用户名: 密码: 验证码:
光纤光栅功能型滤波特性及其在光脉冲生成中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种典型的全光纤式无源器件,光纤光栅(FBG)具有体积小、易与光纤耦合、损耗小等特点,在光纤通信和传感器领域有着重要应用和广阔前景。因而FBG滤波性能与器件的持续深入研究、优化,对于提升其性能和应用领域、对于更好地服务于光通信与信号处理有着重要意义。目前,虽然FBG的研究已取得一系列的理论和实验成果,但是伴随着新型光信息技术的发展和用户需求的不断增加,其滤波性能和应用面临着许多新的挑战和机遇。本文在已有的研究成果基础上,围绕FBG的新颖滤波性能及特色应用开展工作,大致分为三部分:FBG多信道滤波特性研究、FBG的特殊反射谱的设计、基于FBG的脉冲压缩和脉冲序列生成。
     在本文研究过程中,先后采用了相位等效、傅里叶变换、传输矩阵法、泰勒级数展开等理论方法和仿真手段。首先,以相位空间的等效性,结合线性啁啾与相移技术,建立频域Talbot效应的通用化相位条件,以混合技术达到多信道密集化的效果;运用傅里叶变换法建立光栅折射率调制与反射谱之间的关联,设计得到余弦、二次函数型、直角梯形特殊反射谱;在上述设计结果的基础上,采用传输矩阵法对方案和性能进行验证,并为FBG在信号生成领域的应用提供了理论指导。其次,利用泰勒级数展开法分析光相位调制的频率啁啾特性,而后提出以高阶色散补偿(比如二阶、四阶色散)方案来补偿频率啁啾,实现脉冲压缩和生成。本文的主要取得的成果如下:
     新型FBG滤波特性研究,集中在多功能型多信道滤波器、具有特殊函数型响应的光滤波器两个方向。推导得到通用化相位条件作为混合技术的基础;由于在通用化相位条件中,啁啾系数和相移对相位条件的贡献是等效的,可以通过啁啾系数和相移的不同排列来设计多信道滤波器,实现不同的信道间隔、色散补偿值。并且,可通过动态调节插入的相移值来实现可调色散补偿器。此后,基于对折射率调制的傅里叶变换分析,设计了具有特殊幅频响应、时延响应的多种FBG。特殊幅频响应包括非对称斜率三角形,二次函数型和四次函数型,指数函数型,直角梯形;特殊时延响应包括:线性、二次函数型、三次函数型,甚至可以拓展到更为复杂的形状。而后,基于传输矩阵法对滤波性能进行仿真验证,所获得结果和理论预期基本一致,达到了预期的效果。此类光栅可应用于高阶色散补偿、微波信号光子学产生、光脉冲信号生成、以及光电传感与解调中。
     结合相位调制及啁啾FBG,提出并设计了多倍频(二倍频、四倍频等)重复速率的光脉冲序列生成方案。即一束光经相位调制后被分解为具有正交偏振态的两路信号,分别从相反方向注入一个啁啾光纤光栅的两端,由于干涉效应,奇数阶边带被消除,产生了一个具有偶数阶边带的归零码脉冲序列,生成两倍频重复速率归零码脉冲序列,其脉冲占空比为33%。进一步地,利用正弦信号调制线性偏振光,其偏振角相对于偏振调制器的主轴成45。;该信号输入到啁啾FBG,反射光经过偏振分束器将产生四倍频重复速率的脉冲序列。
     基于相位调制和高阶色散补偿的光脉冲压缩与生成。针对外光相位调制的频率啁啾特性进行解析分析,对被调制光同时进行二阶色散和四阶色散补偿,被调制光的频率啁啾在一个相对更大的带宽中被补偿,有效地实现了对光脉冲的压缩,且具有更小的时间-带宽积和更大的峰值功率。在此基础上,基于重构-等效啁啾理论,设计了一个包含二阶色散和四阶色散补偿能力的SFBG来实施脉冲压缩。仿真结果表明,使用所设计的SFBG能够实现高阶色散补偿,压缩光脉冲的时间-带宽积为0.79。
As one classic of passive optical devices, fiber Bragg gratings are widely used in many practical applications, especially in fiber communications and optical sensing domain for their characteristics of compact size, compatibility to fiber and low transmission loss, etc. Detailed analysis on FBGs is extraordinarily important for the design and performance promotion, which would make the FBGs more useful in the optical communication systems. So far, lots of theoretical and experimental results have been presented on this topic. However, more and more challenges and opportunities for the FBGs will arise with the technolgy development and commercial demands. Based on the existing research results, we are going to study the novel performances and the applications mechanism of the FBGs, including the filtering characteristics, the design of the reflection spectrum, and the pulse compression and pulse train generation.
     The equivalent phase, the Fourier transform, the transfer matrix, and the Taylor series expansion have been employed to analyze and verify the proposed schemes. Firstly, according to the equivalence in the phase domain, a general phase condition for the Talbot effect is obtained to develop the dense multi-channel effect by combining the linear chirp and phase shift. On the basis of the Fourier transform relationship between the index modulation of the grating and the reflection spectrum, cosine-shape, quadratic-function shape and right-angle-trapezoid-shape reflection spectra have been achieved. These proposed schemes are numerical demonstrated by the transfer matrix method, which can provide certain theorical reference for the pratical applications in optical signal processing. Secondly, the frequency chirp of phase modulated ligtht is analyzed using the Taylor series expansion method. Furthermore, we propose a frequency chirp compensation scheme by using high order dispersion compensation (e.g. second order and fourth-order dispersions), resulting in a effective pulse compression and generation. The content and results of this thesis are listed as follows.
     Firstly, the thesis focuses on the novel filtering characteristics of FBG, including multi-function optical comb filter and the special spectrum response. The general phase condition can be derived to be the foundation of the hybrid technique, in which the chirp and the phase shift are equivalent. Thus, a comb filter with different channel spacings and dispersions is available by adjusting the distribution of the chirp and the phase shift. Futhermore, by tuning the phase shift of FBG dynamically, a tunable dispersion compensator can be realized. After analysis on the index modulation based on the Fourier transform, five special reflection spectra, such as quadratic function, right angle trapezoid function, and so on, are achieved, respectively. Moreover, special group delay responses have also been investigated based on the same approach, including linear shape, quadratic-function shape and so on. Using transfer matrix method, the numerical results agree well with the theoretical analysis results. This kind of filter can easily find applications in the signal generation and sensor area.
     Secondly, a novel generation scheme for rate-multiplication pulse train (i.e. rate-doubled and rate-quadrupled) is presented based on the phase modulation and chirped FBG. After passing through the phase modulator, a beam will be separated into two orthogonally polarized signals which are then injected into the same chirped FBG in opposite directions. The odd-order side-lobes will be eliminated due to the interference, from which a return zero pulse train with double rate is generated with a duty ratio of33%. Furthermore, by applying the sine signal to modulate a linear polarized light, the polarization angle relative to the axis of the polarization modulator is set as45°. When the signal is transmitted in the chirped FBG, the reflected light then results in rate-quadrupled pulse sequence after passing through the polarizer.
     Finally, the pulse compression and generation based on the phase modulation and high order dispersion compensation is investigated. Through compensating the second order and the fourth order dispersions of an external modulated light, the pulse compression is realized with a larger peak power and a smaller time-bandwidth products. Based on the reconstruction-equivalence chirp theory, a pulse compression scheme is proposed by using an SFBG including the second order and the fourth order dispersions. Simulation results show that the scheme can offer a time-bandwidth product of only0.79for pulse compression.
引文
[1]. M. Wada, T. Umezawa, T. Kudou et al. Full-WDM-band photodiode modules for optical communications at 40 Gbs and beyond. OFC 2003,1:337-338.
    [2]. E. Poutrina.G. P. Agrawal. Impact of dispersion fluctuations on 40Gb/s dispersion managed lightwave systems. IEEE J. Lightwave Technol.,2003,21(4):990-996.
    [3]. E. Pincemin, D. Grot, C. Borsier, et al. Impact of the fiber type and dispersion management on the performance of an NRZ 16×40 Gb/s DWDM transmission system. IEEE Photon. Technol. Lett.,2004,16(10):2362-2371.
    [4]. W. Shieh, I. Djordjevic. OFDM for Optical Communications. Burlington, MA, USA: Academic Press/Elsevier,2010.
    [5]. M. Daikoku, I. Morita, H. Taga et al.100-Gb/s DQPSK transmission experiment without OTDM for 100G ethernet transport. J. Lightwave Technol.2007,25(1): 139-145.
    [6]. R. J. Essiamber, R. W. Tkach. Capacity trends and limits of optical communication networks. Proceedings of the IEEE,2012,100(5):1035-1055.
    [7]. S. Gringeri, E. B. Basch. T. J. Xia, et al. Technical condiseration for supporting data rates beyond 100 Gb/s. IEEE Communications Magazine,2012,50(2):21-30.
    [8]. E. Yamazaki, M. Tomizawa, Y. Miyamoto.100 Gb/s optical transport network and beyond employing digital signal processing. IEEE Communications Magazine,2012, 50(2):43-49.
    [9]. C. Madsen, J. H. Zhao. Optical filter design and analysis:a signal processing approach. JohnWiley&Sons, Inc.,1999.
    [10]. S. Cao, J. Chen, J. N. Damask, et al. Interleaver technology:comparisons and applications requirements. J. Lightwave Technol.,2004,22(1):281-289.
    [11]. G. Darvish, M. K. Moravvej, A. Zarifkar, et al. Narrowband optical filters suitable for various applications in optical communications. Applied Optics.2008,47(28): 5140-5146.
    [12]. C. R. Giles. Lightwave applications of fiber Bragg gratings. J. Lightwave Technol.. 1997,15(8):1391-1404.
    [13]. R. L. Fork. Optical frequeney filter for ultra short Pulses. Opt. Lett.,1986,11(10): 629-631.
    [14]. C. Madsen and G. Lenz. Optical all-pass filters for phase response design with applications for dispersion compensation. IEEE Photon. Technol. Lett.1998,10(7): 994-996.
    (?)D. L. MacFarlane, J. Tong, C. Fafadia, et al. Extended lattice filters enabled by four-directional couplers. Appl Opt.,2004,43(33):6124-6133.
    [16]. L. R. Chen, H. S. Loka, D. J. F. Cooper, et al. Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moire gratings. IEEE Electron. Lett.1999,35(7):584-585.
    [17]. A. M. Vengsarkar, J. R. Pedrazzani, et al. Long-period fiber-grating-based gain equalizer. Opt. Lett.,1996,21(5):236-238.
    [18]. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al. Long-period fiber gratings as band-rejection filters. J. of Lightwave Technol.,1996,14(1):58-64.
    [19]. Y. Li, C. Henry, E. Laskowski, et al. Waveguide EDFA gain equalisation filter, Electron. Lett.,1995,31(23):2005-2006.
    [20]. A. Vengsarkar, A. Miller, M. Haner, et al. Fundamental mode dispersion-compensating fibers:design considerations and experiments. Optical Fiber Conference, San Jose, CA,1994.
    [21]. F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt. Lett.,1987,12(10):847-849.
    [22]. K. Takiguchi, K. Okamoto, K. Moriwaki, et al. Dispersion compensation using a planar lightwave circuit optical equalizer. IEEE Photon. Technol. Lett.,1994,6(4): 561-564.
    [23]. S. Blais, J. P. Yao. Tunable photonic microwave bandpass filter using a superstructureed FBG with two reflection bands having complementary chirps. IEEE Photon. Technol. Lett.,2008,20(3):199-201.
    [24]. X. H. Zou, J. P. Yao. An optical approach to microwave frequency measurement with adjustable measurement range and resolution. IEEE. Photon. Technol. Lett.,2008, 20(23):1989-1991.
    [25]. S. Betti, G. D. Marchis, E. Iannone. Polarization modulated directdetection optical transmission systems. J. Lightwave Technol.,1992,10(12):1985-1997.
    [26]. A. S. Siddiqui, S. G. Edirisinghe, J. J. Lepley, et al. Dispersion-tolerant transmission using a duobinary polarization-shift keying transmission scheme. IEEE Photon. Technol. Lett,2002,14(2):158-160.
    [27], P. J. Winzer and S. Chandrasekhar. Return-to-zero modulation with electrically continuously tunable duty cycle using single NRZ modulator. Electron. Lett.,2003, 39(11):859-860.
    [28]. H. F. Taylor, M. J. Taylor, and P. W. Bauer. Electro-optic analog-to-digital conversion using channel waveguide modulators. Appl. Phys. Lett.,1978,32(10):559-561.
    [29]. T. Shibata and M. Yoneyama. A novel sample and hold system using an optical modulator. IEEE Photon. Technol. Lett.,1992,4(10):588-591.
    [30]. R. Helkey. Narrow-band optical A/D converter with suppressed second-order distortion. IEEE Photon. Technol. Lett.1999,11(18):599-601.
    [31]. K. Tamura, M. Nakazawa. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. Opt. Lett.,1996, 21(1):68-70.
    [32]. H. G. Winful. Pulse compression in optical fiber filter. Appl. Phys. Lett.,1985,46 (6): 527-529.
    [33]. K. Tai, A. Tomita.1100 x optical fiber pulse compression using grating pair and solition effect at 1.319 μm.J.App. Phys. Lett.,1986,48(16):1033-1035.
    [34]. R. L. Fork, C. H. Brito, P. C. Becker, et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett,1987,12(7):483-485.
    [35]. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, et al. Extreme picosecond pulse narrowing by means of solition effect in single-mode fibers. Opt. Lett.,1983,8(5): 289-291.
    [36]. G. P. Agrawal. Effect of intrapulse stimulated Raman scattering on solition-effect pulse compression. Opt. Lett,1993,18(14):1150-1152.
    [37]. R. F. Souza, E. J. S. Fonseca, J. M. Hickmann, et al. Weak sgnal pulse compression and amplifcation through stimulated Raman scattering and cross-phase modulation in optical fibers. Opt. Commun.,1996,124:79-82.
    [38]. K. C. Chan, W. H. Cao. Enhanced soliton-effect pulse compression by cross-phase modulation in optical fibers. Opt. Commun.,2000,178:79-88.
    [39]. N. J. Doran, W. David. Nonlinear-optical loop mirror. Opt. Lett.,1988,13(1):56-58.
    [40]. K. Smith, N. J. Doran, P. G. J. Wigley, et al. Pulse shaping, compression, and pedestal suppression employing a nonlinear optical loop mirror. Opt. Lett.,1990,15(22): 1294-1296.
    [41]. 杨广强,宋继恩,黄永清等.基于均匀级联光纤光栅的全光纤脉冲压缩器的数值模拟.量子电子学报,2005,22(4):282-285.
    [42]. 刘军民,廖常俊,徐文成等.非线性光纤光栅在禁带内对光脉冲压缩的机制.光学学报.1996,16(3):293-298.
    [43]. 高志鹏,余震虹,刑丽华.一种重构强反射光纤布拉格光栅的新方法.光学学报,2006,26(7):991-996.
    [44]. 戴一堂.新型光纤布拉格光栅的研究与应用.清华大学,博士学位论文,2006.
    [45]. 瞿荣辉,丁浩,赵浩,等.取样光纤布拉格光栅.光学学报,1999,19(2):226-229.
    [46]. 王庆亚,秦莉,韦占雄,等.光纤光栅梳状滤波器的设计及制作.光电子激光,2000,11(1):20-22.
    [47]. 贾宝华,盛秋琴,冯丹琴,等.超结构光纤布拉格光栅的理论研究.中国激光,2003,30(3):247-251.
    [48]. 曹辉,孙军强,张新亮,等.一种新颖的超结构光纤Bragg光栅梳状滤波器的设计.物理学报,2004,53(9):3077-3082.
    [49]. 邹喜华.光梳状滤波器在光通信和微波信号处理中的研究及应用.西南交通大学,博士学位论文,2009.
    [50]. 黄勇林,董孝义,李杰,等.基于马赫-曾德尔干涉仪和光纤光栅的光分插复用器.中国激光,2005,32(3):423-426.
    [51]. W. H. Loh, F. Q. Zhou, J. J. Pan. Novel design for sampled grating-based multiplexers-demultiplexers. Opt. Lett.,1999,24(21):1457-1459.
    [52]. F. Bilodeau, D. C. Johnson, S. Thriault, et al. An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings. Photon. Technol. Lett.1995,7(4):388-390.
    [53]. M. Ibsen, M. K. Durkin, M. J. Cole, et al. Sine-sampled fiber Bragg gratings for identical multiple wavelength operation, IEEE Photon. Technol. Lett.,1998,10(6): 842-844.
    [54]. V. Mizrahi. Four channel fiber grating demultiplexer. Electron. Lett.,1994,30(10): 780-781.
    [55]. 林宗强,王国忠,李栩辉,等.取样光栅周期中等效啁啾的实验研究.光电子·激光,2002,13(5):487-490.
    [56]. 刘玉敏,俞重远,杨红波,等.优化二元相位取样光纤布喇格光栅以及对色散和色散斜率补偿的应用.光子学报,2005,34(11):1701-1705.
    [57]. J. T. Kringlebotn, J. L. Archambault, L. Reekie, et al. High efficient low noise grating feedback Er+ Yb3+ codoped fiber grating. Electron. Lett.,1994,30(12): 972-973.
    [58]. C. L. Zhao, X. F. Yang, L. Chao, et al. Switchable multi-wavelength erbium-doped fiber laser by using cascaded fiber Bragg gratings written in high birefringence fiber. Opt. Commun.,2004,230:313-317.
    [59]. M. P. Nellen, P. Mauron, A. Frank, et al. Reliability of fiber Bragg grating based sensors for downhole applications. Sensors and Actuators A,2003,103:364-376.
    [60]. B. A. L. Gwandu, X. Y. Shu, Y. Liu, et al. Simultaneous measurement of strain and curvature using superstructure fiber Bragg gratings. Sensors and Actuators A.2002, 96:133-139.
    [61]. H. J. Lee, S. J. B. Yoo, V. K. Tsui. A simple all-optical label detection and swapping technique incorporating a fiber Bragg grating filter. IEEE Photon. Lett.,2001,13(6): 635-637.
    [62]. K. H. Wen, L. S. Yan, W. Pan, et al., Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design. Appl. Opt.,2009,48(29):5438-5444.
    [63]. G. P. Agrawal, S. Radic. Phase-shifted fiber Bragg gratings and their applications for wavelength demultiplexing. IEEE Photon. Technol. Lett.,1994,6(8):995-997.
    [64]. X. F. Chen, C. C. Fan, Y. Luo, et al. Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating. IEEE Photon. Technol. Lett.,2000,12(11): 1501-1503.
    [65]. G. A. Ball, W. W. Morey. Compresssion-tuned single-frequency Bragg grating fiber laser. Opt. Lett.,1994,19(23):1979-1981.
    [66]. W. G. Zhang, X. Y. Dong, D. Feng, et al. Linear fiber-grating-type sensing tuned by applying torsion stress. Electron. Lett.,2000,36(20):1686-1688.
    [67]. M. J. Gander, W. N. Macpherson, et al. Bend Measurement using Bragg gratings in multicore fiber. Electron. Lett.,2000,36(2):120-121.
    [68]. R. B. Wagreich, W. A. Atia, H. Singh, et al. Effects of diametric load on fiber Bragg gratings fabricated in low birefringence fiber. Electron. Lett.,1996,32(13): 1223-1224.
    [69]. J. L. Cruz, L. Dong, L. Reekie. Improved thermal sensitivity of fiber Bragg gratings using a polymer overlayer. Electron. Lett.,1996,32(4):385-387.
    [70]. J. L. A. Diego, R. L. Ruisanchez, J. M. Lopez-Higuera, et al. Fiber Bragg gratings as an optical filter tuned by a magnetic field. Opt. Lett..1997,22(9):603-605.
    [71]. M. Poulin, Y. Painchaud, M. Aube, et al. Ultra-narrowband fiber Bragg gratings for laser linewidth reduction and RF filting. Proc. SPIE,2010,7579:75791C.
    [72]. S. Baskar, P. N. Suganthan, N. Q. Ngo, et al. Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm, Opt. Commun.2006,260(10):716-722.
    [73]. K. H. Wen, L. S. Yan, W. Pan, et al, Design of fiber Bragg gratings with arbitrary reflective spectrum, Opt. Eng.,2011,50(5):054003.
    [74]. N. G. R. Broderick, D. Taverner, D. J. Richardson, et al. Experimental observation of nonlinear pulse compression in nonuniform Bragg gratings. Opt. Lett.,1997,22 (24): 1837-1839.
    [75]. T. Komukai, T. Yamamoto, and S. Kawanishi. A novel technique for transforming CW light into a pulse train and its application to optical networks. The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2005.
    [76]. F. Parmigiani, C. Finot, K. Mukasa, et al. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Optics Express.2006,14(17):7617-7622.
    [77]. A. Rosenthal and M. Horowitz. Analysis and design of nonlinear fiber Bragg gratings and their application for optical compression of reflected pulses. Opt. Lett., 2006,31(9):1334-1336.
    [78]. Q. Li, P. K. A. Wai, K. Senthilnathan, et al. Modeling Self-Similar Optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations. J. Lightwave Technol.,2011,29(9):1293-1304.
    [79]. J. Magne, J. Bolger, M. Rochette, et al. Generation of a 4×100 GHz pulse-train from a single-wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion. J. Lightwave Technol.,2006,24(5):2091-2099.
    [80]. L. S. Yan, A. L. Yi, W. Pan, et al. A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser. IEEE Photon. Technol. Lett.,2010,22(18):1391-1393.
    [81]. L. S. Yan, Z. T. Zhang, P. Wang, et al. Fiber sensors for strain measurements and axle-counting in high-speed railway applications, IEEE Sensors J.,2011,11(7): 1587-1594.
    [82]. X. H. Zou, F. Wang, and W. Pan. Flat-top and ultra-narrow bandpass filter designed by sampled fiber Bragg grating with multiple equivalent phase shifts. Appl. Opt., 2009,48(4):691-694.
    [83]. X. H. Zou, W. Pan, Bin Luo. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp. Appl. Opt.,2008,47(26):4729-4734.
    [84]. X. H. Zou, W. Pan, B. Luo, et al. One-dimensional photonic crystal-based multichannel filters using binary phase-only sampling approach. IEEE/OSA J. Lightwave Technol.,2007,25(9):2482-2486.
    [85]. X. H. Zou, W. Pan, B. Luo, et al. Periodically chirped sampled fiber Bragg gratings for multichannel comb filter. IEEE Photon. Technol. Lett.,2006,18(12):1371-1373.
    [86]. X. H. Zou, W. Pan, B. Luo, et al. Accurate analytical expression for reflection-peak wavelengths of sampled Bragg grating. IEEE Photon. Technol. Lett,2006.18(3): 529-531.
    [87]. X. H. Zou, W. Pan, B. Luo, et al. Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs. IEEE J. Quantum Electron.,2009, 48(1):3-7.
    [88]. X. H. Zou, H. Chi, and J. P. Yao. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair. IEEE Trans. Microw. Theory and Tech.,2009,57(2):505-511.
    [89]. B. Xie; W. Pan; B. Luo; X. H. Zou. Improvement on peak-to-trough ratio of sampled fiber Bragg gratings with multiple phase shifts," Chin. Opt. Lett.,2008,6(1):9-11.
    [90]. H. T. Liu, W. Pan, L. S. Yan, et al. Design of a broad spectrum multichannel optical filter based on FBG. Optoelectron. Lett.2009,5(2):131-134.
    [91]. 邹喜华,潘炜,罗斌,等.非啁啾取样光纤布拉格光栅反射峰值波长的分析.光学学报,2007,27(6):971-976.
    [92]. 邹喜华,潘炜,罗斌,等.倾角对光纤Bragg光栅型OADM性能的影响.光电子·激光,2004,15(8):910-913.
    [93]. K. H. Wen, W. Pan, L. S. Yan, et al. Accurate analytical expression for the bandwidth of reflection-peak of uniform sampled fiber Bragg grating. Opt. Eng.,2008,47(9): 094403.
    [94]. K. H. Wen, L.-S. Yan, W. Pan, et al. Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings. Optik, 2011,122:2249-2251.
    [95]. K. H. Wen, L. S. Yan, W. Pan, et al, Multi-channel optical code-division multiple-access scheme based on super-structure fiber Bragg gratings. Optik,2012, in press.
    [96]. A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron., 1973,9(9):919-993.
    [97]. K. A. Winick. Effective-index method and coupled-mode theory for almost periodic waveguide gratings:A comparison. Appl. Opt.,1992,31(6):757-764.
    [98]. M. Yamada, K. Sakuda. Analsis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. Appl. Opt.,1987,26(16):3474-3478.
    [99]. G. P. Agrawal. Nonlinear Fiber Optics.2001.
    [100].张自嘉.光纤光栅理论基础与传感技术.科学出版社,2009.
    [101]. T. Erdogan. Fiber grating spectra. J. Lightwave Technol.,1997,15(8):1277-1294.
    [102]. V. Mizrahi, J. E. Sipe. Optical properties of photosensitive fiber phase gratings. J. Lightwave Technol.,1993,11(10):1513-1517.
    [103]. J. E. Sipe, L. Poladian, C. M. de Sterke. Propagation through nonuniform grating structures. J. Opt. Soc. Amer. A,1994, 11(10):1307-1320.
    [104]. M. E. Fermann, K. Sugden, I. Bennion. High-power soliton fiber laser based on pulse width control with chiped fiber Bragg gratings. Opt. Lett.,1995,20(2):172-174.
    [105]. P. A. Morton, V. Mizrahi, T. Tanbun, et al. Stable single mode hybrid laser with high power and narrow linewidth. Appl. Phys. Lett.,1994,64(20):2634-2636.
    [106]. P. A. Morton, V. Mizrahi, P. A. Andrekson, et al. Mode-locked hybrid soliton pulse source with extremely wide operating frequency range. IEEE Photon. Technol. Lett., 1993,5(1):28-31.
    [107]. L. A. Weller-Brophy. Analysis of waveguide gratings:Application of Rouard's method. J. Opt. Soc. Amer. A,1985,2(8):863-871.
    [108].孙英志,余重秀,林金桐,等,啁啾光纤光栅色散补偿变迹函数的研究.光电子·激光,1999,10(3):228-231.
    [109], T. Komukai, T. Yamamoto, and S. Kawanishi. Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings. IEEE Photon. Technol. Lett., 2005,17(8):1746-1748.
    [110]. C. V. Shank, R. L. Fork, R. Yen, et al. Compression of femtosecond optical pulse. J. App. Phys. Lett.,1982,40(9):761-763.
    [111]. H. Nakatsuka, D. Grischkowsky, A. C. Balant, et al. Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett.,1981,47(13):910-913.
    [112]. T. Kobayashi, H. Yao, K. Amano, et al. Optical pulse compression using high-frequency electrooptic phase modulation. IEEE J. Quantum Electron.,1988, 24(2):382-387.
    [113]. L. Poladian. Graphical and WKB analysis of nonuniform Bragg gratings. Phys. Rev. E,1993,48(6):4758-4767.
    [114]. Y. T. Dai, X. F. Chen, X. Xu, at al. High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift. IEEE Photon. Technol. Lett.,2005, 17(5):1040-1042.
    [115]. H. Li, Y. Sheng, Y. Li, et al. Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation. J. Lightwave Technol.,2003, 21(9):2074-2083.
    [116]. Y. T. Dai, X. F. Chen. J. Sun, et al. Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts. Opt. Lett.,2006, 31(3):311-313.
    [117]. H. Lee, G. P. Agrawal. Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings. IEEE Photon. Technol. Lett.,2004.16(2):635-637.
    [118]. M. S. Kumar, A. Bekal. Performance evaluation of SSFBG based optical CDMA systems employing golden sequences. Opt. Fiber Technol..2005,11(1):56-68.
    [119]. X. Shu, K. Chisholm, I. Felmeri, et al. Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings. App. Phys. Lett.,2003,83(15):3003-3005.
    [120]. X. H. Zou, Wei Pan. Bin Luo, et al. Sepctral talbot effect in sampled fiber Bragg gratings with super-periodic structures. Opt. Express,2007,15(14):8812-8817.
    [121]. N. Yusuke. Y. Shinji. Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique. J. Lightwave Technol.,2005,23(4):1808-1817.
    [122]. C. H. Wang, J. Azana, L. R. Chen. Efficient technique for increasing the channel density in multiwavelength sampled fiber Bragg grating filters. IEEE Photon. Lett., 2004,16(8):1867-1869.
    [123]. J. Azana, C. Wang, L. R. Chen. Spectral self-imaging phenomena in sampled Bragg gratings. J. Opt. Soc. of Amer. B,2005,22(9):1829-1841.
    [124]. R. Huang, Y. W. Zhou, H. Cai, et al. A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems. Opt. Commun.2004,229:197-201.
    [125].吕昌贵,徐新华,崔一平.无自致啁啾布拉格光纤光栅的制作方法及原理.光学学报,2003,23(9):1049-1052.
    [126]. J. J. Pan, Y. Shi. Steep skirt fiber Bragg grating fabracation using a new apodised phase mask. Electron. Lett.,1997,33(22):1895-1896.
    [127]. N. Yokoi, T. Fujisawa, K. Saitoh, et al. Apodized photonic crystal waveguide gratings. Opt. Express,2006,14(10):4459-4468.
    [128]. T. Kobayashi, H. Ideno, T. Sueta. Generation of arbitraily shaped optical pulses in the subnanosecond to picosecond region using a fast electrooptic deflector. IEEE J. Quantun Electron.,1980,16(2):132-136.
    [129]. D. Grischkowsky, M. M. T. Loy. Theroy of the dispersive modulator. Appl. Phys. Lett.,1975,26(4):156-158.
    [130]. F. Verluise, V. Laude, Z. Cheng, et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter:pulse compression and shaping. Opt. Lett.,2000,25(8):575-577.
    [131]. C. Yu, Z. Pan, T. Luo, Y. Wang, et al. Beyond 40-GHz return-to-zero optical pulse-train generation using a phase modulator and polarization-maintaining fiber. IEEE Photon. Technol. Lett.,2007,19(1):42-45.
    [132]. C. Yu, Y. Wang, Z. Pan, et al. Carrier-suppressed 160 GHz pulse-train generation using a 40 GHz phase modulator with polarization-maintaining fiber. Opt. Lett., 2009,34(11):1657-1659.
    [133]. X. H. Zou, J. Yao. Repetition-rate-tunable return-to-zero and carrier-suppressed return-to-zero optical pulse train generation using a polarization modulator. Opt. Lett., 2009,34(3):313-315.
    [134]. J. J. Veselka, S. K. Korotky. Pulse generation for soliton systems using Lithium Niobate modulator. IEEE J. Sel. Top. Quantum Electron.1996,2(3):300-310.
    [135]. J. Azana, M. A. Muriel. Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings. Opt. Lett.,1999,24(16):1672-1674.
    [136]. C. Yu, Z. Pan, T. Luo, et al. Beyond 160-GHz pulse generator using a 40-GHz phase modulator and PM fiber. Optical Fiber Communication Conference (OFC),2005, OThR5.
    [137]. Y. F. Xing and C. Y. Lou. A novel scheme to generate 40-GHz CSRZ pulse trains using a 10-GHz dual-parallel Mach-Zehnder modulator. Chin. Opt. Lett.,2011,9(1): 010602.
    [138]. T. Otsuji, M. Yaita, T. Nagatsuma, et al.10-80-Gb/s highly extinctive electrooptic pulse pattern generation. IEEE J. Sel. Top. Quantum Electron.,1996,2:643-649.
    [139]. V. T. Company, J. Laucis, P. Andres. Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light. Opt. Express,2006,14(8):3171-3180.
    [140]. M. D. Pelusi, Y. Matsui, A. Suzuki, et al. Fourth-order dispersion suppression of ultrashort optical pulses by second-order dispersion and cosine phase modulation. Opt. Lett.,2000,25(5):296-298.
    [141]. Y. T. Dai, X. Chen, L. Xia, et al. Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp. Opt. Lett.,2004, 29:1333-1335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700