efficient 3D CAD model Slicing for rapid prototyping Manufacturing Systems. IECON Proceedings, 1999, (3): 1504-1509
    [91] 陈剑虹,张舜德,刘振凯等.基于Voronoi图的快速扫描路径策略研究.21世纪新产品快速开发技术,2000:137-142
    [92] 陈鸿,张志钢,程军.SLS快速成型工艺激光扫描路径策略研究.应用基础与工程科学学报,2001,9(2-3):203-207
    [93] P. Kulkami, D. Dutta. Deposition strategies and resulting part stiffnesses in fused deposition modeling. Journal of manufacturing science and engineering, 1999, 121(1): 93-103
    [94] Xiaoping Qian, D. Dutta. An Architecture for Interoperability of Layered Manufacturing Data. Proceedings of DETC'98, ASME Design Engineering Technical Conferences. Atlanta 1998, DETC98/CIE-5700
    [95] Deok-Soo Kim. Polygon offsetting using a Voronoi diagram and two stacks. Computer-Aided Design, 1998, 30(14): 1069-1076
    [96] 宾鸿赞,张小波,刘征宇等.生长型制造中薄层分形描路径的生成与控制系统.中国机械工程,1998,9(12):52-54
    [97] Guangxia Chen, Zheng Xiong, Xiaoyan Zeng. Study on direct laser fabrication of Nd: YAG.SPIE, 2007, 6423: 64234T1-6
    [98] 刘斌,肖跃加,韩明等.实体截面轮廓内外边界的自动识别算法研究.华中理工大学学报,1996,24(10):23-25
    [99] 常明,朱林.计算机图形学.(第二版).武汉:华中科技大学出版社,2001:141
    [100]M, T. Ensz, M. L. Grifiith, L. D. Harwell. Software Development for Laser Engineered Net Shaping. Solid Freeform Fabrication Proceedings, 1998: 359-366
    [101]Kamran Aamir Mumtaz, Poonjolai Erasenthiran, Neil Hopkinson. High density selective laser melting of Waspaloy. Journal of materials processing technology, 2008 (195): 77-87
    [102]尚晓峰,刘伟军,王天然.金属直接快速成型中激光扫描路径算法仿真技术.机械设计与制造,2003,3:75-76
    [103]潘琰峰,沈以赴,顾冬冬等.316不锈钢粉末直接激光烧结的球化效应.中国机械工程,2005,16(17):1573-1576
    [104]Y. S. Sato, M.Urata, H.Kokawa et al. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys Materials Science Engineering: A, 2003, 354(1-2): 298-304
    [105]吴景轮.口腔修复实用技术.济南:山东科学技术出版社,1999
    [106]Cohen S M, Kakar A, Vaidyanathan T K, et al. Castability optimization of palladium based alloys. J Prosthet Dent, 1996, 76(2): 125-131
    [107]张方明,郭长军.口腔修复技术与工艺.石家庄:河北科学技术出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700